
IBExpert KG

AN INTRODUCTION TO
IBEXPERT & FIREBIRD

AN INTRODUCTION TO
IBEXPERT & FIREBIRD

Holger Klemt

Debra J. Miles

An Introduction to IBExpert and Firebird

Copyright �IBExpert KG

First edition: September 2009

Printed and bound in the Federal Republic of Germany for
IBExpert KG, Holger Klemt, Im Gewerbepark 8, 27798 Hude,
Germany.

www.ibexpert.com

Authors: Holger Klemt, Debra J. Miles

Cover design: Debra J. Miles

All rights reserved. No part of this work may be reproduced or
transmitted in any form or by any means, electronic or mech-
anical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission
of IBExpert KG.

This book is sold subject to the conditions that it shall not, by
way of trade, or otherwise be lent, re-sold, hired out, or other-
wise circulated without the publisher's prior consent in any
form of binding or cover other than that in which it is published
and with and without a similar condition including this condition
being imposed on the subsequent purchaser.

Trademarked names may appear in this book. Rather than use
a trademark symbol with every occurrence of a trademarked
name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringe-
ment of the trademark.

The information in this book is distributed without warranty.
Although every precaution has been taken in the preparation of
this work, neither the author(s) nor the publisher shall have any
liability to any person or entity with respect to any loss or dam-
age caused or alleged to be caused directly or indirectly by the
information contained in this work.

All information and source code inthis book is also available
online at http://www.ibexpert.com/doc.

Published and printed by IBExpert KG, Hude, Germany.

IBExpert & Firebird Guide

Chapter 1: Install Firebird...11
 1. Installation using the Firebird Installer..12
 2. ZIP installation...14
 3. Performing a client-only install..14
 4. Install Firebird as an application...15
 5. Installing multiple Firebird servers..15

Chapter 2: Install IBExpert..17
 1. Download and install IBExpert on Windows...17
 2. Installation...17
 3. Installing IBExpert under Linux...18

Chapter 3: Register a Firebird database in IBExpert......................21
Chapter 4: Programming the Firebird Server..................................25
Chapter 5: An Introduction to Stored Procedures........................27

 1. INITALL...28
Chapter 6: Basic SQL Commands..31

 1. Simple SELECT commands...31
 2. Adding a WHERE clause..33
 3. CONTAINING ...34
 4. ORDER BY...34
 5. SELECT across multiple tables..34
 6. Sub-SELECTs in fields and WHERE clauses...35
 7. UNION SELECT...35
 8. IN operator..36
 9. EXISTS operator...36
 10. INSERT and UPDATE with values..37
 11. DELETE..37
 12. CREATE, ALTER and DROP..38
 13. Defining code templates in IBExpert...38
 14. Analyzing SQL Performance...38
 15. Optimizing SQL statements..40

Chapter 7: Creating your First Database...43
 1. Developing a data model..43
 2. Naming conventions...43
 3. Relationships...44
 4. 1:1...44
 5. n:1...45
 6. n:m..45
 7. Data modeling using IBExpert's Database Designer..45
 8. Create database...46

Chapter 8: Database Designer...49
 1. Model Options...50
 2. Export..51
 3. Print...51

Chapter 9: Create a Database Object..53
 1. Database objects..53
 2. Adding a new table to the db1 demo database..53

5

Contents

IBExpert & Firebird Guide

 3. Primary key...53
 4. Foreign key...54
 5. Create test data..56
 6. 253 changes of table left...56

Chapter 10: More about Database Objects59
 1. Domain..59
 2. Table..60
 3. View...60
 4. Stored Procedure..62
 5. Trigger...65
 6. Generator/Sequence...66
 7. Exception..67
 8. UDF (User-Defined Function)...67
 9. Blob filter...67
 10. Role...68
 11. Index..68

Chapter 11: More about Data Types..73
 1. Blob - Binary Large OBject ..73
 2. CHAR and VARCHAR ...74
 3. INTEGER, SMALL INTEGER and BIG INTEGER ...75
 4. FLOAT and DOUBLE PRECISION ..76
 5. NUMERIC and DECIMAL ..76
 6. DATE, TIME, TIMESTAMP ..77
 7. Array ...78
 8. Boolean ..79
 9. NOT NULL, NULL ..80

Chapter 12: Writing Stored Procedures & Triggers.......................81
 1. SET TERM..81
 2. Stored procedure..83
 3. Simple procedures..83
 4. FOR EXECUTE ... DO ...85
 5. WHILE ... DO..87
 6. LEAVE and BREAK..87
 7. EXECUTE statement..88
 8. Recursions and modularity...88
 9. Debugging...89
 10. Optimizing procedures..91
 11. Complex SELECTs or selectable stored procedures?..93
 12. Trigger...94
 13. Using procedures to create and drop triggers..94
 14. Using domains in stored procedures..95

Chapter 13: SP/Triggers/Views Analyzer.......................................97
Chapter 14: Writing Exceptions...101
Chapter 15: Logging...103

 1. Understanding the log file...104
Chapter 16: Database Backup & Restore...107

 1. Why is a database backup and restore important?..107
 2. Backup Database..108
 3. Restore Database...110
 4. Automating the database backup and restore..114

Chapter 17: Reporting...115
 1. ibec_CreateReport..116

6

IBExpert & Firebird Guide

 2. ibec_ExportReport..117
 3. Job Automation with the IBExpertJobScheduler...119

Chapter 18: Data Analysis...121
 1. Cube Structure..121
 2. Cube..122
 3. Data Analysis Cube Manager...123
 4. Data Analysis Calculated Measures Manager..124

Chapter 19: Data Export & Import...127
 1. Export..127
 2. Import ...129
 3. Secure data transfer...132

Chapter 20: Data & Metadata Manipulation...................................133
 1. Extract Metadata...133
 2. Search Metadata...139
 3. SQL Editor Special Features..140
 4. Copy Database Object..142
 5. Database Comparer & Table Data Comparer...142

Chapter 21: Script Executive & Script Language Extensions.....147
 1. Executing multiple scripts from a single script..148
 2. Create multiple CSV files from a script...148
 3. Script Language Extensions...149

Chapter 22: Firebird 2.0 Blocks..151
Chapter 23: IBEBlock..157
Chapter 24: Database Documentation...165

 1. Object and field descriptions...165
 2. Template short cuts...165
 3. Print metadata...165
 4. Generate HTML documentation..167

Chapter 25: User Manager...169
 1. Users page..169
 2. Password..170
 3. Roles page..170
 4. Membership page...170

Chapter 26: Grant Manager...171
 1. Granting access to stored procedures..172
 2. Using the GRANT AUTHORITY option...172

Chapter 27: Database Statistics...173
Chapter 28: Optimizing Database Performance.............................177

 1. Operating systems..177
 2. Optimal hard disk use...177
 3. Optimizing hardware configuration...178
 4. Temporary files..178
 5. Memory configuration...178
 6. Optimizing OS configuration...179
 7. Firebird benchmarks tests..179
 8. Optimizing the database...179
 9. Parameters for optimal performance..180
 10. The Firebird Optimizer and index statistics..180
 11. Automating the recalculation of index statistics..180

Chapter 29: Avoiding Server Problems...183

7

IBExpert & Firebird Guide

 1. Typical causes of server problems...183
 2. Detect and avoid server problems..184
 3. Communication Diagnostics...184

Chapter 30: Command-Line Utilities..187
 1. IBExpert's IBEScript.exe...187
 2. IBEScript.dll...188
 3. Firebird/InterBase Command-Line Tools..189

8

IBExpert & Firebird Guide

If you develop SQL databases, professionally or as a hobby, and need an efficient and powerful
tool, you cannot go wrong with IBExpert. It 4enables you in just a short space of time to become
acquainted with and achieve a command of the open source database, Firebird, as well as its
commercial relative, InterBase. There are powerful and yet easy-to-learn editors for all vital
functions. Development of database objects, database models, stored procedure and trigger
programming, performance tuning -all th8is and much more can be executed simply and quickly
using IBExpert.

The Firebird server is an extremely powerful open source database system,which in spite of its very
simple installation and administration, offers all essential functions otherwi8se found only in
commercial database systems such as Oracle or Informix. However, following installation the
Firebird user has but a few command-line tools at his disposal, there is no powerful GUI tool for
data definition and administration included in the kit. This, along with the very limited document-
ation, is the first hurdle that Firebird users need to overcome.

This is where IBExpert comes to the rescue, whether in the form of the free, functionally limited
Personal Edition, the gratis Educational Version or the commercial Full Version including all
modules, which is also available as a 45-day Trial Version. These resources enable the user the
acquire the technical proficiency required for professional applications.

This guide is intended as an introduction for both database developers and administrators, enabling
…

Thanks to … (Jason Chapman, Paul Beach, Firebird Foundation, ...)

Following the success of open source operating systems, particularly in the area of server installa-
tions, the database market segment is now also on the brink of such a breakthrough. Firebird is
here certainly one of the most powerful platforms, and IBExpert the ideal complement for discerning
database developers and administrators.

Oldenburg, Germany

September 2009

9

Foreword

Install Firebird

Chapter 1: Install Firebird

Firebird is renowned for its ease of installation and administration. Even an inexperienced user can
download and install Firebird using the Installer, with just a few mouse clicks. Firebird offers two
server versions, Classic and Superserver. If you are installing Firebird for the first time we
recommend installing the Superserver.

The current Firebird version can be downloaded free of charge from http://firebirdsql.org subject to
open source conditions. Alternatively, use the IBExpert Help menu item, Download Firebird, to
directly access the download website:

Simply click the Download tab and select All released packages (SourceForge). The download
packages come in a variety of options according to: server type (Classic, Superserver and
Embedded), server version, platform, and incorporating the Installer or as a ZIP file.

Scroll down to the latest file releases and click DOWNLOAD to the right of the version for your
platform, for example Firebird releases for Windows and Linux. If you are new to Firebird, then go
for a version using the Installer. The Zip kit is for manual, custom installs of Classic or Superserver.

A new window opens: click on the green Download button to the right of the Firebird file you
require. Select the file(s) you wish to download and then, if required, a download server. Specify
drive and path for the download file and save.

Before you proceed with the installation (either using the Firebird Installer or manually from the ZIP
file), please ensure first that there is no Firebird server already running on the machine you are
about to install onto.

11

IBExpert & Firebird Guide

 1. Installation using the Firebird Installer
Now double-click the downloaded Firebird file to start the installation. Again, please refer to
Windows Platforms and Posix Platforms on the following pages for installation details for the
various platforms.

Read and accept the Firebird License Agreement, before proceeding further.

Specify the drive and path where you wish the Firebird server to be installed. Please note that the
Firebird server, along with any databases you create or connect to, must reside on a hard drive that
is physically connected to the host machine. It is not possible to locate components of the server or
database on a mapped drive, a file system share or a network file system. The Firebird server must
be installed on the target computer. In the case of the Embedded Server version the client library is
embedded in the server, this combination performing the work of both client and server for a single
attached application.

Then select the components you wish to install. If you are still fairly new to Firebird, select the
default option, Full installation of Server and development tools, checking the Classic or Super-
server option as wished.

After confirming or altering the Start Menu folder name (or checking the Don't create a Start Menu
folder box), you arrive at the Check Additional Tasks dialog:

The Firebird Guardian: The Firebird Guardian is a monitoring utility that does nothing other than
check whether the Firebird server is running or not. Nowadays it is not really necessary on modern
Windows systems, as it is possible to restart the Firebird service, should it cease to run for any
reason, using the operating system. Use the Windows Services (Restore page) to specify that
every time the Firebird service stops, it should be restarted. When the service is halted, the restart
can be viewed in the Windows Event Log.

However if the server does go down, it's important to find out what caused it. The logs need
checking to trace page corruption and an immediate decision needs to be made right there and
then, whether to regress backwards or move forwards. An automatic restart automatically leads to
more crashes and more corruption, until the problem is noticed and the causes analyzed and

12

Install Firebird

repaired. So consider carefully, whether you wish to have the Guardian running in the background
on your database server or not.

Further parameter check options include the following:
• Run the Firebird server as an application or service.
• Start Firebird automatically every time you boot up: recommended.
• “Install Control Panel Applet”: Windows Vista CAUTION. If you are installing onto Windows

Vista, the installer option to install the Control Panel applet must be DISABLED to avoid hav-
ing it break the Control Panel on your Vista system.

• Copy Firebird client library to <system> directory: care needs to be taken here if there is more
than one instance of Firebird running on the server. If the fbclient.dll is simply overwritten, it
can cause problems for any Firebird server that is already installed and running. Instead of
copying to the \system directory, simply move it to your application directory.

• Generate client library as GDS32.DLL for legacy app. support: Many programs, including for
example older Delphi versions, rely on a direct access using this file name. This option can be
checked to copy the file under the old name.

Should problems be encountered during installation, please refer to the Firebird Information file,
part of the Firebird software package.

The IBExpertInstanceManager service creates a replacement for the Firebird Guardian, which is
important if you have more than one Firebird server installed, because the Firebird Guardian only
works with the Firebird default instance. Further information regarding the IBExpertInstanceM-
anager can be found in Chapter 1: 15. Installing multiple Firebird servers.

 1.1 Windows platforms
On Windows server platforms - Windows NT, 2000 and XP, the Firebird service is started upon
completion of the installation. It starts automatically every time the server is booted up.

The non-server Windows platforms, Windows 95, 98 and ME, do not support services. The install-
ation starts the Firebird server as an application, protected by the Guardian. Should the server
application terminate abnormally, the Guardian will attempt to restart it.

 1.2 Posix platforms
As there may be significant variations from release to release of any Posix operating system,
especially the open source one, it is important to read the release notes pertaining to the Firebird
version to be installed. These can be downloaded from the Download page at
http://firebird.sourceforge.net.

Please also refer to Firebird 2 Migration & Installation: Installing on POSIX platforms at
www.ibexpert.com/doc and consult the appropriate platform documentation, if you have a Linux
distribution supporting rpm installs, for instructions about using the RedHat Package Manager. Most
distributions offer the choice of performing the install from a command shell or through a GUI
interface.

13

IBExpert & Firebird Guide

For Linux distributions that cannot process rpm programs, use the .tar.gz kit. Again instructions
are included in the release notes. Shell scripts have been provided, but in some cases, the release
notes may advise modification of the scripts as well as some manual adjustments.

 2. ZIP installation
Another way to install Firebird is from a ZIP file. This method is more flexible for embedded installa-
tions, and is the ideal solution for development applications which are being passed onto
customers: simply pack the complete Firebird ZIP directory in with your application, so that when
you call your Installer, the only work necessary is to call the appropriate batch file. Download the
appropriate ZIP file from the Firebird Download site, following the directions at the beginning of this
chapter. This ZIP file basically contains the complete installation structure.

It includes a pretty much "pre-installed" server, which you can simply copy to any directory as
wished, and which you can integrate into your installation by simply calling batch files. Simply start
the install_classic.bat or install_super.bat, depending upon which server you wish to
install:

The instreg utility does all the work, making the necessary entries in the right places, and installs
everything required in the Registration. It usually installs the Firebird Guardian too, and concludes
by starting the service.

 3. Performing a client-only install
Each remote client machine needs the client library that matches the release version of the Firebird
server: libgds.so on Posix clients; gds32.dll or fbclient.dll on Windows clients. Firebird
versions from 1.5 onward require an additional client library, libfb.so or fb32.dll, which
contains the full library.

In these newer distributions, the "gds"-named files are distributed to maintain compatibility with
third-party products which require these files. Internally, the libraries jump to the correct access
points in the renamed libraries.

Also needed for the client-only install:

 3.1 Windows
If you want to run Windows clients to a Linux or other Posix Firebird server, you need to download
the full Windows installation kit corresponding to the version of Firebird server installed on the Linux
or other server machine. Simply run the installation program, as if you were going to install the
server, selecting the CLIENT ONLY option in the Install menu.

 3.2 Linux and some other Posix clients
Some Posix flavors, even within the Linux constellation, have somewhat idiosyncratic requirements
for file system locations. For these reasons, not all *x distributions for Firebird even contain a
client-only install option. For the majority, the following procedure is suggested for Firebird versions
lower than 1.5. Log in as root for this.

14

Install Firebird

1. Search for libgds.so.0 in /opt/interbase/lib on the machine where the Firebird
server is installed, and copy it to /usr/lib on the client.

2. Create the symlink libgds.so using the following command:
 ln -s /usr/lib/libgds.so.0 /usr/lib/libgds.so

3. Copy the interbase.msg file to /opt/interbase.
4. In the system-wide default shell profile, or using setenv() from a shell, create the

INTERBASE environment variable and point it to /opt/interbase, to enable the API
routines to locate the messages.

Since Firebird 2.1 the Installer offers the possibility to install multiple instances. IBExpert has its
own IBExpertInstanceManager as one of the HK-Software Services Control Center services (see 5.
Installing multiple Firebird servers below).

 4. Install Firebird as an application
To run Firebird as an application, use the following parameter -a:

 C:\Program Files\Firebird\Firebird_2_1\bin>fbserver –a

This can, for example, be copied to any subdirectory of your application and controlled from the
application so that when it starts, the Firebird server also starts. Furthermore it is possible, for
example, directly specify the use of a different port. That way files just need to be added to your
individual setup, with the firebird.conf file port specification adjusted accordingly. It is not
advisable to use port 3050, the default Firebird port, because it is used by every other Firebird
server. If you leave it on 3050 you may encounter problems if other Firebird installations are
present.

When you are starting the Firebird server as an application, you do not need to install anything.
Simply copy the data to the customer's workgroup server and start it from there.

 5. Installing multiple Firebird servers
IBExpertInstanceManager is one of the modules in the HK-Software Services Control Center and
and IBExpert Server Tools and can be used to install several instances of the Firebird server on a
single Windows machine using different ports.

Using multiple instances of the Firebird server has numerous advantages, for example, using
different SYSDBA passwords, using multiple CPUs more effectively, or using old and new Firebird
versions on one machine. You can even create one instance per database if you wish.

 5.1 How to specify instances
First ensure that there is already a single Firebird version installed on your machine using the
default Firebird installer. A current IBExpert full version should also be installed. The service,
hkIM.exe, can be found in the IBExpertInstanceManager directory. This service also creates a
replacement for the Firebird Guardian, which is important because the Firebird Guardian only works
with the Firebird default instance.

In IBExpert this can be found in the IBExpert Services menu, HK-Software Services Control Center.

15

IBExpert & Firebird Guide

The default settings include those options which can be user-specified for all individual instances.

To create an instance right-click on the IBExpertInstanceManager service and select Add task.
Click on this task on the left, set the task's Active parameter to True, and then select the
BaseService from the list of Firebird instances installed on the PC.

When the FirebirdServerDefaultInstance is selected (if you are creating your first instance this will
be the only option), the necessary information will be copied from the Firebird version just installed.
Simply specify the port number for the Firebird instance to be created. All other instance configur-
ation settings will be generated automatically. There are further options to set up mail notification,
schedules and validation parameters. Validation is simply a test connection to the new instance's
security.fdb/security2.fdb, using the instance's port number. The SYSDBA password can
be different for each instance, if wished.

To rename the task, click on the task name when the service is inactive with the [Ctrl] key pressed
down. Specifications can be saved and the service can be started (or restarted if it was already
running). When properly configured the running task should show runtime info on the first run. This
can be viewed on the Service runtime info page.

A new directory C:\FB3060 has automatically been created by IBExpert. All files from the original
Firebird installation have been copied into this directory. The firebird.conf has been manipu-
lated to meet the specifications made in the IBExpertInstanceManager (RootDirectory,
RemoteServiceName, RemoteServicePort, IpcName, RemotePipeName).

After the instance, which now runs from this new directory, has been successfully created, the
original Firebird server should be uninstalled.

The next Firebird version can then be installed and the above procedure repeated to create a
second instance. The new Firebird installation does not recognize the presence of the first Firebird
instance as a Firebird server, as it's running on a different port and in a different directory. Therefore
this newly installed Firebird version will also be the FirebirdServerDefaultInstance.

In this way it is possible to create as many instances as may be required without any conflicts.

16

Install IBExpert

Chapter 2: Install IBExpert

 1. Download and install IBExpert on Windows

 1.1 Customer Version
IBExpert can be downloaded from the IBExpert download pages. There are a number of versions -
please refer to the IBExpert website at www.ibexpert.com for further information.

All registered databases are stored in the directory, C:\Documents and Settings\%user
%\Applicationdata\HK-Software\IBExpert or, if used, in the IBExpert User Database.
Please backup these files before uninstalling.

The download page on the IBExpert website offers a number of download options:

Registered customers should click on the Customer Download link. Enter your user name and the
password supplied with the registration confirmation. The current IBExpert version can be found by
scrolling down to setup_customer.exe: these files comprise the full range of all IBExpert
Developer Studio tools and components.

Customers installing their first fully licensed IBExpert customer version will be asked to register the
product the first time the application is started. Please check that the computer name and company
name which appears in the Registration window is the same as the computer name and company
name quoted on the license form. Then simply enter Key A and Key B and click the Register button.
You should receive a confirmation message stating that your IBExpert version has been success-
fully registered. Customers with site or VAR licenses need to copy the license file into the IBExpert
directory before starting IBExpert for the first time in order to avoid this key request.

 1.2 Trial Version
For those wishing to download the IBExpert Trial Version, go to the Download / Trial page at
www.ibexpert.com and click Download to access the download area. The file you require is
setup_trial.exe file.

 2. Installation
Double-click the EXE file to start the installation. The IBExpert Customer and Trial versions both
offer the full selection of all IBExpert Developer Studio Tools:

17

IBExpert & Firebird Guide

Following confirmation of the License Agreement and confirmation or alteration of the installation
directory, IBExpert is automatically installed and started.

To alter the IBExpert interface language, use the IBExpert menu Options / Environment Options.

 3. Installing IBExpert under Linux
 As the many Linux distributions vary widely, the following is limited to a detailed IBExpert install-
ation under ubuntu 8.1.0. It may be necessary to make certain adjustments when installing on other
Linux distributions.

 3.1 Install Wine
You will need to open a shell to install Wine (the graphical interface cannot be used because you
need to be able to log in as root to install these tools). Run the installation as root or through kdesu
or sudo programs. This article uses sudo commands in its examples.

Open the Konsole (found under Applications/System Tools), and log in as superuser:
 sudo su

entering the password when prompted ([sudo] password for xxx:).

Firstly you need to download the newest Wine version which can be found at:
http://winehq.org/site/download. At http://winehq.org/site/download_deb you can find the most up-
to-date version for Debian derivatives, including ubuntu.

Using ubuntu 8.1.0 the following command automatically adds the newest Wine version to the
sources:

 sudo wget
http://wine.budgetdedicated.com/apt/sources.list.d/hardy.list -O
/etc/apt/sources.list.d/winehq.list

Then you simply need to enter:
 sudo apt-get install wine & sudo apt-get update

18

Install IBExpert

to install the newest version. Don't run IBExpert before doing the next steps. If you have done, you
will probably need to delete the .wine directory.

Upon completion of the installation enter:
 winecfg

This will open a configuration dialog, which can immediately be closed again. This command
automatically creates a .wine folder in the Home directory. The next step entails the execution of
the following two commands which run a script in order to obtain a native DCOM98:

 wget http://kegel.com/wine/winetricks

and
 sh winetricks dcom98

(alternative site: http://wiki.winehq.org/NativeDcom)

Now both the msls31.dll and the riched20.dll need to be copied into the
.wine/drive_c/windows/system32 directory. These files can be found, for example, in a
Windows system.

Finally the following needs to be added to the windcfg file: riched20.dll should be entered on
the Libraries page under New override for library:. Click on the Add button and you should see
riched20.dll appear in the list below:

You should now be able to run most Windows applications.

19

IBExpert & Firebird Guide

 3.2 Install IBExpert under Wine
Before installing IBExpert, open the Wine configuration and, on the Applications page, select
Windows 98 from the Windows Version list. This is only necessary for the IBExpert installation, and
can be changed back immediately to the Windows version of your choice as soon as IBExpert has
been installed.

Now you need to enter the command:
 wine <IBExpert InstallationFile.exe>

to install IBExpert. The installation procedure runs in exactly the same way as described for
Windows (refer to the beginning of this chapter).

Upon completion of the installation, you only need to make one adjustment. Under the IBExpert
Options menu item, Environment Options, you need to specify the Default Client Library path to the
fbclient.dll or gds32.dll. This can be found either in a Windows installation or the Windows
Server Version installed with Wine without the developer and server components (if you're not sure
which client library you need, install both) under: ~/.wine/drive_c/windows/system32.
Please note that all names and extensions must be written in lower case.

Then it only remains to reset the Windows Version in the Wine configuration to the version of your
choice and IBExpert can now connect to any Firebird (or InterBase) server.

 3.3 Install Firebird under Linux
If you are not accessing remotely to a Firebird database already installed on another machine, you
will need to install Firebird locally on your own computer. Firebird 2.x (Superserver for Linux x86 as
a compressed tarball) can be downloaded from the official Firebird website: http://firebirdsql.org.
Then go to the Download directory and extract the package using:

 tar -xf FirebirdSS-2.0.1.*

Now go to the extracted directory and install the server as root:
 sudo sh install.sh

You will of course need a directory to store the databases. The example below uses
/srv/firebird:

 sudo mkdir /srv/firebird
 sudo chown firebird:firebird /srv/firebird

In order to connect from the local machine to the server, you will need to specify the following in
IBExpert in the Database Registration:

 server: remote
 servername:localhost (oder 127.0.0.1)

20

Register a Firebird database in IBExpert

Chapter 3: Register a
Firebird database in IBExpert

For the purpose of illustrating the many Firebird and IBExpert features featured in this book, we will
use the demo database, DB1, which can be found as an SQL script, db1.sql, in the IBExpert
Developer Studio directory, \IBExpertDemoDB.

After starting IBExpert, open the Tools menu item, Script Executive, or alternatively use the key
shortcut [Ctrl + F12]. The Script Executive can be used to execute any valid script. This also allows
you to execute scripts with more than one command. If you wish to follow the demonstration below,
type [Ctrl + L] to open the following demo script:

 C:\program files\HK-Software\IBExpert Developer Studio\
IBExpertDemoDB\db1.sql.

Important: To use this script, it is necessary to copy the dll files from this directory to the Firebird
or InterBase UDF directory \program files\firebird\firebird_2_1\UDF\, otherwise the
script will not work properly. To use the script with InterBase, replace

 select first ...

statements with:
 select rows ..

statements. When using Firebird, no alterations are required.

After the script has been loaded into the Script Executive, the tree view on the left displays the
content created by the script in a tree structure; the right-hand window displays all statements
required to create a database (more about SQL statements in Chapter 6, Basic SQL Commands).
You can now execute this script using the [F9] key or the green arrow icon.

21

IBExpert & Firebird Guide

This script has created a database with table structure commensurate to a simple DVD store. It can
be used to generate a classic database with a large amount of test data for a commercial envir-
onment.

After executing the script, the majority of tables are initially still empty, except for some tmp_*
tables, which are used for creating sample data. To fill the demo database from these tmp tables or
indeed, perform any sort of work on this database, you first need to register the it in IBExpert, using
the Database menu item, Register Database.

In the database registration dialog you should use the settings as illustrated above. The default
password for the user SYSDBA on a newly installed Firebird server is masterkey.

After registering the database in IBExpert, you can open the it by double-clicking on the database
alias name in the Database Explorer, the main navigator, considerably simplifying the work with
InterBase/ Firebird databases and database objects.:

22

Register a Firebird database in IBExpert

The individual database objects may be opened or closed by double-clicking (or using the space
bar) on the object name. Details concerning a selected database or database object can be viewed
in the SQL Assistant directly below the Database Explorer. In addition to the main menus at the top
of the screen, many IBExpert modules - including the Database Explorer - have their own right-click
context-sensitive menu.

So now you've created your first database with a little help; next we need to fill it with data.

23

Programming the Firebird Server

Chapter 4: Programming the
Firebird Server

Many developers shy away from coding directly on the database server. IDEs (Integrated Devel-
opment Environments) such as Delphi or C++Builder may be easier to write and quicker and easier
to debug. However, developing an efficient application with an intelligent database that offers the
highest possible performance can only be achieved by a combination of the two, along with intel-
ligent programming.

Reasons for server-side programming include:

Speed of execution: server-side programming does exactly what it says, the work is done on the
server, and the results are sent out to the client (whether over a short internet line or worldwide).
Client-side programming fetches all data and tables it might need, and then sorts and analyzes
them on the client PC. So if you've got to perform computations on a large database or table,
you've got to suck all the data back to the workstation to actually do the work. This can lead to time-
consuming queries, traffic congestion and long wait times for the user.

It is possible to achieve up to 50,000 operations per second within a stored procedure. A Delphi or
PHP application is considered efficient when it achieves just 3,000 operations a second. If you're
skeptical, try migrating some of your code from your front-end to the server and test and compare
the performance!

Consistency: database operations performed on the server are either completed successfully or
rolled back (i.e. not executed at all). They are never partially completed. Another advantage of
server-side programming is when you have different front-ends, e.g. Delphi and PHP, doing similar
things, programming both to call a single procedure to perform a task is not just easier than
programming the whole thing twice, it also ensures consistency. Both applications call the same
procedure and are therefore guaranteed to provide the same result. Any alterations that may need
to be made in the future only need to be made once, directly in the procedure.

Modularity: stored procedures can be written for singular tasks such as order taking, order
processing and dispatch. They can then call each other. Modularity is clear/easy to comprehend,
which also makes future adjustments easier. And in the example above (Delphi and PHP applica-
tions share the same database) modularity is achieved, as any alterations that may need to be
made in the future only need to be made once, directly in the procedure.

Even though PSQL (Procedural SQL) is initially not so easy to write as IDEs, because the
programming language is not as rich and not as user-friendly, if you want to develop efficient high-
performance database applications, it is vital you take the time and effort to get to grips with this.

25

An Introduction to Stored Procedures

Chapter 5: An Introduction to
Stored Procedures

With the client/server database concept, it is important that the database is not just used to store
data, but is actively involved in the data query and data manipulation processes. As the database
must also be able to guarantee data integrity, it is important that it can also handle more complex
operations than just simple comparisons. Firebird/InterBase uses stored procedures as the
programming environment for integrating active processes in the database.

A stored procedure is a series of commands (also known as routines) stored as a self-contained
program in the database as part of the database's metadata. It can be invoked directly from applic-
ations, or can be substituted for a table or view in a SELECT statement; it can receive input
parameters and return values to applications. It is similar to a trigger, but is not automatically
executed or bound to a specific table.

The stored procedure language is a language created to run in a database. For this reason its
range is limited to database operations and necessary functions. Firebird and InterBase stored
procedure and trigger language is known as PSQL.

Stored procedures offer the following advantages when implementing applications:
1. They are fast. As program execution occurs on the server, there is reduction of network traffic

by off-loading application processes from the client to the server.
2. Splitting up of complex tasks into smaller and more logical modules. Stored procedures can be

invoked by each other.
3. They're reusable. Rather than recreate a statement on the client each time it's needed, it's

better to store it in the database. They can be shared by numerous applications using a single
database. Alterations to the underlying data definitions only need to be implemented in the
stored procedure and not in the individual applications themselves. Readability is enhanced,
and redundancy, maintenance, and documentation are greatly reduced.

4. And as stored procedures are part of InterBase or Firebird, it is irrelevant which front end is
subsequently used, be it Delphi, PHP or other.

5. Full access to SQL and the database's metadata. This allows certain environments to perform
extended operations on the database that might not be possible from another application
language. PSQL even offers functions that are not available in SQL, e.g. IF…WHEN…ELSE,
DECLARE VARIABLE, SUSPEND, etc.

6. Enhanced security: if database operations such as INSERT, ALTER or DROP can only be
performed on a table by stored procedures, the user has no privileges to access the table
directly. The only right the user has is to execute the stored procedure.

A stored procedure must contain all statements necessary for the database connection, creation or
alteration of the stored procedure, and finally the disconnection from the database.

We will illustrate the use of procedures by using the INITALL procedure to fill the demo database
with data.

27

IBExpert & Firebird Guide

 1. INITALL
A common problem when writing database systems is to start with a completely empty database,
as this gives you an artificial view of how the database is going to work and how the program is
going to work in a real environment. When the new system is installed it seems to work fine, but as
more data is added certain things start slowing down considerably. It is imperative that database
systems be tested and analyzed using realistic test data quantities. The same applies to bench
mark testing. It's worthless testing and comparing systems with 100 data sets, when you know the
system will be dealing with 100,000,000 data sets within the year.

INITALL is a stored procedure which populates the database with data. Open the procedure by
double-clicking on the procedure name in the Database Explorer. Run the procedure with [F9]. You
will be asked to enter a parameter - the number of data sets you wish to be generated.

A reasonable sized database can be created with the parameter 10,000.

INITALL invokes four other procedures:
• DELETEALL: deletes any data that might still be stored in the database from previous tests.
• CREATE_CUSTOMER, CREATE_PRODUCTS and CREATE_ORDERS: then proceeds to generate

customers, products and orders.
If the parameter 10,000 has been specified INITALL creates 10,000 customers, 10,000 products,
20,000 orders and approximately 60,000 order positions. Altogether around 800,000 operations are
performed to create this data, this in itself providing a simple benchmark test to compare different
hardware systems and/or database versions. For example, on a standard laptop Firebird 1 took
around 60 seconds to generate the data, Firebird 1.5 about 50 seconds and Firebird 2 approxim-
ately 30 seconds.

The Performance Analysis page offers an insight as to what Firebird has actually had to do, in order
to create this data:

28

An Introduction to Stored Procedures

For example, on the INVENTORY table Firebird has carried out 140,880 reads, 10,000 inserts and
60,222 updates. The IBExpert Performance Analysis is explained in more detail in Chapter 5, 14.3:
Performance Analysis.

Important: Although all this data has been created for the database, until it has been committed,
you will notice no increase in the database size. Commit is the command which finally writes all
alterations to the hard disk. It is at this point that all other users connected to the database can see
your alterations. If you're not happy with the data you've generated and want to cancel, you can
simply roll back all that the procedure has performed ,to return to the original database status.

If you now disconnect from the database, you will be able to see your actual database size. The
database without any data content was about 4 MB; with a 10,000 data set generation it is now 25
MB. Hence using the parameter 100,000, a database size of approximately 250 MB is created, with
1,000,000 a database size of 2,5 GB.

After executing and closing the procedure, you can open the table customers to see if the records
have been created.

Now you've seen how this works, you can of course adapt the database structure and procedures
accordingly to generate a test database commensurate with your enterprise's requirements.

Writing stored procedures is looked at more closely in Chapter 12: Writing Stored Procedures &
Triggers.

29

Basic SQL Commands

Chapter 6: Basic SQL Commands

You can find a reference of the most important commands in the IBExpert online SQL Language
Reference, and the full range of Firebird 2.0 commands in the Firebird 2 Language Reference
Update (both at www.ibexpert.com/doc). However you will find that the following are the most
commonly used commands, with which you will be able to do the majority of your work:

SELECT
INSERT
UPDATE
DELETE

These commands are known collectively as DML (Data Manipulation
Language) commands. They are a group of SQL commands, commonly
known as SIUD, which can be used to manipulate a database's data. SIUD
is the abbreviation for SELECT, INSERT, UPATE, DELETE.

CREATE
ALTER
DROP

EXECUTE
SET

These commands belong to the Data Definition Language (DDL) set of
commands, which define and manipulate the database and its structure
(known as metadata).

In order to follow the examples in this section and to offer the chance to play around with Firebird
SQLs, we will continue to use the demo database, db1.fdb.

 1. Simple SELECT commands
The most basic SELECT command is:

select * from <table_name>

where * is a so-called wild card. Let's take an example using our demo database, and enter the
query in the IBExpert SQL Editor (found in the Tools menu) on the Edit page. If we want a list of all
information in the product table:

 select * from product
You will notice how IBExpert aids you when typing your database object name. When you enter PR
the IBExpert Code Completion offers you a selection of all objects beginning with PR. When the key
combination [Alt + Ctrl + T] is used, IBExpert offers a list of all tables beginning with PR.

31

IBExpert & Firebird Guide

If you've entered the object name correctly, for example the product table, IBExpert changes the
text format (font color and underlined) if it recognizes the object, so you know immediately whether
you have made a typing error (no change to text appearance) or not.

To run the query (EXECUTE) simply press the [F9] key or the green arrow icon.

The SQL Editor displays all resulting data sets found, which meet the conditions of the query (in
this case all fields of all data sets in the product table):

Please note that in IBExpert you can specify whether you wish the results to appear on the same
page as your query (i.e. below the editing area) or on a separate page, and whether IBExpert
should immediately display this Results page after the query has been executed. These specifica-
tions can be made in the Options menu item, Environment Options / Tools / SQL Editor. On the
Messages page (to the left of the Results page) you can see a summary of how Firebird attained
the information.

32

Basic SQL Commands

If you wish to make your query more selective, you can specify which specific information you wish
to see, instead of all of it. For example, the DVD title and leading actor of all products:

 select title, actor from product
When you're writing a select it can become very tiresome repeatedly writing out the full names of
commonly used objects correctly. It's helpful to abbreviate such objects, also reducing the amount
of frequent typing errors. This is possible by defining a so-called alias. For example, if you wish to
define an alias for the product table, type select from product p. That way the server knows that
whenever you type a p in this SQL, you are referring to the product table. IBExpert also recog-
nizes the p as an alias and automatically offers a list of all fields in the product table. By holding
down the [Ctrl] key multiple fields can be selected, e.g. title and actor. By pressing the [Enter]
key both fields are automatically inserted into the SQL with the alias prefix p.

 2. Adding a WHERE clause
It is possible to set conditions on the information you want to see by adding a WHERE clause. For
example:

 select * from product p where p.category_id = 1

And if you only wish to see certain columns in the result sets:
 select p.title, p.price, p.category from product p
 where p.category_id = 1

SELECTs can of course get a lot more complicated than this. It's important to try and keep it as
simple as possible though. Because it's a mathematical notation, a complex SQL may look correct,
but if you are not careful, you will get results that you did not really want. When you're working with
many millions of data sets, you can't necessarily assess the values in the resulting statistical data,
so it's vital you're sure there are no mistakes or logical errors in your query. Build your statements
up gradually, checking each stage - this is easy in the IBExpert SQL Editor, as you can execute
query parts by simply marking the segment you wish to test and executing. Only if no query areas
are selected, does the SQL Editor execute the whole statement.

It is of course possible to specify more than one condition, e.g.:
 select * from product where special=1 and category_id=2

 3. CONTAINING
 select * from product where title containing 'HALLOWEEN'

This will supply all films with the word HALLOWEEN somewhere in the title. CONTAINING is case-
insensitive, and never uses an index, as it searches for a string contained somewhere in the field,
not necessarily at the beginning.

 4. ORDER BY
If you need your results in a certain format, you can specify that the results be ordered, alphabet-
ically or numerically, by a certain field. For example, order by price in ascending order (lowest first,
highest last):

33

IBExpert & Firebird Guide

 select * from product order by price
The ascending order is the so-called default; that means it is not necessary to specify it specifically.
However, if you wish to specify a descending order, this needs to be explicitly specified:

 select * from product order by price desc

 5. SELECT across multiple tables
To combine data across multiple tables you can JOIN the tables together, giving you results that
contains information from both. For example, each film is categorized according to genre.

Now what we want to see is the category that these films are associated with:
 select p.title, c.txt
 from product p
 join category c on c.id=p.category_im

 JOIN is a flexible command. The above example is known as an INNER JOIN.

Theoretically there could be products that have not been categorized, or categories that have no
products. If you want to include these products or these categories in your result list it is possible to
define these using a so-called LEFT OUTER JOIN or a RIGHT OUTER JOIN.

The LEFT OUTER JOIN takes all information from the left-hand or first table (in our example
product) and joins them to their categories. For example if you have a customer list with individual
sales figures and you also want to see those customers without any sales.

The RIGHT OUTER JOIN fetches all products with a category and also all categories.

If you wish to combine two different sets of data together, even if they have nothing in common, you
can use the CROSS JOIN, introduced in Firebird 2.0:

 select p.title, c.txt
 from product p
 cross join category c

From these simple building blocks you can construct very complex structures with extremely
complex results. If you are just beginning with SQL, we recommend the IBExpert Query Builder
(found in the Tools menu). This enables you to compile your SQL by simply dragging and dropping
your objects and using point-and-click to specify which information you wish to see, set any condi-
tions and sort the results.

 6. Sub-SELECTs in fields and WHERE clauses
We can vary our query by replacing the second field by a sub-select:

 select p.title,
 (select c.txt from category c
 where c.id=p.category_id)category_txt
 from product

By replacing c.txt with where c.id=p.category_id) category_txt the JOIN is no longer
necessary. This new second field is determined for each data set. As the sub-select is creating a
new unnamed field, the field is given an alias, category_txt. You can name result columns as

34

Basic SQL Commands

you like, particularly useful when columns with similar names from different tables are to be
queried. For example, if you wish to see c.id and p.id in the same result set, you might want to
rename c.id category_id and p.id product_id.

Physically this query is the same as the JOIN query, however this option offers more possibilities.

You can also insert a sub-select in a WHERE clause: select which fields you want from which tables
and restrict it by adding a sub-select in the WHERE condition. For example, if you only want to see
products from the first category:

 select p.title, c.txt
 from product p
 join category c on c.id=p.category_id
 where c.id=(select first 1 id from category)

Be careful with this, as this is one of the areas of SQL where a lot of developers start to go wrong!

 7. UNION SELECT
SELECTs enable you to retrieve almost any information you want with a single SELECT statement.
A classic example of when you might need a UNION SELECT is with a database system that stores
its current data in one table and archive data in another table, and a report is required which
includes both sets of data being evaluated and presented as a single set of information.

The syntax is simple: two SELECT statements with a UNION in between to fuse them together:
 select
 p.title,
 cast('Children' as varchar(20))
 from product p
 join category c on c.id=p.category_id
 where c.txt containing 'children'
 union
 select
 p.title,
 cast('not for children' as varchar(20))
 from product p
 join category c on c.id=p.category_id
 where c.txt not containing 'children'

Here all titles are being selected that belong to the category children. These results are then
going to be combined with another set where the category does not contain the text children,
and all these results (i.e. every other category that isn't explicitly for children) will contain the
category text not for children, regardless of their genre. This artificial field supplies inform-
ation that is not directly in the database in that form.

The rules regarding the joining together of two result sets is that you have to have columns with the
same data types, i.e. you cannot mix INTEGERs and blobs in a single result column. You must have
the same number of columns in the same layout, e.g. if you current orders table has 50 columns
and the archive only 30 columns, you can only select common columns (which will be a maximum
of 30) for the UNION SELECT.

35

IBExpert & Firebird Guide

 8. IN operator
select p.title,c.txt
from product p
join category c on c.id=p.category_id
where c.id in (select first 5 id from category)

Here the value c.id is being limited to the first five, i.e. we only wish to see the first five resulting
sets.

The IN operator is very powerful. Assume you wish to view film categories, Action, Animation
and a couple of others and you had already retrieved the result that these categories were 1, 2, 5
and 7. Then you could query as follows:

select p.title,c.txt
from product p
join category c on c.id=p.category_id
where p.category_id in (1,2,5,7)

i.e. here it is asking for results where the category_id is in the specified set of values. The IN
can be a set of values or a SELECT. You should be careful that there are not too many results, as
this can considerably slow performance.

 9. EXISTS operator
select c.* from customer c
where not exists (select id from orders where
orders.customer_id=c.id)

Here we are selecting the customers from the customer table where if one or more rows are
returned then it will give you the value. If no values are returned then it omits it and does not show
it. This means, these results will only return customers who have not placed any orders.

The EXISTS operator is almost always more helpful than the IN operator. The EXISTS operator
searches if data sets meeting the conditions exist, and when it finds results sends them back. The
IN operator would initially fetch all data sets, i.e. fetch all orders, and then narrow down the result
sets according to the conditions.

If you have a choice between IN and EXISTS, always use EXISTS as it's quicker.

 10. INSERT and UPDATE with values
 insert into category values (20, 'Cartoons')

INSERT - As no columns have been named here the values 20 and Cartoons are inserted from
left to right in the category table columns. If the column names are not specified, data has to be
inserted into all columns (the category table only has two columns). For larger tables it is wise to
be more specific and always name the columns you wish to insert data into, as you may not wish to
insert into all columns.

insert into category (id,txt) values (21, 'More cartoons')

Always take into consideration that NOT NULL fields have to be filled.

36

Basic SQL Commands

UPDATE applies to the whole table. It is simply a list of z variables or fields and their new values,
with a condition.

update product
set title='FIREBIRD CONFERENCE DAY',
Actor='FIREBIRD FOUNDATION'
where id=1;

If you don't put a qualifying clause in there about what it's going to do, e.g. a WHERE clause, it will
update everything! So always check thoroughly before committing!

Unlike SELECT, both these commands only interact with one table at a time.

You can also use INSERT INTO with SELECTed data:
insert into customer_without_orders
select c.* from customer c
where not exists (select id from orders where
orders.customer_id=c.id)

This can be used to insert data into a table that's been supplied from another source (here the
select from customer).

Whereas Firebird requires the table in which you want to insert data to already exist, the IBExpert
SQL Editor however has a nice feature: it will create the table for you if it does not already exist! In
the above example, if the customers_without_orders table does not already exist, IBExpert
asks if it should create the table. If you agree, it creates a table according to the information
supplied in the query and pushes the returns in to the new table customer_without_orders.
This function is ideal if you wish to extract certain data for testing or for a temporary report.

 11. DELETE
 delete from orderlines
 where id<1000

This will delete all data sets with an id of less than 1000.
 delete from orderlines
 where id between 1000 and 2000

This will delete all data sets with id between 1000 and 2000.

Be careful when defining your delete conditions. A mistake here and you will delete the wrong data
sets or too many!

 12. CREATE, ALTER and DROP
If you're just starting off, we would not recommend creating all database objects by writing SQL.
Use IBExpert's Database Explorer to create and manipulate all your databases and database
objects. This is fully documented in the IBExpert online documentation at www.ibexpert.com/doc.

To understand how the database structure works, analyze the DDL code created by IBExpert as a
result of your point and click actions. This can be found on the DDL page in all object editors.

37

IBExpert & Firebird Guide

 13. Defining code templates in IBExpert
By now you should have had some practice at writing DDL and DML code. You will probably have
already noticed that certain commands or series of commands occur repeatedly. To save time and
the frustration of repeated typing errors, IBExpert offers two aids to speed up your day-to-day work.

In the IBExpert SQL Editor you can quickly find your most commonly used queries by clicking on
the number buttons at the bottom of the Edit page. The History page offers you a summary of all
saved SQLs for the current connected database.

Other pieces of code can be stored as templates. There is even the option to automatically insert
the current date, time and author (Options menu item, Keyboard templates).

 14. Analyzing SQL Performance
To support the analysis and optimization of all SQLs, IBExpert offers a Performance Analysis in the
SQL Editor, Visual Query Builder, Procedure Editor and Trigger Editor, a Plan Analyzer in the SQL
Editor, Procedure Editor and Trigger Editor, and Logging functions in all object editors.

 14.1 Plan Analyzer
The Plan Analyzer shows how Firebird/InterBase approaches a query, e.g. with SORTS, JOINS etc.,
which tables and indices are used. This information is displayed in a tree structure: firstly what and
which data quantities, and secondly what is carried out with this data and how, with statistics and a
summary of the plan and performance listed in the lower panel.

The plan is an Firebird/InterBase description, showing how the Optimizer uses tables and indices to
obtain the result set. If the word SORT is displayed, you should check whether improvements upon
the query or the indices are possible.

The Recompute selectivity button can be used to recompute the selectivity of all indices.

 14.2 Recompute selectivity of all indices
Index statistics are used by the Firebird/InterBase Optimizer, to determine which index is the most
efficient. All statistics are recalculated only when a database is restored after backing up, or when
this is explicitly requested by the developer.

When an index is initially created, its statistical value is 0. Therefore it is extremely important,
particularly with new databases where the first data sets are being entered, to regularly explicitly
recompute the selectivity, so that the optimizer can recognize the most efficient indices. This is not
so important with databases, where little data manipulation occurs, as the selectivity will change
very little.

To recompute the selectivity of all indices use the IBExpert menu item Recompute Selectivity of all
Indices. This can be found in the IBExpert Database menu or using the right mouse button in the
Database Explorer, as well as in the SQL Editor's Plan Analyzer.

An example illustrating the relevance of index statistics can be found in Chapter 28: 11. Automating
the recalculation of index statistics.

38

Basic SQL Commands

 14.3 Performance Analysis
The Performance Analysis displays information showing how much effort was required by
Firebird/InterBase to carry out an executed query or procedure. The analysis is performed after a
SELECT statement is opened or a stored procedure started. The main advantage here of course, is
the possibility to compare the performance of different queries and procedures.

It is possible to deactivate the Performance Analysis, by checking the Disable Performance
Analysis option, found under Database / Register Database or Database Registration Info /
Additional. This may be desirable when working remotely with a slow modem connection.

Graphical Summary
The Graphical Summary provides an overview, broken down by the tables involved, of the number
of operations performed by the query/procedure, including reads (indexed and non-indexed),
updates, deletes and inserts. It shows whether indices have been used indicating the efficiency of
the database's indices. The figures displayed refer to the number of data sets.

The x-axis lists the names of the tables consulted by the query/procedure, with the number of
operations displayed graphically. Click the performance type (Non-Indexed or Indexed Reads,
Upates, Deletes, Inserts, Total Records) you wish to view, and it will be added to the graph. Click
the button again, to remove it.

SELECT statements will only have a Reads result, but some stored procedures will also have
results for Updates, Deletes and/or Inserts.

In the SQL Editor the lower panel displays the query plan, along with a summary of the
performance information included on the Additional page.

Additional
The Additional page displays a statistical report of the information included in the Graphical
Summary,along with certain additional information, such as query time, memory and operation.

The analysis displayed on the Additional page can also be documented using the Copy Analysis to
Clipboard button.

Query time shows the time needed to prepare for the execution of the query/procedure, along with
the execution time and average fetch time.

The Memory statistics display the current memory used by the server,the maximum memory used
by the server during execution of the query/procedure, and buffers, which is the number of data
pages that are being held as cache on the server (from InterBase 6 onwards the standard is 2,048).
This can be found in the corresponding configuration file: since Firebird 1.5 it is called
firebird.conf; in older Firebird versions or InterBase, it is called ibconfig, found in the main
InterBase directory.

This can be altered for the current database if wished, using the IBExpert Services menu item,
Database Properties / Buffers. The total KB is calculated according to the current database page
size. For an alteration to become effective, it is necessary for all users to disconnect from the
database and then reconnect. Buffers are only reserved if they are really necessary for pages
loaded from the database file.

39

IBExpert & Firebird Guide

The Operations statistics display the number of data pages that were read from the database file to
the memory, written and fetched, whilst executing the query/procedure, including reads, writes and
fetches.

Pay attention to the Writes statistic: if the total cache buffers are too small to load subsequent
pages, it may be necessary for the server to save altered pages to the hard drive, in order to make
room for further pages to be loaded. If these values are very high, it may be wise to increase the
buffers, providing of course that physical memory is sufficient.

And regarding Fetches: when a query/procedure is started, the command (or series of commands)
is sent to the database server. To obtain results, numerous data sets/pages need to be referred to
(= fetch), in order to perform the operation. Fetches are, in other words, internal operations
performed by Firebird/InterBase in order to successfully execute a query/procedure. This indicates,
for example, if deleted data sets in a SELECT are recognized as deleted, they will still appear here
in the number of fetches, as the server also searches through those data sets that have been
marked as deleted. This can however offer an advantage over the number of indexed and non-
indexed reads, as these only display operations on undeleted data sets. If the query is executed
again, the result will be quicker if the garbage collection is running simultaneously.

Using the Performance Analysis, the number of fetches in data pages could possibly indicate why
one query is quicker than another with an equal number of data sets and the same index plan.

Logs
The Log page can be found in the SQL Editor and displays a list of qualified error messages etc. It
shows what Firebird/InterBase did and when it did it in each respective SQL window. EXECUTE
BLOCK statements are also logged here.

 15. Optimizing SQL statements
How does Firebird/InterBase process a query? SQLs are sent to the server, where the Optimizer
first analyzes them: which tables are involved and which indices are the best to use etc., preparing
them for execution. The server needs to select a strategy for creating a result set. The parser
selects all tables involved and possible indices, usually selecting the index with the best selectivity,
i.e. the one resulting in the smallest result set.

The index statistics are compared in order to choose the most selective index for each WHERE,
JOIN or ORDER BY condition.

In Firebird/InterBase it is possible to use more than one index, which isn't possible in some other
databases. Compound indices should however only be used when really necessary. An ORDER BY
is no reason for using an index, because an ORDER BY always has something to do with output
formats. Usually WHERE conditions are used to limit the result set. WHERE and JOIN conditions
should certainly be supported by an index. If you specify an ORDER BY over several fields, the
index needs to be composed in exactly the same sequence as the ORDER BY. ORDER BY cannot
accept compound indices composed of single indices.

The index plan is made during the preparation, and it is at this stage that the Optimizer selects in
which sequence it will use the indices chosen. If the server cannot find a suitable index, it compiles
a temporary sort quantity.

40

Basic SQL Commands

Take into consideration that when the LIKE command is used together with a wild card (because
you're searching a string that occurs somewhere in the field and not necessarily at the beginning),
the Optimizer cannot use an index.

All table data needed is read from the cache. If the pages required are not already in the cache,
they need to be transferred from the hard disk to the memory. This is the most time-consuming part
of the operation for the Firebird server. If this process appears to be somewhat slow, check the
parameters in firebird.conf.

After preparing your query, Firebird displays the query plan - which can be viewed in the SQL
Editor's index plan, visible in the Plan Analyzer. If a lot of non-indexed reads (highlighted in red)
appear in the Performance Analysis, it is often helpful to create some indices, reopen the query and
check if it has been of help.

Following preparation, if no changes are to be made, the query can be executed.

When all data has been extracted and sorted accordingly, the result set is sent back to the client
issuing the query. If only the first n records are to be fetched, the server only reads the required
number of data pages. For certain commands such as DISTINCT and GROUP BY, the server must
read all relevant data pages. So if DISTINCT or GROUP BY are not really necessary, don't use
them!

Check the Performance Analysis and use it to compare different versions of the same SQL.
Analyze the reads, writes and fetches! Reads and writes are typically 0 when Firebird/InterBase can
operate in the cache. Fetches are the internal operations in Firebird/InterBase, so when one query
is slower than the other, it may not be visible directly in the graphical view, for example when
Firebird/InterBase creates external temporary sort files.

Use the Plan Analyzer to analyze how the Optimizer uses tables and indices to obtain the result
set. If the word SORT is displayed, you should check whether improvements to the query or the
indices are possible.

Although the Optimizer does a very good job, especially since Firebird 2.0, the programmer can
often offer the Optimizer hints to help improve performance; depending on the task in hand, a small
change in the SQL statement can often improve the speed immensely. For example, consider using
the +0 field parameter to deactivate indices with a low selectivity, perhaps derived tables can
reduce the number of reads or fetches. Other factors affecting the performance of queries, such as
hardware, OS and memory configuration, index selectivity, etc. can be referred to in the online
documentation, Firebird administration using IBExpert, at www.ibexpert.com/doc.

41

Creating your First Database

Chapter 7: Creating your First
Database

 1. Developing a data model
A data model includes everything that is going to sit inside the database. If you are new to
database development, it's worth taking a little time and effort to read up on the theory of database
design and database normalization as a basic introduction to database model development.

Before you start you need to make a few rules and stick to them. For example, primary keys should
always be a simple BIGINT internal generator ID, not influenced in any way by any actual data.
Many developers use unique information fields as primary keys, such as a social security number
or membership number. But what if the social security number system changes or the membership
card is stolen and a new membership with the same member details needs to be created and the
old made invalid? You are bound to encounter problems if you rely on such information for your
primary key. And compound primary keys (primary keys consisting of more than one field) will
almost always lead to problems at some stage as the sequence of the fields concerned must be
identical in all referenced tables, and compound keys will always slow performance.

Another consideration is how to structure your data. This is where basic information about
database normalization comes in. If you store your customer address data in your customer table
and your supplier address data in your supplier table, you may end up with double entries (a
supplier can also be a customer, a single customer may have more that one address). So create an
address table with relationships to the customer and supplier tables. Using views the end user sees
his customer, customer number and address or supplier, supplier number and his address.

Always start at the highest level, make sure you have got your entities correct. Construct your main
tables and relationships. More information about the various kind of data relationships can be
referred to below (3. Relationships). Don't get bogged down by the details at this initial stage;
attributes can be added later. Scope it first - how big is it going to be? How's is it all going to fit
together?

And when you do get down to the details, don't start using your fantasy or trying to look too far into
the future. Only store information that is real and existent.

 2. Naming conventions
You need to develop a naming convention that enables you and others to find and identify keys,
table fields, procedures, triggers etc. simply and quickly, using a simple but effective combination of
table names, field names, keys and relationships.

Name things simply and logically: call a spade a spade, not a "manual excavation device" or
"portable digging implement"! Another decision to be made is whether to name things in the
singular or plural. If you have a team developing the same database, you are bound to have

43

IBExpert & Firebird Guide

conflicts here and maybe even duplicates (e.g. CUSTOMER and CUSTOMERS), if you don't make a
decision before you start! As the singular form is shorter than the plural in most languages, this is
recommended, i.e. CUSTOMER instead of CUSTOMERS, ORDERLINE instead of ORDERLINES etc.
Please note that in the db1 database, ORDER had to be named ORDERS, because ORDER is a
Firebird keyword. The table could still be named ORDER but would have to be defined in inverted
commas, which could lead to other problems. So English-language developers need to be aware of
Firebird keywords and avoid eventual conflicts.

Another tip is to avoid using $ in your database object names, as $ is always used in system object
names. All Firebird and InterBase system objects begin with RDB$ and IBExpert system objects
begin with IBE$.

Primary keys are easily recognizable if the field name has the prefix PK (alternatively: ID) followed
by a reference to the table name. Foreign keys should logically then contain the prefix FK followed
by the table name which they reference.

 3. Relationships
You need to be able to uniquely identify each row in each table, so each table requires a primary
key. Other tables referencing this should be given a foreign key.

In our sample database, db1, each product is assigned to a category. The category_id links the
product table to the category table, alternatively FK_category would also be a suitable name for
the column referencing the relationship to the category table. In fact, if a relationship exists
between two tables, put it in - make sure the database knows about it. It will help you in the long
run, and in this way you can improve integrity, for example, you can enforce every product to be
assigned to a category. A comprehensive guide to Firebird/InterBase keys and constraints can be
found in the IBExpert online documentation at www.ibexpert.com/doc.

There are various kinds of relationships between data, which need to be taken into consideration
when defining the constraints:

 4. 1:1
Within your application you have relationships which are 1:1. Many people say that if you have a
1:1 relationship between two tables, then it should be put together and become one table. However
this is not always the case, particularly when developing one application for different clients with
different requirements. There are often good reasons for maintaining a core customer table that is
distributed to all customers, and then a customer_x table that includes information for a specific
client. It prevents tables becoming too wide and confusing.

Another reason for 1:1 tables may be that in the case of wide tables with huge amounts of data,
searching for specific information just takes too long. For example most journalists search in a
press agency database using keywords for anything relevant to a particular subject (e.g.
concerning 9/11) or for all recent articles (e.g. everything new in the last two days). They initially
wish to see a full list of relevant articles including the title, creation date and short description. At
this stage they do not need to view the whole article and accompanying photos for each article
which meet their search conditions. This information can be returned later, after they have selected
the article that particularly interests them. To improve performance, the table is split into four

44

Creating your First Database

separate tables (each with a 1:1 relationship), the initial key information table (now containing the
information most intensively searched for) being now only 2% the size of the original single table.
The second table is used to store all other information, the third table the RTF articles themselves,
and the fourth table the full-text search contents.

 5. n:1
n >= 0 Each category may contain one or more products, it may have no products.

n > 0 Each category must contain at least one product.

As you can see n:1 relationships can be defined in accordance with your business logic and rules.
The multiplicity is defined by yourself.

You may need to define an n:1 relationship where n is > 0 but < 10. Maybe n can be <null>; when
it is <not null> you are enforcing a relationship.

The demo database, db1, demonstrates a simple n:1 relationship whereby all products have one
category, but one category can have many products or no products assigned to it.

 6. n:m
A classic example can be seen in db1: one customer can purchase several products and a single
product can be purchased by many customers. To make this happen you need to have some linking
table in the middle. The db1 example shows the link from customer to orders; orders is linked to
orderline and orderline to product. All these relationships are built up using primary and
foreign keys, thus forming an n:m relationship between customers and products. It is also possible
to specify what should happen to these related data sets should one of them be updated or deleted.
For example if you delete a customer in the customer table that has no orders (and therefore no
order lines or products related to him) there is no problem. If however you attempt to delete a
customer that has already placed orders, an error message will appear, due to a violation of
FOREIGN KEY constraint "FK_ORDERS_ID" on table "ORDERLINE". This is necessary to
maintain the database's integrity. Update and delete rules can be defined on the Constraints page
in IBExpert's Table Editor. Further information regarding the IBExpert Table Editor can be found in
Chapter 9: Create a Database Object.

 7. Data modeling using IBExpert's Database Designer
A simple method to initially design and visualize a new database is the IBExpert Database
Designer. You can quickly and easily define what goes where, where are your key relationships,
etc. It can also be used to graphically document an existing database, providing a logical view of
the database structure and is an extremely quick and simple method to create views. Databases
can be created or updated based on amendments made in the Designer by generating and running
a script. They can be saved to file, exported and printed. Please refer to Chapter 8: Database
Designer for details.

45

IBExpert & Firebird Guide

 8. Create database
You can either use the command-line tool, isql, part of the Firebird package or the IBExpert SQL
Editor to use DDL (Data Definition Language) to create your database manually. An easier option is
to use the IBExpert Database menu item, Create Database or the respective icon in the Database
toolbar. The Create Database dialog appears:

First the server which is to store the database needs to be specified. This can be local or remote:
• Remote: the remote connection needs to be defined by specifying Server name and Protocol.

The drop-down list shows all servers previously connected to/from this workstation/PC.
• Local: LOCALHOST (own server). To create a new database on the same machine where

IBExpert is in use, you do not need to enter a server name.
We recommend always referencing a server, even if your database is sitting locally on your
machine. Going directly using the local specification can cause problems, particularly with Windows
Vista, so always use the Remote and LOCALHOST options.

The DOS PING LOCAL HOST or PING SRVNAME command shows the path if unknown (it is not
necessary to know which operating system is running or where this server is). By specifying a local
server, the Server name and Protocol fields are automatically blended out, as they are in this case
irrelevant.

The Server name must be known when accessing remotely. The following syntax should be used:
• Windows SERVER_NAME:C:\path\database.fdb
• Linux SERVER_NAME:/path/database.fdb

The standard port for InterBase and Firebird is 3050. However this is sometimes altered for obvious
reasons of security, or when other databases/Firebird versions are already using this port. If a
different port is to be used for the Firebird/InterBase connection, the port number needs to be
included as part of the server name. For example, if port number 3055 is to be used, the server
name is SERVER/3055. If you use multiple Firebird versions and have a database, db1, sitting

46

Creating your First Database

locally on C:\ root using the Firebird version on port 3052 (which has been specified in the
firebird.conf), the database connection path would be:

 localhost3052:C:\db1.fdb

Protocol offers a drop-down list of three options: TCP/IP, NetBEUI or SPX. As a rule we
recommend you always use TCP/IP (worldwide standard).

As the local protocol should only be used if really necessary on machines that are isolated and not
part of any network, specify the database server connection if possible using Remote and
LOCALHOST and selecting one of the above protocols. Although the introduction of the new local
Firebird protocol, XNET, in Firebird 2.0 has solved many of the former problems of the previous
local transport protocol (often referred to as IPC or IPServer).

Select your database location by clicking on the folder icon to the right of this field, specifying the
full path, decide on your database name, and the suffix selected from the pull-down list. The
database name must always be specified with the drive and path when creating a database. Please
note that the database file for a Windows server must be on a physical drive on the server, because
Firebird/InterBase does not support databases on mapped drive letters. The database suffixes do
not have to adhere to the forms offered in the list.

The Client Library File field displays the path and client library file name, as specified in the Default
Client Library option, found in the IBExpert Options menu item, Environment Options / Preferences.
This can, of course, be overwritten if wished.

Only those user names may be entered when creating a database, which already exist in the
server security database ISC4.GDB, security.fdb or since Firebird 2.0, security2.fdb
(which stores server rights; user rights for the database objects are stored in the database itself).
The person creating the database becomes the database owner. Only the database owner and the
SYSDBA (System Database Administrator) are allowed to perform certain operations upon the
database (such as a database shutdown). Therefore if the database owner is defined as the
SYSDBA, this is the only person entitled to perform these operations. Note: when a role with the
name SYSDBA is created, no other users (not even the SYSDBA) can access the database.
Therefore ensure the database is created by another user already registered in the security
database and not the SYSDBA. This way there are at least two users able to perform key adminis-
trative tasks.

The passwords are encrypted in the ISC4.GDB, security.fdb or security2.fdb. If you insist
upon using the SYSDBA name as the database owner, at least change the standard password
(masterkey) to ensure at least some degree of security! The masterkey password should be
changed as soon as possible after creating the database.

Firebird/InterBase verifies only the first 8 characters of a password, even if a longer word is
entered, i.e. in the case of the masterkey password only "masterke" is verified. All characters
following the 8th are ignored.

Under SQL Dialect either Dialect 1 (up to and including InterBase 5) or Dialect 3 (InterBase
6/Firebird) needs to be specified. For new projects it is recommended that dialect 3 be specified.

Page Size is for the specification of the database page size in bytes. Firebird/InterBase databases
are saved in blocks. Each of these blocks is called a page. A database page is the smallest admin-
istrative unit in the database file. Database administration occurs basically by accessing the hard
drive block by block. The more data per access fetched by a single database page, the less often it

47

IBExpert & Firebird Guide

is necessary to load a new page, at least theoretically. Practically, depending upon the operating
system and server hardware, access to larger database pages can even influence the performance
negatively, as 1024 bytes can be loaded quicker than 8192 bytes. Page sizes permitted are 1024,
2048, 4096, 8192 and 16384. Up to and including Firebird version 1.5 page sizes up to 8192 should
be used. The current largest page size of 16384 should be reserved for Firebird 2.0 and higher.

Under Charset the default character set can be defined for the database. (A default character set
can be specified as default for all new databases in the IBExpert Options menu item, Environment
Options, under Default character set.) This character set is useful, when the database created is to
be used for foreign languages as it is applicable for all areas of the database unless overridden by
the domain or field definition. It controls not only the available characters that can be stored and
displayed, but also the collation order. Given a specific character set, a specific collation order can
be specified when data is selected, inserted, or updated in a column. If not specified, the parameter
defaults to NONE, i.e. values are stored exactly as typed. If a character set is defined as the default
character set when creating the database, it is not necessary to define this again for individual
columns.

The Register Database After Creating check box automatically generates the Database Regis-
tration dialog so that the database can be registered for use in IBExpert. The Register Database
dialog however offers many further options. We recommend clicking this check box (the default
setting), so that the database is registered immediately after creation. If the database is not
registered at the time of creation, it cannot be seen in the Database Explorer (the main navigational
area at the left of the IBExpert screen). This means that the user must know exactly where the new
database can be found (i.e. which server, path, name etc.) when registering at a later date.

48

Database Designer

Chapter 8: Database Designer

The IBExpert Database Designer is a comprehensive tool, which allows database objects to be
managed visually. It can be used to represent an existing database optically, or create a new
database model, and then create a new database, based upon this model. It is possible to add, edit
and drop tables and views, edit table fields, set links between tables, edit and drop procedures, and
so on.

Started from the IBExpert Tools menu, the Designer can be used to open an existing diagram from
file, or a create a new diagram. To illustrate the many features of the Database Designer we will
reverse engineer the demo database, db1. Select the Reverse Engineer ... menu item, select your
demo database from the list of registered databases and start.

The above illustration displays the sample db1.fdb database, with the Model Options - Links
option, Automatically trace links switched on, and a number of display options found under Model
Options Table activated. The magnifying glass icons in the Menu and Palette toolbar can be used to
increase or reduce the diagram size. Using the pointer icon (= normal editing mode), tables and
views can be selected by clicking on them with the mouse, or dragged 'n' dropped as wished; the
connecting lines (= links) automatically move as well.

Insert new tables or views by simply clicking on the relevant icon in the Palette toolbar, and
positioning in the main diagram area.

49

IBExpert & Firebird Guide

Templates can be used (IBExpert menu item Environment Options / Templates) to create foreign
and constraint names automatically. It is also possible to customize the highlighting of variables.
Use Options / Editor Options / Color to choose color and font style for variables. (Custom colors are
saved in and restored from a grc file.) Alternatively, existing objects may be dragged and dropped
from the Database Explorer (also from the Project View tree) and SQL Assistant into the main
editing area.

The Model Navigator in the SQL Assistant enables you to navigate models quickly. The Database
Explorer offers an additional Diagrams page, displaying all objects in the database model in a tree
form. Simply click on any object, and it is automatically marked for editing in the main Database
Designer window.

Reference lines, i.e. foreign key relationships can be drawn between tables/views using the right-
hand icon in the Menu and Palette toolbar, and dragging the mouse from one table to the next.

Context-sensitive right-click menus offer a number of options for selected tables, views or links

Double clicking on any table or view opens the Model Options menu item in the lower window,
where information can be viewed, altered or specified. By double-clicking on the line between two
tables, the relationships are shown in detail. The name and automatic tracing of links are options,
as already mentioned, included in Model Options.

Database objects may be grouped using the [Shift] key and selecting objects with the mouse, and
then using the respective Layout toolbar icons to group or ungroup objects. Objects can also be
aligned (left, center, right, top, middle, bottom), again by holding the [Shift] key and selecting
objects with the mouse, and using the respective Layout icons. Using these key combinations, it is
also possible to select a group of objects, and make them the same size, height or width, size to
grid, or center horizontally or vertically. You can use the right-click context-sensitive menus to lock
visual objects to protect them against casual modification of size and position.

It is also possible to Manage Subject Areas and Manage Subject Layers.

When the database model has been designed/altered as wished, a script can be generated and
executed, to apply these alterations to the database itself.

Generation of the update database script includes the processing of generators, triggers, excep-
tions and procedures. View dependencies are also taken into account when the script is generated.

If INIT statements need to be specified you will need to use the model prescript (Model Options).
Otherwise statements such as SET NAMES, SET SQL DIALECT, CREATE DATABASE will be
removed from the resulting CREATE DATABASE script.

 1. Model Options
The Model Options menu item opens a new window in the lower half of the Database Designer
dialog. Here the following visual display and script options may be selected. When a table or view is
double-clicked in the main editing area, an additional window appears automatically in the Model
Options window. By clicking on a subject on the left, further options are offered.

The pre- and postscript options provide the option to define pre- and postscripts for your database
model. The prescript will be inserted into the model script just after the CREATE DATABASE or

50

Database Designer

CONNECT statement. The postscript will be added to the end of the model script. There is also an
added option allowing you to define pre- and postscripts for each table separately.

 2. Export
The database model can be exported, either as a bitmap (.bmp) or an enhanced metafile (.emf).
Simply load the model to be exported, click the Export menu item, and specify the name and
format.

 3. Print
The database model can be printed, using the respective Database Designer menu item or icon.
This option firstly produces a print preview, allowing adjustments to be made before printing.

It is possible to store printing options between sessions. You can display borders of pages
(printable parts) with dashed lines. You can customize the page options (size, headers and footers
etc.) using the Print Preview form:

51

Create a Database Object

Chapter 9: Create a Database
Object

 1. Database objects
Firebird/InterBase offer the following database objects:

• Domain
• Table
• View
• Stored Procedure
• Trigger

• Generator/Sequence
• Exception
• UDF (User-Defined Function)
• Role
• Index

The number of objects in a database is unlimited. The individual database object are described in
more detail in Chapter 10: More about Database Objects .

 2. Adding a new table to the db1 demo database
To illustrate the creation of a database object using IBExpert we will create a new table in our db1
database and call it CUSTOMERGROUP.

Ensure you are connected to your db1 database. Click on the Tables node and use either the
Database menu item, Create Table, the right-click context-sensitive menu item, Create Table, or the
key combination, [Ctrl + N] to open the IBExpert Table Editor.

Firstly name the table CUSTOMERGROUP (top right). The default value Persistent can be left as it is
(this feature allows options for the creation of temporary tables).

 3. Primary key
Then create a few fields beginning with the primary key. A primary key is a column (= simple key) or
group of columns (= composite key/compound key) used to uniquely define a data set/row in the
table. A primary key should always be defined at the time of defining a new table for each table. It
must be unique, and therefore cannot be NULL. It provides automatic protection against storing
multiple values. In fact, without a primary key it is impossible to delete just one of two identical data
sets. Each table can have only one designated primary key, although it can have other columns that
are defined as UNIQUE and NOT NULL.

It is wise to keep the primary key as short as possible to minimize the amount of disk space
required, and to improve performance. IBExpert recommends the use of an autoincrement
generator ID number used as an internal primary key for all tables. For example, a simple BIGINT
data type generator not influenced in any way by any actual data. They do not need to be visible to
the user as they are merely a tool to help the database work more efficiently and increase database
integrity. One generator can be used as a source for all primary keys in a database, as the numbers

53

IBExpert & Firebird Guide

do not need to be consecutive but merely unique. Each time a new data set is inserted, the
generator automatically generates an ID number, regardless of the table name, for example, new
customer_id = 1, new order_id = 2, new orderline_id = 3, new orderline_id =
4, new customer_id = 5, etc.

So, to create the first field for this table, simply click on the Field Name NEW_FIELD and overwrite it
with ID. By double-clicking (or using the space bar) on the empty PK field to the left of the Field
Name, the key symbol appears, an the NOT NULL check box is marked. By double-clicking (or
again, using the space bar) on the AutoInc field, check Use existing Generator and select ID from
the drop-down list:

Further fields can then be added using the Add Field icon.

 4. Foreign key
A foreign key is composed of one or more columns that reference a primary key. Reference means
here that when a value is entered in a foreign key, Firebird/InterBase checks that the value also
exists in the referenced primary key. This is used to maintain domain integrity. A foreign key is vital
for defining relationships in the database. It can be specified in the IBExpert Table Editor on the
Constraints page.

When a primary key:foreign key relationship links to a single row in another table, what is known as
a virtual row is created. The columns in that second table provide additional description about the
primary key of the first table. This is also known as a 1:1 relationship. A foreign key can also point to
itself. Firebird enables you to reference recursive data and even represent tree structures in this
way.

A primary key does not have to reference a foreign key. However a unique index is insufficient; a
unique constraint needs to be defined (this definition also causes a unique index to be automat-
ically generated).

54

Create a Database Object

In our table storing customer groups, it needs to be determined which customers belong to which
group.

When defining a foreign key, it is necessary to specify update and delete rules to ensure referential
integrity. When a foreign key relationship is specified, the user can define which action should be
taken following changes to, or deletion of its referenced primary key. ON UPDATE defines what
happens when the primary key changes and ON DELETE specifies the action to be taken when the
referenced primary key is deleted. In both cases the following options are available:
• NO ACTION: throws an exception if there is a existing relationship somewhere in another

table.
• CASCADE: the foreign key column is set to the new primary key value. A very handy function

when it comes to updating, as all referenced foreign key fields are automatically updated.
When deleting the CASCADE option also deletes the foreign key row when the primary key is
deleted. Be extremely careful when using CASCADE ON DELETE; when you delete a
customer, you delete his orders, order lines, address, everything where there is a defined key
relationship. It is safer to write a procedure that ensures just those data sets necessary are
deleted in the right order.

• SET NULL: if the foreign key value is allowed to be NULL, when a primary key value is
deleted, it will set the relevant foreign key fields referencing this primary key value also to
NULL.

• SET DEFAULT: the foreign key column is set to its default value when a primary key field is
deleted.

To define a foreign key for our new table, create a new field, FK_CUSTOMER, defined as NOT NULL,
and use the context-sensitive right-click menu item, Create Foreign Key … Simply link to the ID
field in the CUSTOMER table, define the actions on update and delete and, job done!

55

IBExpert & Firebird Guide

We have then added just one further field, CUSTOMER_GROUP_NAME (varchar(30)), and after
committing our work to write it to the database, our table is ready.

 5. Create test data
As the rest of the db1 database is already filled with data, this table should also be filled with test
data. IBExpert provides a solution: the Test Data Generator, found in the IBExpert Tools menu. This
feature is almost self-explanatory: select the table and number of data sets. Check those fields to
the left of the field Name, and select the options for each field individually on the right-hand side:

Then start the automatic data generation using the Generate icon or [F9].

 6. 253 changes of table left
Each table in an Firebird/InterBase database has its own metadata changes counter. The metadata
of each table can be altered 255 times (add or remove columns, change field type etc.). This limit-
ation is because Firebird/InterBase sets an internal 1 byte flag, which is stored alongside each data
set, representing the so-called record structure version. For example, you have 1,000 data sets in a
table with five fields. You extend the table to six fields, and then add a further 1,000 data sets. The
old first 1,000 data sets are not revised at all, but are still stored with the old data structure, unless
you have instructed the server to set the data content of the sixth field for these old data sets at
NULL or a specified default value. If this new field is created with a NOT NULL constraint, these old
fields will all need to be updated. The internal flag simply ensures that a maximum of 255 such
changes are possible.

When any of these counters reaches the value of 255 it is not possible to alter any tables any
further, and a database backup and restore is necessary. The backup and restore ensure that all
data sets are now stored with the current single valid record structure, and you can continue to
make further table alterations.

IBExpert indicates in the status bar how many changes may be made in the table with the lowest
value (253 changes of table [table_name] left) in the database before being forced to perform a
database backup and restore. This message may be deactivated if wished, using the IBExpert

56

Create a Database Object

menu item, Database / Register Database or Database / Database Registration Info, and checking
the option Don't display metadata changes counter info on the Additional page.

This obligatory cleanup after many metadata changes is in itself a useful feature, however it also
means that users who regularly use ALTER TRIGGER to deactivate triggers during e.g. bulk import
operations are forced to backup and restore much more often then needed. Since changes to
triggers don't imply structural changes to the table itself, Firebird (since version 1.0) does not
increment the table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing
has remained though: once the counter is at 255, you can no longer create, alter or drop triggers for
that table.

57

More about Database Objects

Chapter 10: More about
Database Objects

Firebird/InterBase administrates the database data in database objects. These are the fundamental
building blocks of the database and are part of the database's metadata. A huge advantage of
Firebird is that metadata can be manipulated and altered during runtime. Regardless of whether
you are adding fields to tables or changing the basic structure, users can still work on the database
data.

The database objects can be viewed, created, edited and deleted using the IBExpert Database
Explorer.

 1. Domain
A domain is a user-defined custom data type global to the database. It is used for defining the
format and range of columns, upon which actual column definitions in tables may be based.

This is useful if fields/columns in one or several database tables have the same properties, as it is
much simpler to describe such a column type and its behavior as a domain. The columns can then
simply be defined by specifying the domain name in the column definition. The column properties
(e.g. field length, type, NOT NULL, constraints, arrays etc.) only need to be defined once in the
domain.

Domains help you create a uniform structure for your regular fields (e.g. ID, address and currency
fields) and add more understanding to your database structure. You can define a number of charac-
teristics including: data type, an optional default value, optional disallowing of NULL values, an
optional CHECK constraint and an an optional collation clause.

Certain attributes specified in the domain can be overwritten in the table field definition, i.e. a
column can be based upon a domain; however small changes may still possibly be made for this
column. The domain default, collation clause and NOT NULL settings ca be overridden by the field
definition, and a field based on a domain can add additional CHECK constraints to the domain's
CHECK constraint.

A domain can be created, modified and dropped as all other Firebird/InterBase objects in the
IBExpert Database Explorer.

When developing a normalized database, the question arises in how far domains are necessary
(multiple fields, multiple data etc.). However, it does make life easier, should column alterations be
necessary; e.g. zip code alteration from 4 to 5 digits (as was the case in Germany after the
reunion), change of currency (e.g. from DM or Lire to Euro). In such cases, only the domain needs
to be altered, and not each relevant column in each table individually throughout the database.

It should also be noted, that if user-defined domains are not explicitly defined and used for table
column definitions, Firebird/InterBase generates a new domain for every single table column
created! All domains are stored in the system table RDB$FIELDS.

59

IBExpert & Firebird Guide

Domain integrity
Domain integrity ensures that a column is kept within its allowable limits. This is achieved by keys
and constraints.

 2. Table
A table is a data storage object consisting of a two-dimensional matrix or grid of columns and rows,
theoretically known as a mathematical relation. It is a fundamental element for data storage.

Relational databases store all their data in tables. A table consists of an unordered set of horizontal
rows (tuples). Each of these rows contains the same number of vertical columns for the individual
singular information types.

The intersection of an individual row and column is a field containing a specific, indivisible atomic
piece of information. I.e. columns list the names of individual fields and rows are the data sets
containing the input data. Each database column may be assigned a different data type.

 3. View

 3.1 Understanding and using views
A view can be likened to a virtual table. It can be treated, in almost all respects, as if it were a table,
using it as the basis for queries and even updates in some cases. It is possible to perform SELECT,
PROJECT, JOIN and UNION operations on views as if they were tables.

Only the view definition is stored in the database, it does not directly represent physically stored
data.

Views simplify the visual display of of complex data. However when creating updatable views, a
number of factors need to be taken into consideration.

Simple views displaying only one table can be updated as if they were a table. But complex views
containing many tables can only update if the business logic has been well thought through and
implemented with triggers. This is necessary for the database to understand and know how it is to
react in certain situations. For example, a user alters a category from cartoon to animation in
a data set. Should the database a) allow the user to do this, b) alter the category just for this data
set or c) alter the category for all films assigned to the cartoon category?

Indeterminate views will damage your data integrity. Before creating a view, you need to decide
whether to allow access to the view directly by the user, whether the user is only able to view data,
or whether you wish to allow data updates using triggers or stored procedures.

You can simplify the relationships between data and tables for the user by flattening key information
for them into a single view. We can add security by allowing users, for example, to update a film title
but not allow them to alter a film category, by creating triggers on the view.

A further security option is to create views leaving fields with sensitive information (PIN numbers,
passwords, confidential medical details and such like) blank. For example, in a product table with
the fields: ID, FIRSTNAME, LASTNAME, ACCOUNT_NO, PIN, ADDRESS, ZIP and TOWN etc, a view of
the table could be created as follows:

60

More about Database Objects

 as
 select
 id,
 firstname,
 lastname,
 account_no,
 '',
 address, etc.

Without suitable triggers and constraints, it is possible to add data to the "blank" column, but it still
cannot be seen in the view.

Another good reason for introducing views is for reasons of compatibility following data model
improvements and the subsequent metadata alterations. For example, you need to split your
product table up into two smaller tables, product_main and product_detail. All new triggers,
procedures, exceptions etc. will be written based on these new table names and contents. However
if you do not wish to update and alter all existing dependencies, you can simply create a view with
the old table name and the old table structure. Universal triggers can be used to forward any data
alterations made here onto the new tables.

Views can also be defined as stored SELECTs, for example:
 CREATE VIEW Vw_Product_Short(TITLE,TXT)
 AS
 Select p.title,c.txt
 from product p
 join category c on c.id=p.category_id

Views can be created using SQL in IBExpert's SQL Editor and then saved as a view using the
Create View icon. Alternatively they can be created in IBExpert's View Editor.

Once created, they can be treated in SQL SELECTs exactly as if they were tables:
 select * from Vw_Product_Short

Further information can be found in the IBExpert online documentation at www.ibexpert.com/doc.

 3.2 Updatable views and read-only views
The simplest and quickest way to create an updatable view is to use the Create View from Table
option in the IBExpert Table Editor, and create a trigger (check box options to create BEFORE
INSERT, BEFORE UPDATE or BEFORE DELETE). Complete the trigger text in the lower code editor
window (taking into consideration the notes below), and the updatable view is complete!

If the view is to be an updatable view, the optional parameter WITH CHECK OPTIONS needs to be
used to control data input. If this parameter is used, only those values corresponding to the view's
SELECT statement may be input. A view needs to meet all of the following conditions if it is to be
used to update data in the base table:
• The view is based on a single table or on another updatable view. Joined tables result in a

read-only view. (The same is true if a subquery is used in the SELECT statement.)
• Any columns in the base table that are not part of the view allow NULLs. This condition

requires that the base table's primary key be included in the view.

61

IBExpert & Firebird Guide

• The SELECT statement does not include a DISTINCT operator. This restriction might have the
effect of removing duplicate rows, making it impossible for Firebird/InterBase to determine
which row to update.

• The SELECT statement does not include aggregate functions or the GROUP BY or HAVING
operators.

• The SELECT statement does not include stored procedures or user-defined functions.
• The SELECT statement does not contain joined tables.
• In a normalized database, a view is usually updatable if it is based on a single table and if the

primary key column or columns are included in the view definition.
However it is possible to input data into a view and then allocate the new data / data changes to
several individual tables by using a combination of user-defined referential constraints, triggers, and
unique indexes.

 3.3 Specifying a view with the CHECK OPTION
If a view is updatable, INSERT, UPDATE, or DELETE operations can be made on the view to insert
new rows into the base table(s), or to modify or delete existing rows.

However, the update could potentially cause the modified row to no longer be a part of the view,
and what happens if the view is used to insert a row that does not match the view definition?

To prevent updates or inserts that do not match the WHERE condition of the view, the WITH CHECK
OPTION needs to be specified after the view's SELECT statement. This clause tells
Firebird/InterBase to verify an UPDATE or INSERT statement against the WHERE condition. If the
modified or inserted row does not match the view definition, the statement fails and
Firebird/InterBase returns an error.

 4. Stored Procedure
A stored procedure is a series of commands (also known as routines) stored as a self-contained
program in the database as part of the database's metadata, and can be called by client applica-
tions. They are pre-compiled, so they don't need to be sent over the network and parsed every
time, they are just executed. Procedures can take parameters and - like SELECTs - give back their
data in the form of a table. They are similar to triggers, but is not automatically executed or bound
to a specific table.

They are written in Firebird/InterBase procedure and trigger language, also known as PSQL.

Each stored procedure is a stand-alone module of code that can be executed interactively or as
part of a SELECT statement, from another stored procedure or from another application envir-
onment. They can be invoked directly from applications, or can be substituted for a table or view in
a SELECT statement; they can receive input parameters and return values to applications.

With the client/server database concept, it is important that the database is not just used to store
data, but is actively involved in the data query and data manipulation processes. As the database
must also be able to guarantee data integrity, it is important that the database can also handle more
complex operations than just simple comparisons. Firebird/InterBase uses stored procedures as the
programming environment for integrating active processes in the database.

62

More about Database Objects

Stored procedures provide SQL enhancements that support variables, comments, declarative
statements, conditional testing and looping as programming elements. They have full access to
SQL DML statements allowing a multitude of command types; they cannot however execute DDL
statements, i.e. a stored procedure cannot create a table.

Stored procedures offer the following advantages when implementing applications:
• Reduction of network traffic by off-loading application processes from the client to the server.

This is particularly important for remote users using slower modem connections. And for this
reason of course, they are fast.

• Splitting up of complex tasks into smaller and more logical modules. Stored procedures can
be invoked by each other. Stored procedures allow a library of standardized database
routines to be constructed, that can be called in different ways.

• They're reusable. Rather than recreate a statement on the client each time it's needed, it's
better to store it in the database. They can be shared by numerous applications using a single
database. Alterations to the underlying data definitions only need to be implemented in the
stored procedure and not in the individual applications themselves. Readability is enhanced,
and redundancy, maintenance, and documentation are greatly reduced.

• Full access to SQL and the database's metadata. This allows certain environments to perform
extended operations on the database that might not be possible from another application
language. The language even offers functions that are not available in SQL, e.g. IF…WHEN…
ELSE, DECLARE VARIABLE, SUSPEND, etc.

• Enhanced security: if database operations such as INSERT, ALTER or DROP can only be
performed on a table by stored procedures, the user has no privileges to access the table
directly. The only right the user has is to execute the stored procedure.

• As stored procedures are part of InterBase or Firebird, it is irrelevant which front end is
subsequently used, be it Delphi, PHP or other.

There are no disadvantages to using stored procedures. There are however, two limitations. Firstly,
any variable information must be able to be passed to the stored procedure as parameters or the
information must be placed in a table that the stored procedure can access. Secondly, the
procedure and trigger language may be too limited for complex calculations. Stored procedures
should be used under the following circumstances:
• If an operation can be carried out completely on the server with no necessity to obtain inform-

ation from the user while the operation is in process. When invoking a stored procedure these
input parameters can be incorporated in the stored procedure.

• If an operation requires a large quantity of data to be processed, whose transfer across the
network to the client application would cost an enormous amount of time.

• If the operation must be performed periodically or frequently.
• If the operation is performed in the same manner by a number of different processes, or

processes within the application, or by different applications.
All SQL scripts can be incorporated into a stored procedure and up to ten SQLs incorporated in one
single procedure, as well as the additional functions already mentioned, making stored procedures
considerably quicker and more flexible than SQL.

Stored procedures can often be used as an alternative to views (being more flexible and offering
more control) as the ORDER BY instruction cannot be used in a view (the data sets are displayed as

63

IBExpert & Firebird Guide

determined by the optimizer, which is not always intelligent!). In such a case, a stored procedure
should be used.

 4.1 Executing stored procedures
The simplest way to execute a stored procedure is to use the EXECUTE PROCEDURE statement.
This statement can be used in one of the following ways:

• from within another stored procedure.
• from within a trigger.
• from an application.

When a procedure is executed from within an Firebird/InterBase application, such as another
procedure or a trigger, it has the following syntax:

 EXECUTE PROCEDURE
 <procedure_name>
 <input_parameter_list>
 RETURNING_VALUES
 <parameter_list>

If the procedure requires input variables, or if it is to return output variables, the relevant
parameters need to be specified. In each case, <parameter_list> is a list of parameters,
separated by commas (see stored procedure parameters for further information).

Each time a stored procedure calls another procedure, the call is said to be nested because it
occurs in the context of a previous and still active call to the first procedure.

Stored procedures can be nested up to 1,000 levels deep. This limitation helps to prevent infinite
loops that can occur when a recursive procedure provides no absolute terminating condition.
Nested procedure calls may be restricted to fewer than 1,000 levels by memory and stack limita-
tions of the server.

When using IBExpert's Procedure Editor to execute a procedure, IBExpert tells you whether input
parameters need to be entered, before displaying the return values (= output or results) on the
Results page

 4.2 Select procedures
It is possible to use a stored procedure in place of the table reference in a SELECT statement. This
type of procedure is known as a select procedure. When a stored procedure is used in place of a
table, the procedure should return multiple columns or rows, i.e. it assigns values to output
parameters and uses SUSPEND to return these values. This allows the SELECT statement to filter
the results further by different criteria.

SUSPEND is used to suspend execution of the procedure and return the contents of the output
variables back to the calling statement. If the stored procedure returns multiple rows, the SUSPEND
statement needs to be used inside a FOR SELECT … DO loop to return the rows one at a time.

64

More about Database Objects

 4.3 Non-select procedures
Execute or non-select procedures perform an action and do not return any results.

 5. Trigger
A trigger is an independent series of commands stored as a self-contained program (SQL script) in
the database. Triggers are executed automatically in the database when certain events occur. For
example, it is possible to check before an insert, whether a primary key already exists or not, and if
necessary allocate a value by a generator. These events are database-, table- or row-based.

Triggers are the so-called database police force, as they are vital for database integrity and security
by enforcing the rules programmed by the database developer. They can include one or more
execute commands. They can also be used as an alarm (= event alerter) that sends an event of a
certain name to the Firebird/InterBase Event Manager.

Triggers are almost identical to stored procedures, the main difference being the way they are
called. Triggers are called automatically when a change to a row in a table occurs, or certain
database actions occur. Most of what is said about stored procedures applies to triggers as well,
and they share the same language, PSQL.

Triggers take no input parameters and do not return values.

A trigger is never called directly. Instead, when an application or user attempts to INSERT, UPDATE
or DELETE a row in a table, any triggers associated with that table and operation automatically
execute, or fire. Triggers defined for UPDATE on non-updatable views fire even if no update occurs.

Several triggers can be created for one event. The POSITION parameter determines the sequence
in which the triggers are executed.

Since Firebird 1.5 universal triggers (which can be used simultaneously for insert and/or update
and/or delete) are available and Firebird 2.1 introduced database triggers (see below for further
information).

 5.1 Database triggers
Database triggers were implemented in Firebird 2.1. These are user-defined PSQL modules that
can be defined to fire in various connection-level and transaction-level events. This allows you to,
for example, set up a protocol relatively quickly and easily.

Specify who is allowed to access your application, or raise an exception when certain unwanted
applications attempt to access your database. Database triggers are also a really nice feature for
protocols, enabling you for example to create your own login mapping with IP addresses an so on.

 5.2 Database trigger types
Database-wide triggers can be fired on the following database trigger types:
• CONNECT The database connection is established, a transaction begins, triggers are fired -

uncaught exceptions rollback the transaction, disconnect the attachment and are returned to
the client. Finally the transaction is committed.

65

IBExpert & Firebird Guide

• DISCONNECT A transaction is started, triggers are fired - uncaught exceptions rollback the
transaction, disconnect the attachment and are stopped. The transaction is committed and the
attachment disconnected.

• TRANSACTION START Triggers are fired in the newly-created user transaction - uncaught
exceptions are returned to the client and the transaction is rolled back.

• TRANSACTION COMMIT Triggers are fired in the committing transaction - uncaught excep-
tions rollback the trigger's savepoint, the commit command is aborted and an exception is
returned to the client. For two-phase transactions the triggers are fired in PREPARE and not in
COMMIT.

• TRANSACTION ROLLBACK Triggers are fired in the rolling-back transaction - changes made
will be rolled back together with the transaction, and exceptions are stopped.

In IBExpert database triggers can be created, edited and deleted in the same way as table-bound
triggers.

 5.3 Table triggers

Table trigger types
Trigger types refer to the trigger status (ACTIVE or INACTIVE), the trigger position (BEFORE or
AFTER) and the operation type (INSERT, UPDATE or DELETE).

They are specified following the definition of the table or view name, and before the trigger body.

NEW and OLD context variables
In triggers (but not in stored procedures), Firebird/InterBase provides two context variables that
maintain information about the row being inserted, updated or deleted:
• OLD.columnName refers to the current or previous values in a row being updated or

deleted. It is not relevant for INSERT triggers.
• NEW.columnName refers to the new values in a row being inserted or updated. It is not

relevant for DELETE triggers.

Using the OLD. and NEW. values you can easily create history records, calculate the amount or
percentage of change in a numeric value, find records in another table that match either the OLD.
or NEW. value or do pretty well anything else you can think of. Please note that NEW. variables can
be modified in a BEFORE trigger; since the introduction of Firebird 2.0 it is not so easy to alter them
in an AFTER trigger. OLD. variables cannot be modified.

It is possible to read to or write from these trigger variables.

 6. Generator/Sequence
Generators are automatic sequential counters, spanning the whole database. They are necessary
because all operations in Firebird/InterBase are subject to transaction control.

A generator is a database object and is part of the database's metadata. It is a sequential number,
incorporating a whole-numbered 64 bit value BIGINT (SQL dialect 3) since InterBase 6/Firebird (in

66

More about Database Objects

SQL dialect 1 it is a 32 bit value INTEGER), that can automatically be inserted into a column. It is
often used to ensure a unique value in an internal primary key.

A database can contain any number of generators and they can be used and updated in any trans-
action. They are the only transaction-independent part of Firebird/InterBase. For each operation a
new number is generated, regardless whether this transaction is ultimately committed or rolled back
(this consequently leads to "missing numbers"). Therefore generators are best suited for automatic
internal sequential numbering for internal primary keys.

SEQUENCE was introduced in Firebird 2.0. It is the SQL-99-compliant synonym for GENERATOR.
SEQUENCE is a syntax term described in the SQL specification, whereas GENERATOR is a legacy
InterBase syntax term.

 7. Exception
Exceptions are user-defined named error messages, written specifically for a database and stored
in that database for use in stored procedures and triggers.

If it is ascertained in a trigger that the value in a table is incorrect, the exception is fired. This leads
to a rollback of the total transaction that the client application is attempting to commit. Exceptions
can be interleaved.

They can be shared among the different modules of an application, and even among different
applications sharing a database. They provide a simple way to standardize the handling of prepro-
grammed input errors. Exceptions are typically used to implement program logic, for example, you
do not wish a user to sell an item in stock, which has already been reserved by another user for
their customer.

The maximum size of an exception message was raised in Firebird 2.0 from 78 to 1021 bytes.

 8. UDF (User-Defined Function)
A user-defined function (UDF) is used to perform tasks that Firebird/InterBase can't. It is an external
database function written entirely in another language, such as C++ or Pascal, to perform data
manipulation tasks not directly supported by Firebird/InterBase.

UDFs can be called from Firebird/InterBase and executed on the server. These functions can exist
on their own or be collected into libraries. UDFs offer the possibility to create your own functions
(such as SUBSTR) and integrate them in the database itself. Each UDF is arranged as a function,
belonging to a DLL (Linux: .SO). Thus one dynamically loaded library consists of at least one
function.

 9. Blob filter
Blob filters are routines for blobs. They are user-written programs that convert data stored in Blob
columns from one subtype to another, i.e. they allow the contents of blob subtype X to be displayed
as subtype Y or vice versa. These filters are ideal tools for certain binary operations such as the
compression and translation of blobs, depending upon the application requirements.

67

IBExpert & Firebird Guide

A blob filter is technically similar to a UDF (user-defined function). It hangs itself in the background
onto the database engine, and is used for example to compress the blob, or to specify the format
such GIF or JPG (dependent upon use with Windows or Apple Mac). The blob filter mechanism
relies on knowing what the various subtypes are, to provide its functionality.

Blob filters are written in the same way that UDFs are written, and are generally part of standard
libraries, just as UDFs are.

 10. Role
A role is a named group of privileges. It simplifies granting user rights as multiple users can be
granted the same role. For example, in a large sales department, all those clerks involved in
processing incoming orders could belong to a role Order Processing.

Should it become necessary to alter the rights of these users, only the role has to be changed.

Users must specify the role at connect time.

 11. Index
Indices are a sorted list of pointers into tables, to speed data access. An index can be ascending or
descending, and can also be defined as unique if wished. If the indexed field is unique there is only
one pointer.

Indices should not be confused with keys. In the relational model, a key is used to organize data
logically, so that specific rows can be identified. An index, however, is part of the table's physical
structure on-disk, and is used to increase the performance of tables during queries. Indices are
therefore not a part of the relational model. In spite of this indices are extremely important for
relational database systems.

For columns defined with a primary key or a foreign key in a table, Firebird/InterBase automatically
generates a corresponding ascending index and enforces the uniqueness constraint demanded by
the relational model.

If you wish to ascertain just how many indices already exist for individual tables in a database,
query the following from the system table, RDB$INDICES:

select * from RDB$INDICES where
RDB$INDICES.RDB$RELATION_NAME='MYTABLE'

or view the indices list under the Indices node in the Database Explorer.

System tables and indices can be viewed in the IBExpert Database Explorer by activating the
Show System Tables and Show System Indices check options, found in the Database registration
Info on the Additional page.

Indices are updated every time a new data set is inserted, or rather, the index-referenced field is
updated. Firebird/InterBase writes an additional second mini version of the data set in each index
table.

An index has a sequence e.g. when an ascending index is assigned to a field (default), and a
descending select on this field is requested, Firebird/InterBase does not sort using the ascending
index. For this a second descending index needs to be specified for the same field. An index can be

68

More about Database Objects

named as wished; consecutive numbers can even be used, as it is extremely rare that an index is
named in SQL. An index on two fields simultaneously only makes sense when both fields are to be
sorted using ORDER BY, and this should only be used on relatively small quantities of results.

Firebird/InterBase decides automatically which index it uses to carry out SELECT requests. On the
Table Editor / Indices page under Statistics, it can be seen that the index with the lowest value has
a higher uniqueness, and is therefore preferred by Firebird/InterBase instead of other indices with a
lower level of uniqueness. This is known as selectivity.

An index should only be used on fields which are really used frequently as sorting criteria (e.g.
fields such as STREET and MALE/FEMALE are generally unimportant) or in a WHERE condition. If a
field is often used as a sorting criterion, a descending index should also be considered, e.g. in
particular on DATE or TIMESTAMP fields. Care should also be taken that indexed CHAR fields are
not larger than approximately 80 characters in length (with Firebird 1.5 the limit is somewhat
higher).

Indices can always be set after the database is actually in use, based on the performance require-
ments. For further details and examples please refer to Chapter 14:14.3 Performance Analysis.

 11.1 Index statistics and index selectivity
When a query is sent to the server, the Optimizer does not intuitively know how to process it. It
needs further information to help it decide how to go about executing the query. For this it uses
indices, and to decide which index is the best to use first, it relies on the index selectivity. The
selectivity of an index is the best clue that the query plan has whether it should use a certain index
or not. And when more than one index is available, it helps the Firebird server decide which index
to use first. A good selectivity is close to 0 - it's the result of: 1/distinct values.

So the first thing the Optimizer does when it receives a query is to prepare the execution. It makes
decisions regarding indices based solely upon their selectivity. Although the Optimizer only uses
indices with a selectivity < 0.01 when there are no other appropriate indices available.

If you have an index on a field with only two distinct values (e.g. yes or no) in it, it will have a
selectivity of 0.5. If your indexed field has 10 values, it will have a selectivity of 0.1. The higher the
number of different values, the lower the selectivity number and the more suitable it is to be used as

69

IBExpert & Firebird Guide

an index. Your benchmark is always the ID - the primary key, because that will always have
complete unique values in it, and therefore the lowest selectivity.

The selectivity is only computed at the time of creation, or when the IBExpert menu item
Recompute Selectivity or Recompute All is used (found directly in the Index Editor, IBExpert
Services menu item, Database Statistics, in the Database menu, or in the right-click Database
Explorer menu).

Only the creator of an index can use SET STATISTICS. Please note that SET STATISTICS does
not rebuild an index; to rebuild an index, use ALTER INDEX.

The recalculation of selectivity can be automated to ensure the most efficient use of indices.

This is automatically performed during a database backup and restore, as it is not the index, but its
definition that is saved, and so the index is therefore reconstructed when the database is restored.

The SQL plan used by the Firebird/InterBase Optimizer merely shows how the server plans to
execute the query.

If the developer wishes to override Firebird/InterBase's automatic index selection, and determine
the index search sequence himself, this must be specified in SQL. Each index needs to be named
and entered individually.

To eliminate an index from the plan +0 can be added in the query to the field where you wish the
index to be ignored, thus denying the optimizer the ability to use that index for that particular query.
This is much more powerful and flexible than deleting the index altogether, which prevents any use
of it by the Optimizer in the future. Indices should be prudently defined in a data structure, as not
every index automatically leads to an acceleration in query performance. If in a table, for example,
a column comprises data only with the value 0 or 1, an index could even slow performance down. A
complex index structure can however have a huge influence upon insertion and alteration
processes in the long run.

 11.2 Recompute selectivity of all indices
Indices statistics are used by the Firebird/InterBase Optimizer, to determine which index is the most
efficient. All statistics are recalculated only when a database is restored after backing up, or when
this is explicitly requested by the developer.

70

More about Database Objects

When an index is initially created, its statistical value is 0. Therefore it is extremely important,
particularly with new databases where the first data sets are being entered, to regularly explicitly
recompute the selectivity, so that the optimizer can recognize the most efficient indices. This is not
so important with databases, where little data manipulation occurs, as the selectivity will change
very little. To recompute the selectivity of all indices use the IBExpert menu item Recompute
Selectivity of all Indices. This can be found in the IBExpert Database menu or using the right mouse
button in the Database Explorer.

You do not need to shut down the database to recompute the selectivity of indices. Individual
indices can be recomputed directly in the Index Editor, in the SQL Editor on the Plan Analyzer page
(simply click the Recompute selectivity button), or manually in the SQL Editor using the command:

 SET STATISTICS INDEX <index_name>;

Single or multiple indices can also be recomputed directly in the Index Editor and the Table Editor /
Indices page, using the right-click menu.

The same Recomputing Selectivity dialog as above is then displayed. The new statistical values
can be viewed for individual tables in the Index Editor and the Table Editor on the Indices page
(providing the statistics are blended in using the right-click menu item Show Statistics).

 11.3 Recompile all stored procedures and triggers
Stored procedures and triggers use indices internally. The Recompile command ensures that the
most up-to-date indices are used. Using this command it is also possible to recognize when one

71

IBExpert & Firebird Guide

procedure or trigger calls another. This function also useful, for example, when backing up an older
InterBase version (e.g. v6) and restoring in a newer version, such as InterBase 2007 or Firebird
2.1, as Firebird/InterBase simply copies the data and metadata into the new version when
restoring. If a variable name, that is a keyword in the stored procedure, is wrong, it is unfortunately
not recognized during the backup and restore procedure as the compiler does not recognize
variable names as such. When however procedures and triggers are recompiled, any such
problems are discovered.

The menu items, Recompile all Stored Procedures and Recompile all Triggers can be found in the
IBExpert Database menu or using the right-click menu in the Database Explorer.

72

More about Data Types

Chapter 11: More about Data Types

Firebird/InterBase tables are defined by the specification of columns, which accommodate appro-
priate information in each column using data types, for example, numerical (NUMERIC, DECIMAL,
INTEGER), textual (CHAR, VARCHAR, NCHAR, NVARCHAR), date (DATE, TIME, TIMESTAMP) or blobs.

The data type is an elemental unit when defining data, which specifies the type of data which may
be stored in tables, and which operations may be performed on this data. It can also include
permissible calculative operations and maximum data size.

The data type can be defined in IBExpert using the Database Explorer, by creating a domain or
creating a new field in the Create Table or Table Editors.

It can of course, also be defined using SQL directly in the IBExpert SQL Editor.

 1. Blob - Binary Large OBject
A blob is a data type storing large binary information (Binary Large OBject).

Blobs can contain any binary or ASCII information, for example, large text files, documents for data
processing, CAD program files, graphics and images, videos, music files etc. Their memory size is
almost unlimited as they can be stored across several pages. This assumes however that a suffi-
cient database page size has been specified. For example, using a 1k page, the blob may not
exceed 0.5 GB, using a 4k page size, 8K page size up to 32 GB and so on.

The ability to store such binary data in a database provides a high level of data security, data
backup, version management, categorization and access control.

Since Firebird 2.1 text blobs can masquerade as long VARCHARs. At various levels of evaluation,
the Firebird engine now treats text blobs that are within the 32,765-byte size limit as though they
were VARCHAR. String functions like CAST, LOWER, UPPER, TRIM and SUBSTRING will work with
these blobs, as well as concatenation and assignment to string types. You can even access blob
contents using CONTAINING and LIKE. ORDER BY however should not be used on blobs, as it
sorts and displays the blob fields in the order that they were created and not according to content.

Firebird/InterBase supports quick and efficient algorithms for reading, writing and updating blobs.
The user can manipulate blob processing with blob routines - also called blob filters. These filters
are ideal tools for the compression and translation of blobs, depending upon the application
requirements.

Blobs can be specified using the IBExpert Database Explorer or the IBExpert SQL Editor.

Blob specification includes the subtype, segment size and, if wished, the character set.

When the Grid view (i.e. Data page) in the Table Editor is selected, and the table shown contains a
blob column, IBExpert can display the blob content of a selected data set as text (also as RTF),
hex, images and web pages using the IBExpert menu item Tools / Blob Viewer/Editor.

73

IBExpert & Firebird Guide

 1.1 Segment size
Segment sizes are specified for blob fields. This can be done using the Domain Editor or the Table
Editor (started from the IBExpert Database Explorer).

A blob segment size can be defined, to increase the performance when inputting and outputting
blob data. This is because all blob contents are stored in blocks, and are fetched via these blocks.

When a blob is extracted, the Firebird/InterBase server reads the number of segments that the
client has requested. As the server always selects complete blocks from the database, this value
can in effect be ignored on modern powerful computers.

 1.2 Subtype
Subtypes are used to categorize the data type when defining blobs. A subtype is a positive or
negative numerical value, which indicates the type of blob data. The following subtypes are
predefined in Firebird/InterBase:

Subtype Meaning

0 Standard blob, non-specified binary data.

1 Text blob, e.g. memo fields.

Text Alternative for defining subtype 1.

Positive value Reserved for Firebird/InterBase.

Negative value User-defined blob subtypes.

Blob fields can be specified using the Domain Editor or the Table Editor (started from the IBExpert
Database Explorer).

The specification of a user-defined blob subtype has no effect upon Firebird/InterBase, as the
Firebird/InterBase server treats all blob fields the same, i.e. it simply stores the data and delivers it
to the client program when required.

The definitions are however required by the client programs in order to display the blob content
correctly. For example, SUB_TYPE -200 could be defined as a subtype for GIF images and
SUB_TYPE -201 as a subtype for JPG images.

Subtype specification is optional; if nothing is specified, Firebird/InterBase assumes 0 = binary
data.

 2. CHAR and VARCHAR
Firebird/InterBase provides two basic data types to store text or character information: CHAR and
VARCHAR (blobs also allow character storage using the subtype text).

CHAR and VARCHAR are data types which can store any text information. Numbers that are not
calculated, such as zip codes, are traditionally stored in CHAR or VARCHAR columns. The length is

74

More about Data Types

defined as a parameter, and can be between 1 and 32,767 bytes. It is particularly useful for codes
that typically have a fixed or predefined length, such a the zip code for a single country.

Compared to most other databases, Firebird/InterBase only stores significant data. If a column is
defined as CHAR(100), but only contains entries with 10 characters, the additionally defined bytes
are not used. Both CHAR and VARCHAR are stored in memory buffer in their full, declared length; but
the whole row is compressed prior to storing i.e. CHARs, VARCHARSs, INTEGERs, DATESs, etc. all
together.

 2.1 Collate
A special collation sequence can be specified for CHAR and VARCHAR field columns. The COLLATE
parameter allows fields to be collated according to a certain language/group of languages e.g.
collate according to the German language when using Win1252.

In IBExpert the collation sequence can be specified when defining the character set for a domain or
field.

 3. INTEGER, SMALL INTEGER and BIG INTEGER
INTEGER (INT, SMALLINT and BIGINT)

INTEGER data types are used to store whole numbers. BIGINT was added in Firebird 1.5 and is
the SQL99-compliant 64-bit signed integer type. BIGINT is available in Dialect 3 only.

Values following the decimal point are not allowed. Depending upon the numeric area required,
following INTEGER types are supported:

Type Size Value range

SmallInt 2 bytes -32,768 to +32,767

Integer 4 bytes -2,147,483,648 to +2,147,483,647

BigInt 64 bytes -2^63^ to 2^63^-1
or -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

4 bytes of data storage are required for the INTEGER value, whereby 31 bits are for the number
and 1 bit for the sign. 2 bytes of data storage are required for the small integer value: 15 bits are for
the number and 1 bit for the sign. It is usually preferable to use an INTEGER data type as 2 bytes
more or less are fairly irrelevant these days.

An INTEGER is a 15-digit number and although extremely large, is by far not as large as the
NUMERIC(18). INTEGER types are particularly suited for unique identification numbers, as
Firebird/InterBase contains mechanisms for the automatic generation of whole number values
(please refer to generator for further information). The resulting indices for the connection of
multiple tables to each other are relatively small and offer extremely quick access, as the highest
computer performance on all computer platforms is generally found in INTEGER operations. It is

75

IBExpert & Firebird Guide

possible to specify the display format of an INTEGER under Environment Options / Grid / Display
Formats.

SMALLINTs can also be used for BOOLEAN data types e.g. true/false, male/female.

 4. FLOAT and DOUBLE PRECISION
FLOAT data types are used to store values with significant decimals. The following FLOAT types are
supported:

Type Size Value range

Float 4 bytes 7 significant decimals;
-3.4 x 10^-38 to 3.4 x 10^38

Double Precision 8 bytes 15 significant decimals;
-1.7 x 10^-308 to 1.7 x 10^308

A column with the defined data type FLOAT can store a single-precision figure with up to 7 signi-
ficant decimals. The decimal point can float between all seven of these digits. If a number with more
than 7 decimal places needs to be saved, decimals beyond the seventh position are truncated.
FLOAT columns require 4 bytes of storage.

A column with the defined data type DOUBLE PRECISION can store numbers with 15 significant
decimals. This uses 8 bytes of storage. As with the FLOAT column, the decimal point can float
within the column. The DOUBLE PRECISION data type is implemented in the majority of
Firebird/InterBase platforms as a 64 bit number.

FLOAT types can be implemented for any calculative operations. They offer an optimal performance
and sufficient range of values. It is possible to specify the display format of a FLOAT field under
Environment Options / Grid / Display Formats.

Since dialect 3 NUMERIC data is rounded according to commercial rounding rules; up to dialect 1
NUMERIC data is rounded according to technical rounding rules.

 5. NUMERIC and DECIMAL
The NUMERIC data type specifies a numeric column where the value has a fixed decimal point,
such as for currency data. NUMERIC(18) is a 64-bit integer value in SQL Dialect 3 and is almost
infinite. Since SQL Dialect 3 numeric and decimal data types are stored as INTEGERS of the
respective size. SQL Dialect 1 offers NUMERIC(15).

Syntax:
 NUMERIC(precision, scale);

or
 DECIMAL(precision, scale);

76

More about Data Types

PRECISION refers to the total number of digits, and SCALE refers to the number of digits to the
right of the decimal point. Both numbers can be from 1 to 18 (SQL dialect 1: 1-15), but SCALE must
be less than or equal to PRECISION.

It is better to define NUMERIC always at its maximum length, as in this case, the 32 bit INTEGER
value is used. Otherwise a 16 bit value is used internally, for example with NUMERIC(4,2), and
this is not always transformed back correctly by the client program environments (an older BDE
version could, for example, transform EUR 12.40 with NUMERIC(4,2) into EUR 1,240).

Firebird/InterBase supports a number of options for specifying or not specifying PRECISION and
SCALE:

• If neither PRECISION nor SCALE are specified, Firebird/InterBase defines the column as
INTEGER instead of NUMERIC and stores only the integer portion of the value.

• When using SQL Dialect 1, if just PRECISION is specified, Firebird/InterBase converts the
column to a SMALLINT, INTEGER or DOUBLE PRECISION data type, based on the number of
significant digits being stored.

In SQL Dialect 3, if just PRECISION is specified, Firebird/InterBase converts the column to a
SMALLINT, INTEGER or INT64 data type, based on the number of significant digits being stored.

It is important to distinguish between the two dialects, because since INT64 is an INTEGER data
type, and DOUBLE PRECISION is not, you will occasionally have rounding errors in SQL Dialect 1,
but not in SQL Dialect 3 or later.

The NUMERIC data type should only be used for fields that are later to be used as part of a calcu-
lation.

Firebird/InterBase converts the columns as follows:

Definition Data type created

Decimal(1) - Decimal(4) Small Integer

Decimal(5) - Decimal(9) Integer

Decimal(10) - Decimal(18) Int (64)

Note that if a DECIMAL(5) data type is specified, it is actually possible to store a value as high as
a DECIMAL(9) because Firebird/InterBase uses the smallest available data type to hold the value.
For a DECIMAL(5) column, this is an INTEGER, which can hold a value as high as a DECIMAL(9).

 6. DATE, TIME, TIMESTAMP
Firebird and InterBase: DATE, TIME, TIMESTAMP, NOW.

Since Firebird 2.0: CURRENT_DATE, CURRENT_TIMESTAMP.

The DATE data type stores values which represent a date. Valid dates are from January 1, 100 AD
through February 28, 32,767 AD. Note: for DATE arithmetic purposes, DATE 0 (the integer value of
zero) as a DATE in Firebird/InterBase is November 17, 1898.

77

IBExpert & Firebird Guide

Different date formats are supported. There are however slight differences between SQL dialect 1
and SQL dialect 3.

• SQL dialect 1: DATE also includes a time slice (equivalent to TIMESTAMP in dialect 3).
• SQL dialect 3: DATE does not include any time slice.

Using SQL dialect 1 the default NOW for data type DATE means current time and date of the server;
there is also TODAY (only date; the time is always set at midnight, YESTERDAY, TOMORROW).

The TIME data type is an SQL dialect 3 data type. TIME is a 32-bit field type of TIME values. The
range is from 0:00 AM to 23:59:9999 PM.

TIMESTAMP is an SQL dialect 3 data type. TIMESTAMP is a 64-bit field type comprised of both date
and time. The range is from January 1,100 AD to February 28, 32768 AD. It is the equivalent of
DATE in SQL dialect 1.

Note: CURRENT_TIMESTAMP and 'NOW' are not exactly the same - CURRENT_TIMESTAMP
represents the statement time and 'NOW' represents the current timestamp. For example, if you
perform a long running update on a lot of records, you will see that using CURRENT_TIMESTAMP
produces the same value for all records (the timestamp when the update statement was started);
using 'NOW', you will see different values for each record, since the value is taken on a record
level.

It is possible to specify the display format of a date/time field under Environment Options / Grid /
Display Formats.

 7. Array
Firebird/InterBase allows a column to be defined as an array of elements, i.e. data information can
be stored in so-called arrays. An array is a range of values determined by setting a lower and an
upper limit. It consists of any amount of information that can be split into different dimensions. The
array can be managed as a whole, as a series of elements in one dimension of the array, or as
individual elements.

Arrays should be used with caution. Database normalization usually supplies an alternative format
for storing such data, so that normal table structures are just as suitable, and also preferable. There
are however occasionally exceptions, for example for measurement value logging, when arrays are
the preferred option.

Arrays can be declared as a domain or directly in the table definition following the data type defin-
ition. Array data can be of any type except blob. Between 1 and 16 dimensions can be specified;
each dimension can store as many elements as can be fitted into the database. The values are
stored as a blob and are therefore almost unlimited in scope.

The array dimensions are specified in square brackets, each dimension being separated by
commas. By default, the lower bounds ID number is 1 and the upper bounds ID number is the
maximum of that dimension. Alternate bounds IDs can be specified in place of the array size by
separating them with a colon. For example, an array with 5 measurements with 2 dimensions
starting at the default value 1 is defined as follows:

 [2,5]

78

More about Data Types

Counting begins at 1 and ends at the value entered by the user. In this case 2 x 5 = 10 measure-
ments can be logged. If counting is to begin at, for example, 0, the array definition is as follows:

 [0:2, 0:5]

When using arrays, it is important to be aware of the advantages and limitations.

 7.1 Advantages of arrays
• InterBase operations can be performed upon the total data type as a single element. Alternat-

ively operations can be executed on part of an array only for certain values of a dimension. An
array can also be broken down into each single element.

• Following operations are supported:
◦ SELECT statement from array data.
◦ Insertion of data in an array.
◦ Updating data in an array slice.
◦ Selecting data from an array slice.
◦ Examination of an array element in a SELECT statement.

 7.2 Array limitations
• A user-defined function can only access one element in an array.
• The following operations are not supported:

◦ Dynamically referencing array dimensions using SQL statements.
◦ Inserting data into an array slice.
◦ Setting individual array elements to null.
◦ Using aggregate functions such an MIN(), MAX(), SUM(), AVG() and COUNT() on

arrays.
◦ Referencing an array in the GROUP BY clause in a SELECT query.
◦ Creating a view, which selects from array slices.

• The data stored in this way cannot be selected per index; each query always accesses the
fields unindexed.

 8. Boolean
Firebird/InterBase does not offer a native BOOLEAN data type. However, they can be implemented
using domains. The first step is to define a domain (which should logically be named Boolean).
The domain can be defined in one of two ways:

Using a SMALLINT (16 bits), defaulting to zero, with a check constraint to ensure only the values of
zero or one are entered. i.e:

CREATE DOMAIN D_BOOLEAN AS SMALLINT DEFAULT 0
CHECK (VALUE BETWEEN 0 AND 1);

Once you have defined this domain you can forever use it as a BOOLEAN data type without further
concern. It is particularly suitable from a Delphi point of view, as Pascal BOOLEANs work in a similar
manner.

79

IBExpert & Firebird Guide

Alternatively, the domain can be defined as a CHAR(1) and appropriate single character values
ensured using a check constraint. If T and F or Y and N are more meaningful for your application
then use this approach.

 9. NOT NULL, NULL
NOT NULL is a parameter that does not allow a column field to be left blank. It can be defined for a
field or a domain. It forces a value to be entered into the column. It operates in the same way for
tables as for domains. The parameter DEFAULT NULL and NOT NULL cannot be used in the same
column definition. The NOT NULL parameter must be specified if the column is to be defined as
PRIMARY KEY or UNIQUE.

NULL is the term used to describe a data field without a value, i.e. the field has been left blank
because the information is either not known or not relevant for this record/data set. The NULL value
can be stored in text, numeric and date data types.

A relational database is able to store NULL values as data content. A NULL value does not mean
numerical zero. For example, a product can have zero sales (0) or unknown sales (<null>), and
just because a customer's telephone number is not known (<null>), this does not mean that the
customer has no telephone, and he most certainly will not have the telephone number "0"!

80

Writing Stored Procedures & Triggers

Chapter 12: Writing Stored
Procedures & Triggers

The stored procedure and trigger language is a language created to run in a database. For this
reason its range is limited to database operations and necessary functions; PSQL is in itself
however a full and powerful language, and offers more functionalities than you can use if you were
just sat on the client. The full range of keywords and functions available for use in procedures and
triggers can be found at www.ibexpert.com/doc in the Structured Query Language chapter, Stored
Procedure and Trigger Language.

Firebird/InterBase provides the same SQL extensions for use in both stored procedures and
triggers. These include the following statements:

• DECLARE VARIABLE
• BEGIN … END
• SELECT … INTO : variable_list
• Variable = Expression

• /* comments */

• EXECUTE PROCEDURE

• FOR select DO …

• IF condition THEN ... ELSE ...

• WHILE condition DO ...

and the following Firebird 2 features:
• DECLARE <cursor_name> CURSOR FOR ...

• OPEN <cursor_name>

• FETCH <cursor_name> INTO ...

• CLOSE <cursor_name>

• LEAVE <label>

• NEXT VALUE FOR <generator>

Both stored procedure and trigger statements includes SQL statements that are conceptually
nested inside the main statement. In order for Firebird/InterBase to correctly parse and interpret a
procedure or trigger, the database software needs a way to terminate the CREATE PROCEDURE or
CREATE TRIGGER that is different from the way the statements inside the CREATE
PROCEDURE/TRIGGER are terminated. This can be done using the SET TERM statement.

 1. SET TERM
Normally Firebird/InterBase processes a script step by step and separates two statements by a
semicolon. Each statement between two semicolons is parsed, interpreted, converted into an
internal format and executed. This is not possible in the case of stored procedures or triggers where

81

IBExpert & Firebird Guide

there are often multiple commands which need to be successively executed, i.e. there are several
semicolons in their source codes. So if CREATE PROCEDURE … was called, Firebird /InterBase
assumes that the command has finished when it arrives at the first semi colon.

In order for Firebird/InterBase to correctly interpret and transfer a stored procedure to the database,
it is necessary to temporarily alter the terminating character using the SET TERM statement. The
syntax for this is as follows (Although when using the IBExpert templates this is not necessary, as
IBExpert automatically inserts the SET TERM command):

 SET TERM NEW_TERMINATOR OLD_TERMINATOR

e.g. SET TERM ^;

Following the first SET TERM statement, the terminator is switched and all following semicolons are
no longer interpreted as terminators. The CREATE PROCEDURE statement is then treated as one
statement up until the new terminating character, and parsed and interpreted. The final SET TERM
statement is necessary to change the terminating character back to a semicolon, using the syntax:

 SET TERM OLD_TERMINATOR NEW_TERMINATOR

e.g. SET TERM ;^

The statement must be concluded by the previously defined temporary termination character. This
concluding statement is again interpreted as a statement between the two last termination
characters. Finally the semicolon becomes the termination character for use in further script
commands.

It is irrelevant which character is used to replace the semi colon; however it should be a seldom-
used sign to prevent conflicts e.g. ^, and not * or + (used in mathematical formulae) or ! (this is used
for "not equal": A!=B).

When using the IBExpert Procedure Editor, the procedure templates already include this code, so
there is no need to worry about it. If you open the New Procedure Editor and take a peek at the
DDL page, you will see how much code has already be generated by IBExpert, although you
haven't even started to define your procedure:

82

Writing Stored Procedures & Triggers

 2. Stored procedure
Firebird/InterBase uses stored procedures as the programming environment for integrating active
processes in the database. There are two types of stored procedure: executable and selectable. An
executable procedure returns no more than one set of variables. A select procedure can, using the
SUSPEND keyword, push back variables, one data set at a time. If an EXECUTE PROCEDURE
statement contains a SUSPEND, then SUSPEND has the same effect as EXIT. This usage is legal,
but not recommended, and it is unfortunately an error that even experienced programmers often
make.

The syntax for declaring both types of stored procedure is the same, but there are two ways of
invoking or calling one: either a stored procedure can act like a functional procedure in another
language, in so far as you execute it and it either gives you one answer or no answers:

 execute procedure <procedure_name>

It just goes away and does something. The other is to make a stored procedure a little more like a
table, in so far as you can

 select * from <procedure_name>

and get data rows back as an answer.

 3. Simple procedures
An example of a very simple procedure that behaves like a table, using SUSPEND to provide the
returns:

 CREATE PROCEDURE DUMMY
 RETURNS (TXT CARCHAR(10))
 AS
 BEGIN
 TXT='DOG';
 SUSPEND;
 TXT='CAT';
 SUSPEND;
 TXT='MOUSE';
 SUSPEND;
 END

In this example, the return variable is TXT. The text DOG is entered, and by specifying SUSPEND the
server pushes the result, DOG into the buffer onto a result set stack. When the next data set is
written, it is pushed onto the result pile. Using SUSPEND in a procedure, allows data definition that is
not possible in this form in an SQL. It is an extremely powerful aid, particularly for reporting.

FOR SELECT ... DO ...SUSPEND
 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS

83

IBExpert & Firebird Guide

 BEGIN
 FOR
 select TITLE,ACTOR,PRICE from product
 where actor containing :name
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 SUSPEND;
 END
 END

This procedure is first given a name, SEARCH_ACTOR, then an input parameter is specified, so that
the user can specify which name he wishes to search for. The columns to be returned are TITLE,
ACTOR and PRICE. The procedure then searches in a FOR ... SELECT loop for the relevant
information in the table and returns any data sets meeting the condition in the input parameter.

It is also possible to add conditions; below all films costing more that $30.00 are to be rounded
down to $30.00:

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 BEGIN
 FOR
 SELECT TITLE,ACTOR,PRICE FROM PRODUCT
 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;
 END
 END

A good way of analyzing such procedures is to view them in the IBExpert Stored procedure and
trigger debugger.

To proceed further, the number of returns can be limited, for example, FIRST 10:
 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 BEGIN
 FOR
 SELECT FIRST 10 TITLE,ACTOR,PRICE FROM PRODUCT

84

Writing Stored Procedures & Triggers

 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;
 END
 END

If you declare a variable for the FIRST statement, it needs to be put into brackets when referred to
lower down in the procedure:

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 DECLARE VARIABLE i INTEGER;
 BEGIN
 FOR
 SELECT FIRST (:i) TITLE,ACTOR,PRICE FROM PRODUCT
 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;
 END
 END

 4. FOR EXECUTE ... DO ...
EXECUTE STATEMENT allows statements to be used in procedures, allowing dynamic SQLs to be
executed contained in a string expression. Here, the above example has been adapted accordingly:

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 Declare variable i integer;
 BEGIN
 i=10;
 FOR
 execute statement
 'select first '|| :I ||' TITLE,ACTOR,PRICE from product
 where actor containing '''||name||''''

85

IBExpert & Firebird Guide

 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 if (price>30) then price=30;
 SUSPEND;
 END
 END

It is also possible to define the SQL as a variable:
 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 Declare variable i integer;
 Declare variable SQL varchar(1000);
 BEGIN
 i=10;
 Sql = 'select first '|| :i ||' TITLE,ACTOR,PRICE from product
 where actor containing '''||name||''''
 FOR
 execute statement :sql
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 if (price>30) then price=30;
 SUSPEND;
 END
 END

Theoretically it is possible to store complete SQL statements in the database itself, and they can be
called at any time. It allows an enormous flexibility and a high level of user customization. Using
such dynamic procedures allows you to define your SQL at runtime, making on the fly alterations as
the situation may demand.

Note that not all SQL statements are allowed. Statements that alter the state of the current trans-
action (such as COMMIT and ROLLBACK) are not allowed and will cause a runtime error.

The INTO clause is only meaningful if the SQL statement returns values, such as SELECT, INSERT
... RETURNING or UPDATE ... RETURNING. If the SQL statement is a SELECT statement, it
must be a 'singleton' SELECT, i.e. it must return exactly one row. To work with SELECT statements
that return multiple rows, use the FOR EXECUTE INTO statement.

It is not possible to use parameter markers (?) in the SQL statement, as there is no way to specify
the input actuals. Rather than using parameter markers, dynamically construct the SQL statement,
using the input actuals as part of the construction process.

86

Writing Stored Procedures & Triggers

 5. WHILE ... DO
The WHILE ... DO statement also provides a looping capability. It repeats a statement as long as
a condition holds true. The condition is tested at the start of each loop.

 6. LEAVE and BREAK
LEAVE and BREAK are used to exit a loop. You may want to exit a loop because you've found the
information you were looking for, or you only require, for example, the first 50 results.

By issuing a BREAK, if a specified condition isn't met, the procedure will break out of this loop and
carry on executing past it, i.e. you go out of the layer you're in and proceed to the next one.

LEAVE is new to Firebird 2.0. The LEAVE statement also terminates the flow in a loop, and moves
to the statement following the END statement that completes that loop. It is only available inside of
WHILE, FOR SELECT and FOR EXECUTE statements, otherwise a syntax error is thrown.

The LEAVE <label> syntax allows PSQL loops to be marked with labels and terminated in Java
style. They can be nested and exited back to a certain level using the <label> function. Using the
BREAK statement this is possible using flags.

 CNT = 100;
 L1:
 WHILE (CNT >= 0) DO
 BEGIN
 IF (CNT < 50) THEN
 LEAVE L1; -- exists WHILE loop
 CNT = CNT – l;
 END

The purpose is to stop execution of the current block and unwind back to the specified label. After
that execution resumes at the statement following the terminated loop. Don't forget to specify the
condition carefully, otherwise you could end up with an infinite loop! As soon as you insert your
WHILE loop, specify whatever should cause the loop to finish.

Note that LEAVE without an explicit label means interrupting the current (most inner) loop:
 FOR SELECT ... INTO
 DO
 BEGIN
 IF () THEN
 SUSPEND;
 ELSE
 LEAVE; -- exits current loop
 END

The Firebird 2.0 keyword LEAVE deprecates the existing BREAK, so in new code the use of LEAVE
is preferred.

87

IBExpert & Firebird Guide

 7. EXECUTE statement
To create a simple table statistic, we can create a new procedure, TBLSTATS:

 CREATE PROCEDURE TBLSTATS
 RETURNS (
 table_name VARCHAR(100),
 no_recordsInteger)
 BEGIN
 FOR SELECT r.rdb$relation_name FROM rdb$relations r
 WHERE r.rdb$relation_name NOT CONTAINING '$'
 INTO :table_name
 DO
 BEGIN
 EXECUTE STATEMENT 'select count (*) from '||:table_name
into :no_records;
 END
 SUSPEND;
 END

This TBLSTATS fetches a table and a count, and goes through all tables, pushes the table names
in and counts all data sets in the database, allowing you to see how large your tables are.

 8. Recursions and modularity
If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that involve
repetitive steps. Each invocation of a procedure is referred to as an instance, since each procedure
call is a separate entity that performs as if called from an application, reserving memory and stack
space as required to perform its tasks.

Stored procedures can be nested up to 1,000 levels deep. This limitation helps to prevent infinite
loops that can occur when a recursive procedure provides no absolute terminating condition.
Nested procedure calls may be restricted to fewer than 1,000 levels by memory and stack limita-
tions of the server.

Recursive procedures are often built for tree structure. For example:
 Create procedure spx
 (inp integer)
 returns
 (outp integer)
 as
 declare variable vx integer;
 declare variable vy integer;
 begin
 ...
 execute procedure spx(:vx) returning values :vy;
 ...
 end

The input integer is defined and the variables computed in some way. Then the procedure calls
itself and the returning values are returned to another variable.

88

Writing Stored Procedures & Triggers

A good example of this is a typical employee table in a large hierarchical company, where the table
has a column containing a pointer to the employees' boss. Every employee has a boss, and the
bosses have bosses, who may also have bosses. If you wished to see a list of all bosses for one
individual or the upstream management, then you could create a procedure selecting into and finish
this with a suspend. Then it would go and call the same procedure again, this time with the resulting
boss's ID. The procedure would carry on in this way until it reached the top level management, who
answer to no one (the CEO).

 9. Debugging
Up to Firebird version 2.1, Firebird offered no integrated debugging API at all. The only solution was
to create log tables or external tables to record what the procedure was doing, and try to debug that
way. However, as your triggers and procedures become more complex, an intelligent and sound
debugging tool is vital.

 9.1 Stored procedure and trigger debugger
IBExpert has an integrated Stored Procedure and Trigger Debugger which simulates running a
procedure or trigger on the database server by interpreting the procedure and running the
commands one at a time.

It offers a number of useful functionalities, such as breakpoints, step into, trace or run to cursor,you
can watch certain parameters, analyze the performance and indices used, and you can even
change values on the fly. If you have Delphi experience you will easily find your way around the
Debugger as key strokes etc. are the same.

89

IBExpert & Firebird Guide

The Debugger can be opened from the Stored Procedure or Trigger Editors by clicking the Debug
icon.

Two debug modes are offered: Careful and Fast. In the default debug mode, Careful, a corres-
ponding SELECT statement is composed and executed on the server side. The Fast mode executes
certain statements, such as simple assignments and boolean expressions of IF/WHILE state-
ments, on the client side if possible. The Fast mode should be used for example, if you need to
repeatedly execute a loop, which contains statements that can be calculated on the client side, as
this will greatly reduce total execution time. Select the preferred option using the drop-down list in
the top right-hand corner before starting the debug process.

The upper half of this dialog displays the SQL text. The object name (if applicable) is displayed in
the Windows bar. The lower area displays a number of pages.

The first, Parameters and Variables, lists the parameters in a grid. The circular symbols to the left
of the name indicate whether the parameters are input (I) or output (O). Variables logically have the
key (V). Further information displayed here includes the parameter value, scope and data type. The
Watch boxes can be checked, to specify which variables should be observed.

The variable contents can be viewed in the Value column or by directly by holding the mouse over
the variable name in the code itself.

It is possible to initialize parameters/variables using values of any data grid. Just drag and drop a
cell value from any data grid onto the corresponding node in the parameters/variables list to
initialize the variable with the value of the data cell. It is also possible to initialize multiple
variables/parameters by holding the [Ctrl] key when dropping. In this case IBExpert searches for the
corresponding parameter/variable (by name) for each field in the data record, and if the
parameter/variable is found it will be initialized with the value of the field with the same name.

Universal triggers which use the context variables INSERTING/UPDATING/DELETING can also be
debugged here. The debugger interprets these variables as regular input parameters with a
BOOLEAN data type and they are FALSE by default.

The Watches page displays those parameters and variables that have been checked for particular
observation in the previous window. Following execution, the last internal statement is displayed on
the Statements page,, along with additional information such as execution time.

The Breakpoints page displays the positions where breakpoints have been specified, using the
respective icon in the Debug Procedure toolbar, the [F5] key, or by clicking on the blue points in the
SQL left margin.

When the procedure is executed (using the respective icon or [F9]), it always stops automatically at
these breakpoints. The procedure can thus be executed step by step, either using [F8] (or the
respective toolbar icon) to continue execution step by step (not including the next sublevel), or [F7]
(or the respective toolbar icon) to continue step by step including the next sublevel.

Alternatively, if you have a procedure or trigger containing cursors, you can of course use the Run
to Cursor icon, or [F4], to execute a part of a stored procedure or trigger up to the location of the
cursor in the code editor.

It is also possible to define breakpoints using comments. To define a breakpoint simply write a
special comment line:

 -- IBE_BREAKPOINT

90

Writing Stored Procedures & Triggers

or
 /* IBE_BREAKPOINT */

before the statement where the debug process should be paused.

When debugging a procedure, first take a look at the values of the parameters and then use [F8] to
go through the procedure step by step ([F9] executes fully). After each step, all variable values can
be seen. Don't forget to work with breakpoints [F5].

 10. Optimizing procedures
Procedure operations are planned on Prepare, which means that the index plan is created upon the
first prepare. When working with huge amounts of data, it is critical that you write it and rewrite it,
look at each of the SQLs in it and break it down to ensure that it is optimally set up. A major contrib-
uting factor to the performance and efficiency of procedures are indices.

Also take into consideration the use of operators such as LIKE and CONTAINING, as well as the
use of strings such as , as none of these can use indices. For example, in the demo database, db1,
compare:

 select * from product where actor like 'UMA%'

The server returns all data sets beginning with the name UMA. If you examine the Performance
Analysis:

91

IBExpert & Firebird Guide

you will see that 60 indexed read operations were performed, and the Plan Analysis shows that the
IX_PROD_ACTOR index was used:

If however you need to view all records where the name UMA appears somewhere in the ACTOR
field:

 select * from product where actor like ''

92

Writing Stored Procedures & Triggers

Now the server has had to perform 10,000 non-indexed reads to fetch 95 records, rather more than
the 60 reads for the 60 resulting records in the last example!

So if you can, use STARTING WITH instead of LIKE or CONTAINING. Check each procedure
operation individually and remove bottlenecks, use the debugger and the SP/Triggers/Views
Analyzer, check the index plans, not forgetting to recompute the selectivity of your indices regularly.
Check for indices on columns used in WHERE and JOIN clauses. Use the Plan Analyzer and
Performance Analysis to help you compare and improve your more complex procedures.

Another consideration with extremely complex procedures is to postpone the SUSPEND. If you have
a SUSPEND on every data row on a report that may be returning thousands of rows of calculated
results, it will slow your system. If you wish to have an element of control over it, then put your
SUSPEND every 100 or 1,000 rows. This way the database server fills a buffer and sends the results
back in the specified quantity. It makes it more manageable, and you can stop it at any time should
it congest your system too much.

 11. Complex SELECTs or selectable stored procedures?
Selectable procedures can sometimes offer higher performance than complex selects. For
example:

 CREATE PROCEDURE SPPROD
 RETURNS (TITLE VARCHAR(50),TXT VARCHAR(20))
 AS
 declare variable cid bigint;
 BEGIN
 FOR --outer select
 Select p.title,p.category_id
 from product p
 INTO :TITLE,:cid
 DO
 BEGIN
 select c.txt from category c
 where c.id=:cid into :txt; --inner select
 SUSPEND;
 END
 END

This simple example is mimicking a join. You have a procedure here which is going to return a title
and some text. First it goes through all the products, selecting the relevant titles. This outer select is
however only providing one of the output fields. So another select is nested within the procedure,
providing the information for the second output field, cid.

Although some developers feel there's no reason to construct procedures this way, ever so often
you will find that the optimizer really has a problem with a certain join, because it takes too long for
it to work out how to approach the query. Breaking things down like this can actually often provide a
more immediate response.

93

IBExpert & Firebird Guide

 12. Trigger
A trigger on the other hand is a special table- or database-bound procedure that is started automat-
ically. After creating your database and constructing your table structure, you need to get your
triggers sorted. Triggers are extremely powerful - the so-called police force of the database. They
ensure database integrity because you just can't get round them. You, the developer, tell the
system how to invoke them and whether they should react to an INSERT, UPDATE or DELETE. And
once we're there in a table inserting, updating or deleting, it is impossible not to execute them. You
can specify whether your trigger should fire on an INSERT or an UPDATE or a DELETE, or on all
three actions (universal trigger).

Comprehensive details concerning triggers, how to create them, the different types and variables
can be found in the IBExpert online documentation chapter, Trigger.

Don't put all your logic into one trigger, build up layers of them, e.g. one for generating the primary
key, one for logging or replication, one for passing on information of the data manipulation to
another table etc. The order in which such a series of triggers is executed can be important. The
before insert logging trigger needs to know the primary key, so the before insert primary key trigger
needs to be fired first. The firing position is user-defined, beginning with 0.

 13. Using procedures to create and drop triggers
 CREATE EXCEPTION ERRORTXT 'ERROR';
 CREATE PROCEDURE createautoinc
 AS
 declare variable sql varchar(500);
 declare variable tbl varchaR(30);
 BEGIN
 FOR
 select rdb$relation_name from rdb$relations r
 where r.rdb$relation_name not containing '$'
 INTO :TBL
 DO
 BEGIN
 sql='CREATE trigger '||:tbl||'_bi0 for '||:tbl||' '||
 'active before insert position 0 AS '||
 'BEGIN '||
 ' if (new.id is null) then '||
 ' new.id = gen_id(id, 1); '||
 'END';
 execute statement :sql;
 END
 when any do exception errortxt :tbl;
 END

This is a simple procedure which uses all table names (all tables are stored in rdb$relations)
and creates a BEFORE INSERT trigger which adds an autoincrement ID. The following procedure
then drops the trigger:

 CREATE PROCEDURE dropautoinc
 AS

94

Writing Stored Procedures & Triggers

 declare variable sql varchar(500);
 declare variable tbl varchaR(30);
 BEGIN
 FOR
 select rdb$relation_name from rdb$relations r
 where r.rdb$relation_name not containing '$'
 INTO :TBL
 DO
 BEGIN
 sql='DROP trigger '||:tbl||'_bi0;';
 execute statement :sql;
 END
 when any do exception errortxt :tbl;
 END

 14. Using domains in stored procedures
Introduced in Firebird 2.1, this feature finally allows developers to declare local variables and input
and output arguments for stored procedures using domains in lieu of canonical data types. In
earlier Firebird versions it was necessary to write the data type of the domain instead of the domain
name. This meant a time-consuming checking of domain data types, which then had to be written in
the procedure definition. For example:

 create procedure insert_orderline(
 article_name varchar(50),
 price decimal(15,2)
 active smallint
)
 begin
 ...
 end

In Firebird 2.1 you can either type the domain name if you also want any CHECK clauses and
default values to be taken into consideration, or use the TYPE OF keyword if you just want the data
type. The above example would then look something like this:

 create procedure insert_orderline(
 article_name string,
 price currency,
 active bool
)
 begin
 ...
 end

95

SP/Triggers/Views Analyzer

Chapter 13: SP/Triggers/Views
Analyzer

The Stored Procedure/Trigger/Views Analyzer allows you to analyze a selection of actions for all or
a filtered selection of procedures, triggers and views in a database, providing information by
statement, displaying plans and indices used, issuing compatibility warnings and compiler warnings
for all objects analyzed. For example, certain indices perhaps may not be used by the database
server as the statistics are too high; this can be solved simply by using the IBExpert Database
menu item, Recompute selectivity of all indices, to update the selectivity. Or when backing up an
older InterBase version and restoring to a new Firebird/InterBase version, the procedures and
triggers appear not to work; here it is often necessary to first Recompile all stored procedures and
triggers (also found in the IBExpert Database menu).

The database to be analyzed can be selected from the drop-down list of all connected databases
(the first toolbar item). By clicking on the Start Analyzing icon, it loads all stored procedures and
triggers for the active database. They are all automatically analyzed, i.e. each procedure/trigger is
split up into its individual statements (the first SQL row is displayed in the Statement column; the full
code is displayed in the lower Statement window). All statements with any sort of problems (no
index, compiler warning etc.) are highlighted, and need looking at more closely.

The indices used for each operation are displayed in the right-hand Expected Plan column; details
are displayed in a tree form in the lower Expected Plan window. Possible compatibility problems are
indicated in the Compatibility column with details in the Compatibility of Types window below. The
last column displays compiler warnings, again with details in the lower window.

97

IBExpert & Firebird Guide

The user can specify exactly what should be analyzed by deactivating or activating the toolbar
icons (SP/Triggers/Views Analyzer toolbar):

S All SELECT statements are selected, analyzed and displayed
U All UPDATE statements are selected, analyzed and displayed.
I All INSERT statements are selected, analyzed and displayed.
D All DELETE statements are selected, analyzed and displayed.
P Analysis of plans and indices.

TC Analysis of the compatibility of types of return values and variables
for SELECT...INTO and OR SELECT...INTO statements.

CW Displays all compiler warnings.
PK Checks primary keys.

The analysis results can be filtered by the criteria listed in the drop-down Filter by list and supple-
mented by the user-specified filter string to the right, to search for specific objects, operations or
problems. This filter can even be inverted (check box option on the right).

As with all IBExpert grids the contents can be sorted by clicking on the desired column header (e.g.
sort according to Name, Table/View, statement etc.). By clicking on the left-hand column header
(the unnamed column to the left of the SP/Trigger column), the red highlighted objects (i.e. those
with any sorts of problem that need looking at more closely) are grouped together.

The Procedure, Trigger, Table or View editors can be quickly started by double-clicking on a
selected field, allowing the user for example, to quickly and easily insert an index.

Column headers can also be dragged to the gray area below the toolbar, to group by the column
selected:

The above illustration displays all stored procedures and triggers grouped by the procedure or
trigger name. By clicking '+' or '-', or double-clicking on the list name, the individual operations can
be easily blended in or out. It is also possible to group by more than one criteria.

98

SP/Triggers/Views Analyzer

The lower window displays the SQL text for a selected operation on the Statement page. The state-
ments can easily be copied and inserted into a text editor or the IBExpert SQL Editor, using the
context-sensitive right-click menu.

99

Writing Exceptions

Chapter 14: Writing Exceptions

Care should be taken when writing exceptions; when you are dealing with hundreds of thousands
of data sets, you need to source your problem quickly. For example, a message such as this:

could well occur after a database has been up and successfully running for years.

To detect such errors on a customer database where a lot of stored procedures with several
hundred steps have been written, and which may run several hundred thousand times before the
error occurs, is of course difficult.

This particular error message occurred because a data set was altered in the Firebird sample
EMPLOYEE table; the first record, Robert Nelson, was amended to Robert Joseph Nelson-
Katzenberger. This in itself is not an error, as the fields FIRST_NAME and LAST_NAME have
been specified as varchar(15) and varchar(20) respectively.

The problem arises when the stored procedure, ORG_CHART, is executed. If we take a look at the
IBExpert Tools menu item, SP/Triggers/Views Analyzer, we can see where the problem lies:

The stored procedure's output parameter, MNGR_NAME has been defined as varchar(20);
however the FULL_NAME from the EMPLOYEE table is specified at varchar(37). So, any
FIRST_NAME_LAST_NAME combination containing a total of more than 20 characters, will fire an
exception.

You can then go on to use the stored procedure debugger to trace the data set that has caused the
problem. This process can however be very time-consuming when you have hundreds of
thousands of data sets.

101

IBExpert & Firebird Guide

In Firebird it is possible to do the following: write an exception which will give you more information
when this error occurs. Create a new exception, name it, add the exception message to your
procedure, which should appear when the error occurs, e.g. when any do exception
unknown_error;. And a really useful feature since Firebird 1.5: you can change the text on the fly
(i.e. in the procedure itself).It is even possible to combine the message with, for example, the
department number:

This is much more useful for the error finding process, as you have already narrowed down the
error to a specific department number. This is possible in every stored procedure that you use. The
more obvious solution would be, in this case, to alter the return parameter, MNGR_NAME from
char(20) to, for example, char(40).

So, when writing stored procedures, incorporate exception messages that indicate the source of
the problem. Use the on-the-fly possibility to define detailed exception messages in your
procedures.

102

Logging

Chapter 15: Logging

Databases are full of information. Sometimes it is helpful to log certain aspects of the information
manipulation (selects, inserts, update, deletes), to gain an insight what is really happening in a
database.

The IBExpert Log Manager can be started from the IBExpert Tools menu.

Simply select the database to be logged from the drop-down list of registered databases. When
initially opened, the Log Actions page displays check options for logging INSERT, UPDATE and
DELETE actions,

below which the selected table's fields and field data types are displayed. A log script can be
generated for several tables simultaneously by selecting the required tables using the [Ctrl + Shift]
keys. The logging options, for example which INSERT, UPDATE and DELETE actions on which
tables, can be checked individually or alternatively, the Log Manager drop-down menu can be used
to either Prepare All Tables or to Unprepare All Tables. Take into consideration however, that when
all actions on all tables are to be logged, this could slow the database performance somewhat.

All tables which are to be logged must be prepared for logging and committed, before any transac-
tions can be logged. When new tables are added to a database, the log needs to be updated
(simply select the transaction types which should be logged by double-clicking on the check boxes
and compile).

Once the actions have been selected, the Log Actions page displays the SQL code, which can be
copied to clipboard, if wished, using the right-click SQL Editor menu. The data logging triggers
templates can be altered as wished using the IBExpert Options menu item, General Templates
(Data Logging Triggers).

103

IBExpert & Firebird Guide

On the Log Data page the following can be user-specified: Start Date, End Date (both with
timestamp), individual or all users, and individual or all actions. The specified log can also be
logged to file if wished, by clicking on the Log to Script button, which opens a new window, where
the Script File Name can be specified, and on the Options page, how often a COMMIT-command
should be inserted. Finally the Script Details page enables the user to write his own Start of Script
and End of Script.

The Options page allows the user to specify the following options:
• Immediately compile after Prepare or Unprepare
• Autogrant privileges when compiling (generally this should be activated).

After compiling and committing, all the specified actions will now be logged:

When using the Log Manager for the first time, it is necessary to confirm the creation of a number of
IBExpert system tables.

This log file can even be used as a sort of replication. This is because, as opposed to the logging
specified in the Database Registration which only logs all IBExpert actions, the Log Manager logs
all actions and operations on the database itself, including those of all users.

 1. Understanding the log file
Take the time to look at your logs and search for patterns emerging over a period of time, as the
source of many problems often go back quite a long time (eg. page corruptions are not always
immediately noticeable). There are a few typical unimportant entries, such as

 INET/inet_error: connect errno = 10061

or the Guardian restarting and of course, a routine shutdown.

There are however, a few important entries which you should take note of, should they appear in
your log.

104

Logging

Terminated abnormally: an indication that someone has shut down your Firebird server by pulling
the plug.

Modifying procedure xxx which is currently in use by active user requests: this occurs fairly
often with Firebird 2. It's not critical if you modify a procedure whilst others are using it. The problem
arises due to the multi-generational architecture - when others are working with the procedure, you
can only see the results of the old procedure.

Page xxx is an orphan: if this message starts to occur regularly, perform a backup and restore.

Page xxx wrong type: unfortunately this one's pretty terminal, because it's a clear indication that
the database is corrupt. It is important to determine which pages are affected, because they may
not be in use any more, or only store old record versions. In this case the problem will be solved by
the next database sweep. On the other hand, if you're unlucky the next database sweep will turn it
into a real problem!

There are a number of articles concerning database problems and repair at the IBExpert online
documentation site.

105

Database Backup & Restore

Chapter 16: Database Backup &
Restore

 1. Why is a database backup and restore important?
Performing regular backups protects from hardware failures and data corruption, which cannot be
fixed by the Firebird/InterBase maintenance tools. It is important to use the Firebird/InterBase
backup and restore facilities even though most networks include a facility for data backup and
restore across the network, because operating system backups require exclusive access to the
database. The Firebird/InterBase backup runs parallel with concurrent database accesses by other
users. Firebird/InterBase uses its multigenerational architecture to take a snapshot of the database
at a moment in time for the backup. All information generated by committed transactions and
present at this moment is backed up. Also all files in a multifile database are backed up.
Firebird/InterBase comprehends the links between the different database files and shadows.

The operating system backup processes files one after the other and saves them to the specified
file or medium, so that all the various files are backed up in different versions and they cannot work
together correctly anymore when restored. The Firebird/InterBase backup backs up all database
files automatically. The different versions of Firebird/InterBase use different database file formats,
so that it is impossible to copy a file directly from one operating system environment to the required
format of another operating system environment. The Firebird/InterBase backup utility allows a
transportable backup format, so that this file can be restored on any desired Firebird/InterBase
platform. Note that when backing up and restoring, for example, from InterBase 4 to Firebird 1.5,
stored procedures are restored as blobs, so that they may not initially work.

The Firebird/InterBase backup discards outdated data sets and index files, resulting in a smaller
backup (please refer to garbage collection for more information). Empty pages are also automat-
ically removed during a backup and restore, which reduces the total database size. The transaction
number in the TIP is reset to zero (the total number of transactions that can be recorded in a TIP is
approximately 1.3 billion!). The cache works with considerably more efficiency following a backup
and restore as the pages are reordered. Note that since Firebird 1.5 the memory manager allows
new data sets to automatically be stored in old pages, without first having to backup and restore.

During a Firebird/InterBase backup the integrity and references for all database objects, e.g.
domains, tables, indices, views, triggers, stored procedures, generators, exceptions, and permis-
sions, are checked.

Executing a backup and restore is the only way to subsequently alter fundamental parameters in
the database structure, such as the page size and distribution across secondary files. It is therefore
recommended to not only backup but also restore the database regularly (e.g. once a month).

IBExpert offers two methods for backing up and restoring databases: IBExpert Services menu
items, Backup Database and Restore Database, as well as the IBExpertBackupRestore service for
automating regular backups. Alternatively the Firebird command-line tool, GBAK can also be used.
Please note that if you run the GBAK restore in verbose mode, it can take an awful long time.

107

IBExpert & Firebird Guide

 2. Backup Database
The IBExpert Services menu item Backup Database allows you to create a backup or copy of the
database, saving it to file. This database copy may be kept simply for security reasons, or restored
for the reasons detailed above.

A database backup may be performed without having to disconnect the database; users may
continue their work as Firebird/InterBase uses its multigenerational architecture to take a snapshot
of the database at a moment in time the backup is requested. All information generated by
committed transactions and present at this moment, is backed up.

First select the database to be backed up from the drop-down list of registered databases. Then
select either an existing backup file name, or add a new backup file using the Insert File icon (or
[Ins] key).

The [...] button to the right of this row allows you to find an existing file or specify the drive, path and
backup file name for a new file. Please note that IBExpert will only create a file name on the server,
and not locally (as with GBAK), because IBExpert uses the Services API. A local backup can only be
performed using GBAK. The suffixes .GBK and .FBK are traditionally respectively used for
InterBase and Firebird backup files. A file size only needs to be specified when working with
secondary files. All files in a multifile database are backed up (i.e. both secondary files and shadow
files). Firebird/InterBase understands the links that exist with secondary database files and with
shadows. Whereas the operating system backup works on a file-by-file basis, Firebird/InterBase
always backs up all files in a database.

 2.1 Backup Options
• Ignore check sum: If this option is checked, check sum errors in the database header pages,

where the database connection properties are stored, are ignored in the backup. As InterBase
and Firebird normally abort the backup when check sum errors are discovered, this is a way
to force a backup when there are problems. Note that UNIX versions do not use check sums.

• Ignore transactions in Limbo: If this option is checked, transactions in limbo, i.e. transac-
tions that can't be defined as executed or aborted, are ignored in the backup. Only those most
recent, committed transactions are backed up. It allows a database to be backed up before
recovering corrupted transactions. Generally in limbo transactions should be recovered
before a backup is performed.

• Backup Metadata only: If this option is checked, only the database's definition (i.e. the
metadata, which provides an empty copy of the database) is saved. (If a database copy with
certain data content is required, then use the IBExpert Script Executive.)

• Garbage collection: If this option is checked, garbage collection is executed during the
backup. By disabling this option, the backup can be speeded up considerably. (Refer to
Garbage collection below for further information.)

• Old metadata description: If this option is checked, old metadata descriptions are included
into the backup database. This is included for compatibility reasons for older InterBase
versions.

• Convert to Tables: This option converts the database data to tables in the backup. This
concerns external files. It is possible in Firebird/InterBase to create a table as an external file -
this option converts them to internal database tables.

108

Database Backup & Restore

• Format: Select the data format for the backup database file. Transportable is the recom-
mended default option, as it allows a restore into different Firebird/InterBase versions if
wished, i.e. it saves the data and metadata to a generic format, as opposed to the option
Non-Transportable. (Please note that when backing up and restoring, for example, from
InterBase 4 to Firebird 1.5, stored procedures are restored as blobs, so that they may not
initially work.)

• Verbose: This provides a detailed protocol of the current database backup process by writing
step-by-step status information to the output log.

Select the option On Screen or Into File for the log (not forgetting to select or specify a file name for
this protocol) before starting the backup. This option is useful if the backup is failing and the reason
needs to be analyzed.

Then start the backup. If the protocol option On Screen was selected, the backup is logged on the
Output page.

Using the IBExpert menu item Database / Database Registration Info, default backup file names,
paths and drives may be specified if wished, along with default backup and restore options. This
information may be specified when initially registering a database in IBExpert.

In normal circumstances, the backup should run smoothly without any of the above options having
to be checked. If however, corrupt or damaged data is suspected or problems have been
encountered, alter the Format to Non-Transportable and check the options Ignore Check Sum and
Ignore Transactions in Limbo. Although this will not provide the usual database compression, it
does provide a complete copy of the database, which is important before starting to repair it.

It is also possible to validate the database using Services / Database Validation or GFIX, before
retrying.

To automate the backup/restore process for your databases, use the HK-Software Service Center's
IBExpertBackupRestore.

109

IBExpert & Firebird Guide

 2.2 Garbage collection
Garbage collection is the ongoing cleaning of the database and is performed in the background
around the clock. This constantly reorganizes the memory space used by the database. If you don't
clean up, database performance will slowly but surely degrade. Garbage collection works for both
data pages and index pages (if you have created 100,000 new data sets and deleted another
100,000 data sets, an index won't help much, if the 100,000 deleted pages are still there and being
searched through.

The Firebird garbage collector does not require administrative commands or manual maintenance
as certain other database environments do. Whether the garbage collector works efficiently or not
depends on how the application works. This is illustrated in more detail in Chapter 27: Database
Statistics.

 3. Restore Database
The IBExpert Services menu item Restore Database allows you to restore the database from a
backed up file. A database restore is required in the following situations:
• Following approximately 1.3 billion transactions in order to reset the transaction space.
• Following 255 metadata changes on a single table; otherwise no further metadata changes

are possible. Please refer to Chapter 6: 253 changes of table left for details.
• When changing the Firebird version you need to backup the old version and restore to the

new version number.
• When you need to alter the database page size.
• A sweep is also automatically performed during a backup, so long as it has not been disabled.

Empty pages are automatically removed during a backup and restore, which reduces the total
database size.

The transaction number in the TIP is reset to zero. The cache works with considerably more
efficiency following a backup and restore as the pages are reordered. It is therefore recommended
not only to backup but also to restore the database regularly (e.g. once a month).

Before restoring a backup file into a database, it is important to first disconnect the database!
Otherwise you could end up with a corrupt database should users try to log in and perform data
operations during the restore.

The IBExpert Restore Database dialog requests specification of whether the restored database
should overwrite an existing database, or whether a new database should be created. Then the
backed up file needs to be selected. The following restore options may be checked/unchecked as
wished:
• Deactivate indexes: If this option is checked, database indices are deactivated while

restoring. This option is used to improve restore performance. If this option is not checked,
Firebird/InterBase updates indices after all tables have been populated with the restored rows.
This option may also be necessary if the database contains data with a unique index, but
there are values in the table that are not actually unique. It can also be used when the field
length in one or more tables is to be altered retrospectively; or when an index is simply not
working due to some undiscovered inconsistencies.

110

Database Backup & Restore

• Don't recreate shadow files: If this option is checked, shadow files are not recreated while
restoring.

• Don't enforce validity conditions: When this option is checked, database validity conditions
such as constraints on fields or tables are not restored. This option is useful if the validity
constraints were changed after data had already been entered into the database. When a
database is restored, Firebird/InterBase compares each row with the metadata; an error
message is received if incompatible data is found. Once the offending data has been
corrected, the constraints can be added back.

• Commit after each table: If this option is checked, work is committed after restoring each
table. This allows all those tables to be restored and committed where there is no corrupted
data. It restores metadata and data for each table in turn as a single transaction and then
commits the transaction. This option is useful if corrupt data is suspected in the backup file, or
if the backup is not running to completion. Normally, Firebird/InterBase restores all metadata
and then restores the data. Should you encounter problems when restoring your database,
deactivate this option and retry.

• Replace existing database: If this option is checked the restored database replaces the
existing one. Leaving this option unchecked provides a measure of protection from
accidentally overwriting a database file.

• Use all space: This option should be checked when restoring the database onto a CD, as all
(i.e. 100%) space is then used, as opposed to the usual 80% for databases which are subject
to alterations and stored on hard drives.

• Metadata only: This option produces an empty copy of the database. It may also be used to
restore the framework of a corrupt database, to allow analysis and repair work.

• Page size: Database page size in bytes. This is the only option allowing the page size for an
existing database to be altered.

• Client Library File: This is an added possibility to specify a client library which will be used
while restoring. This option allows the user to specify whether he requires the InterBase or the
Firebird client library for each IBExpert connection. The default client library is that specified in
the IBExpert Options menu item, Environment Options.

• Verbose: Check Verbose to receive a detailed protocol of the current database backup
process, by writing step-by-step status information to the output log. The options On Screen
or Into File (not forgetting to select or specify a file name for this protocol) need to be specified
before starting the backup. This option is useful if the restore is failing, and the reason needs
to be analyzed.

The restore can then be started. If the protocol option On Screen was selected, the backup is
logged on the Output page.

Under normal circumstances, none of the above restore options should need to be specified. If
inconsistencies between the metadata and the data itself are suspected, check the Commit After
Each Table, Deactivate Indexes, and Don't Enforce Validity Conditions options.

You will be asked to log in before the restore can start:

111

IBExpert & Firebird Guide

Please note that Firebird/InterBase does not backup indices. It only backs up the index definition.
When the database is restored Firebird/InterBase uses this definition to regenerate the indices.

Using the Database Registration Info menu item, Backup/Restore, default backup file names, paths
and drives may be specified if wished, along with default backup and restore options. This inform-
ation may be specified when initially registering a database in IBExpert.

 3.1 Working with shadows
A shadow is a physical copy of the database file. When you need more than the typical level of
security, it is possible to add a second hard disk on your machine and make a shadow copy of your
database. When you have all data on one computer and it breaks down, you need rapid access to
the data. Therefore you should typically create a shadow file on an external USB hard disk. Simply
specify on this hard disk:

 create shadow 1 'C:\db1.shd'

It is possible to create a shadow during runtime. You don't just have to create one shadow, you can
create ten if you like, although it is not necessarily a good idea because each writing process must
then be done eleven times and not just two!

After committing, the whole database file is copied to the shadow. This is also the fastest way to
create a simple database copy on a USB disk, as an alternative to a a backup and restore which
takes some time, especially the restore, because in the restore process, the indices are rewritten.
You then simply need to use GFIX to activate it to turn it into an active database when needed. The
CREATE SHADOW command makes a physical copy of the database pages from the original file to
the shadow file, without thinking about what is written inside.

When viewing a file monitor filtered for operations on the db1 database, there are a number of
operations on both the database file (.fdb) and the shadow file (.shd):

112

Database Backup & Restore

In a production environment, when a select is performed for example, all the read statements are
done on the fdb file, the shadow file is only used for writing. In spite of this it is still recommend you
use a very fast external hard drive for an active shadow, as you may notice a drop in performance
with the double amount of write operations now being made to both databases.

If you encounter the problem that the shadow file is now the only file that you have, because your
main computer has broken down, to turn the shadow file into a valid database, you need to use the
Firebird/InterBase tool, gfix. On the command line type:

 C:\> gfix localhost/3021:C:\db1.shd –activate

and that's all you need to enter to get a valid database!

So for example, you need a copy of your main database which is 5 GB large; you just create a
shadow on a USB hard disk, commit the shadow, and after everything is committed, pull it out.
Forced Writes handles both databases in the same way. When something is written in the TIP, it is
written in both files. When it is written on a page at the end of the file, it is written at the end of both
files. So you always have the possibility to make a high speed backup of your database, and you
can activate this backup with a simple batch command to turn it into a valid database.

In a shadow you have the same problems as in your main database. For example, when you have
deleted all the records in your main database and you have already committed it, you will have the
same problem in your shadow, because it is a physical copy of your main database file, nothing
else. So if you need an "undo" of your transactions, you need another concept, for example, a
transaction log.

113

IBExpert & Firebird Guide

If the shadow is no longer available, the main database ignores the shadow (default setting). This
is, for example, the reason why you can put a shadow on the USB hard disk, and directly remove it.
The database server with the typical settings does not need to stop its work when the shadow is no
longer available. In order to reactivate the shadow you will need to specify the CREATE SHADOW
command again. For security reasons it is possible to specify that no new transactions can be
started when the shadow is no longer available. However this option is seldom used, because the
moment one of the hard disks stops working, no one can work at all. These options can be
specified in the CREATE SHADOW statement.

 4. Automating the database backup and restore
It is possible to automate the database backup in a batch file in the Windows Scheduled Tasks.
Although a great tool for automating your backups and restores is the IBExpert Server Tool,
IBExpertBackupRestore. IBExpertBackupRestore is a comprehensive utility, providing automatic
backup and restore facilities for Firebird and InterBase databases with backup file compression
even an option to automatically mail backup/restore log files.

 4.1 Service description
Using IBExpertBackupRestore it is possible to set up automatic backups for any number of
databases, with separate backup, restore, schedule and log mailing parameters for each database.
The service is controlled by the HK-Software Services Control Center (SCC) utility, which can be
found in the IBExpert Services menu.

Here you can see the HK-Software SCC with the IBExpertBackupRestore configuration loaded. In
the HK Services list tree view you can actually see the service item with one task below it. Each
task is a database backup/restore schedule configuration.

114

Reporting

Chapter 17: Reporting

The integrated IBExpert Report Manager, found in the IBExpert Tools menu, can be used to create
automated reports.

With a right click on the alias name in the Report Manager you can create a new report inside your
database. When starting the Report Manager for the first time, you will be asked to confirm creation
of two IBExpert system tables. Following confirmation, you will see the Report Manager desktop:

In this example we have simply added two text areas with different font settings and a variable
inside the text. Variables are always enclosed in []. Later we have also added an image on the
upper right with the company logo.

When you save the report and close the Report Designer and then double-click the report in the
Report Explorer, you will see a preview, but since the variables are not set, there is no text where
the variables were used. These variables can be set in an IBEBlock script using the IBExpert SQL
Editor, which can also create the report and export it to different formats.

 EXECUTE ibeblock
 execute ibeblock
 as
 begin
 CRLF = ibec_CRLF();

 SELECT IBE$REPORT_SOURCE FROM ibe$reports
 where ibe$report_id = 1
 into :RepSrc;

 Params['email'] = 'hklemt@h-k.de';
 Report = ibec_CreateReport(RepSrc, Params, null);

115

IBExpert & Firebird Guide

 Res = ibec_ExportReport(Report, 'c:\r.html', __erHTML, 'Export-
Pictures=FALSE;');
 Res = ibec_ExportReport(Report, 'c:\r.pdf', __erPDF, 'Export-
Pictures=TRUE;');
 sMessage = '';
 sMessage=ibec_LoadFromFile('c:\r.html');
 ibec_smtp_SendMail('smtp.1und1.de',
 '25',
 'comm@ibexpert.biz',
 'pwd',
 '"IBExpert KG" <comm@ibexpert.biz>',
 'hklemt@h-k.de',
 '',
 '',
 'Test',
 :sMessage,
 'c:\r.pdf',
 '',
 'encoding="UTF-8";ContentType=text/html;
Priority=Highest','');
 end

The report is saved in the database in the IBE$Reports table. Using a SELECT, it is copied to a
variable RepSrc. All parameters used in the report can be set in a Params array and transferred as
the reference to the function ibec_CreateReport.

 1. ibec_CreateReport
ibec_CreateReport prepares a report from a specified source (FastReport) and returns
prepared report data.

This feature can be used for executing reports created with the IBExpert Report Manager in
command-line mode, for example with batch files. The monthly sales report, invoices or other such
reports can be designed in the Report Manager and executed with simple SQL statements. The
result can then be saved in the database as a pdf file or other formats and sent by e-mail, exporting
using ibec_ExportReport.

Syntax
function ibec_CreateReport(ReportSource : string; Params : array of
variant; Options : string) : variant;

Example
 execute ibeblock
 as
 begin
 Params['HeaderMemo'] = '';
 Params['MEMO2'] = 2;

 select ibe$report_source from ibe$reports
 where ibe$report_id = 4

116

Reporting

 into :RepSrc;

 Report = ibec_CreateReport(RepSrc, Params, null);
 ibec_SaveToFile('D:\reptest.fp3', Report, 0);
 end

 2. ibec_ExportReport
The ibec_ExportReport function is called twice using different formats.

Description

ibec_ExportReport exports report, created with the IBExpert Report Manager and prepared
using the ibec_CreateReport function, into a specified format.

Syntax
 function ibec_ExportReport(PreparedReport : variant; FileName :
string; ExportType : integer; Options : string) : boolean;

The following export types are supported as value of the ExportType parameter:
 __erPDF (= 0)
 __erTXT (= 1)
 __erCSV (= 2)
 __erHTML (= 3)
 __erXLS (= 4)
 __erXML_XLS (= 5)
 __erRTF (= 6)
 __erBMP (= 7)
 __erJPEG (= 8)
 __erTIFF (= 9)
 __erGIF (= 10)

Options

The following additional export options are supported:
Background=
TRUE|FALSE

Export of graphic image assigned to a page into result file. It considerably
increases output file size. Applicable for PDF, HTML, XLS, XML export types.
Default value is FALSE.

Compressed=
TRUE|FALSE

Output file compressing. It reduces file size but increases export time.
Applicable for PDF export. Default value is TRUE.

EmbeddedFonts=
TRUE|FALSE

Applicable for PDF export type. All fonts used in report will be contained in the
PDF output file for correct file displaying on computers where these fonts may
be absent. Output file size increases considerably. Default value is FALSE.

PrintOp-
timized=TRUE|
FALSE

Applicable for PDF export type. Output of graphic images in high resolution for
further correct printing. This option enabling is necessary only when the
document contains graphics and its printing is necessary. It considerably
increases output file size. Default value is FALSE.

EmptyLines=
TRUE|FALSE

Export of empty lines, applicable for TXT export. Default value is FALSE.

117

IBExpert & Firebird Guide

Frames=TRUE|
FALSE

Export of text objects frames, applicable for TXT export. Default value is
FALSE.

OEMCodePage=
TRUE|FALSE

Resulting file OEM coding selecting. Applicable for TXT and CSV exports.
Default value is FALSE.

PageBreaks=
TRUE|FALSE

Export of page breaks to resulting file. Applicable for TXT export type. Default
value is TRUE.

Separator=
<string>

Values separator. Default value is semicolon (;). To avoid incorrect parsing of
the options string double quote a separator value: Separator=","

ExportStyles=
TRUE|FALSE

Transferring of text objects design styles. Disabling increases exporting but
worsens document appearance.
Applicable for HTML, XLS and XML documents. Default value is TRUE.

ExportPic-
tures=TRUE|
FALSE

Includes graphic images exporting possibility. Applicable for HTML, XLS and
RTF documents. Default value is TRUE.

Navigator=TRUE
|FALSE

Includes special navigator for fast navigation between pages. Applicable for
HTML pages. Default value is FALSE.

Multipage=TRUE
|FALSE

Every page of the report will be written to a separate file. Applicable for HTML
documents. Default value is FALSE.

AsText=TRUE|
FALSE

Applicable for XLS export type. All objects are transferred into table/diagram
as text ones. This option may be useful when transferring numeric fields with
complicated formatting. Default value is FALSE.

MergeCells=
TRUE|FALSE

Applicable for XLS export type. Cells integration in resulting table/diagram for
achieving maximum correspondence to the original. Disabling increases
exporting but reduces document appearance. Default value is TRUE.

Wysiwyg=TRUE|
FALSE

Full compliance to report appearance. Applicable for XML, XLS and RTF
documents.

CropImages=TRU
E|FALSE

After exporting blank area cropping will be performed along edges. Applicable
for BMP, JPEG, TIFF and GIF export types. Default value is FALSE.

Monochrome=
TRUE|FALSE

Monochrome picture creating. Applicable for BMP, JPEG, TIFF and GIF
export types. Default value is FALSE.

JPEGQuality=
<integer>

JPEG file compression ratio. Applicable for JPEG files. Default value is 90.

Quality=
<integer>

Same as JPEG quality.

Example
 execute ibeblock
 as
 begin
 Params['HeaderMemo'] = '';
 Params['MEMO2'] = 2;

118

Reporting

 SELECT IBE$REPORT_SOURCE FROM ibe$reports
 where ibe$report_id = 4
 into :RepSrc;

 Report = ibec_CreateReport(RepSrc, Params, null);
 ibec_SaveToFile('D:\reptest.fp3', Report, 0);
 Res = ibec_ExportReport(Report, 'D:\reptest.pdf',
__erPDF, 'EmbeddedFonts=TRUE');
 Res = ibec_ExportReport(Report, 'D:\reptest.jpg', __erJPEG,
'CropImages; Quality=90');
 end

After this is done, the HTML version is loaded from file into a variable and a new e-mail is sent
using the ibec_smtp_SendMail function, where the PDF file is added as an attachment.

 3. Job Automation with the IBExpertJobScheduler
IBExpertJobScheduler is one of the modules in the HK-Software Services Control Center found in
the IBExpert Services menu. Use it to schedule regular jobs to run automatically, for example, if you
wish a certain IBEBlock to be executed on a daily basis or every two hours. Specify mail notification
of successful completion or only if an error has occurred.

119

Data Analysis

Chapter 18: Data Analysis

The IBExpert Tools menu item, Data Analysis, is an ideal OLAP and data warehouse component
for quickly and easily analyzing data in the database. This sophisticated module can be used to
build cubes, manage dimensions and measures, the technology being based on the building of
multidimensional data sets - so-called OLAP cubes. It includes a powerful filtering system, enabling
not only dimensions but also measures to be filtered. In fact, IBExpert's Data Analysis offers
innumerable possibilities to define reports quickly and easily, or to simply collate the data material.

The PivotCubeForm can be opened using the IBExpert Tools menu, or started directly from the
SQL Editor / Results page, the Table Editor / Data page or the View Editor / Data page, using the
Data Analysis icon.

The functionalities and options available in the Pivot Cube will be illustrated using the following
SELECT command, executed in the SQL Editor:

select distinct
 orderline.orderdate,
 orders.totalamount,
 category.txt,
 orders.netamount
from orders
 inner join orderline on (orders.id = orderline.orders_id)
 inner join product on (orderline.product_id = product.id)
 inner join category on (product.category_id = category.id)

By clicking the Data Analysis icon on the SQL Editor / Results page, the PivotCubeForm is opened.

 1. Cube Structure
The first page has three main areas:
• All Fields: This automatically displays all data set fields displayed on the SQL Editor's

Results page.
• Dimensions: what is to be analyzed and displayed. The field order is at this stage irrelevant.
• Measures: which values are to be analyzed and displayed. IBExpert Data Analysis permits

use of any data types as measures; the only restriction being that non-numeric data types can
only use the ctCount aggregate type.

As with all IBExpert grids, columns can be sorted in ascending and descending order by simply
clicking on the column headers.

Fields can be selected from the All Fields panel and dragged 'n' dropped into the Dimensions
panel. For example, ORDERDATE, TXT and NETAMOUNT, the ORDER_DATE also being grouped by
month. The Alias names and Display Names can be manually altered as wished, and the Forecast
Method and Wrap To periods can be selected from the drop-down lists. Multiple field
selection/deselection is also possible.

121

IBExpert & Firebird Guide

The NETAMOUNT field can be dragged 'n' dropped from the All Fields panel into the Measures area.
Select Calculation Type from the options offered in the drop-down list; the numeric Format can be
manually altered if desired.

And then the cube can be generated using the Build Cube icon or [F9] and displayed on the Cube
Page.

 2. Cube
The second page in the PivotCubeForm displays the cube itself in the third of four areas, so-called
toolbars:

• Dimensions
• Columns
• Main display area
• Measures - the order of the items here determines how the data is displayed in

the pivot grid.
These areas can all be opened or closed by clicking on the small square buttons in the upper left-
hand corner of each area (see rectangular marked symbols in the illustration below). The arrow
buttons can be used to adjust the size of the expanded areas, and display/hide the filter, which
allows values to be searched and viewed for individual data sets.

The toggle toolbars on/off icon (see circled icon below) can be used to remove these areas
completely leaving just the main blue display area, or blending them in again.

It is now possible to generate a summary, for example, which film categories have generated which
revenues.

The data can be displayed graphically by clicking on the graphics icon to the left of the Measures
(here: Order date (monthly) or Category):

122

Data Analysis

The Graphics window has its own mini toolbar, allowing the graph type to be altered, the legend
and notes to be blended in or out, and the graph to be printed. There are numerous options to add
functional values and formulae. Refer to Data Analysis Cube Manager and Data Analysis Calcu-
lated Measures Manager below for further information.

The generated data and analyses can be saved as *.CUB files, or exported to Excel (OLE), HTML
or metafile. Simply click the small black arrow directly to the right of the Export icon, and select from
the list.

 3. Data Analysis Cube Manager
The Cube Manager can be opened using the PivotCubeForm icon, or by clicking the Sum button in
the bottom left hand corner of the Measures toolbar on the Cube page. This can be used to include
certain alternative additional values. For example, alter the view to percentage column values:

123

IBExpert & Firebird Guide

Click the Apply icon to view the results:

Depending on what you wish to see, it is possible to specify an ascending or descending order by
simply clicking on the column headers.

 4. Data Analysis Calculated Measures Manager
It is possible to integrate certain function values by clicking on the Function button in the bottom left
hand corner of the Measures toolbar on the Cube page, to open the Calculated Measures Manager.

124

Data Analysis

New measures can be added and edited or existing measures deleted.

A new measure name can be added by clicking the Add New Measure button and inserting a name.
A template automatically appears in the Calculation Formula input area. This can be completed
manually, the Available Measures (bottom left-hand list) and Available Views (bottom right-hand list)
can be inserted simply by double-clicking on the measure name, or clicking the [upward arrow +]
button to the right of the Available Measures or Available Views headings.

When all specifications have been made satisfactorily, click the Confirmation (green tick) button.
You will now see both the original evaluation and the new calculated measure name displayed in
the status bar. By clicking the black arrow to the right of these names, the Cube Manager is
automatically opened, displaying the specifications made for the selected measure.

Simply re-click the Function button to reopen the Calculated Measures Manager, to make additional
alterations, insertions or deletions as required.

125

Data Export & Import

Chapter 19: Data Export & Import

IBExpert offer a number of methods for exporting and importing database objects and data. Please
also refer to Chapter 20: Data & Metadata Manipulation for transferring metadata and data
between Firebird and InterBase databases.

 1. Export
Data can be exported from the Data page in the Table Editor and View Editor, the Results page in
the SQL Editor and from the ODBC Viewer. The example below illustrates the export of data from
the db1 CUSTOMER table into Excel format:

Double-click on the CUSTOMER table in the Database Explorer to open the Table Editor / Data page.
The same data can also be exported from the SQL Editor / Results page by typing the SQL

 select * from customer

Start the data export by clicking the Export Data icon or using the key combination [Ctrl + E] to
open the Data Export window.

127

IBExpert & Firebird Guide

The first page in the Export Data dialog, Export Type, offers a wide range of formats, including
Excel, MS Word, RTF, HTML, Text, CSV, DIF, SYLK, LaTex, SML, Clipboard and DBF, which can be
simply and quickly specified per mouse click (or using the directional keys).

The destination file name must also be specified, and check options allow you to define whether
the resulting export file should be opened following the data export or not, and - for certain export
formats - whether column headings should be omitted or not, and whether text blob values should
also be exported. Should you encounter problems when exporting text blob values, please check
that the Show text blobs as memo option is checked on the Grid page found under the IBExpert
menu item Options / Environment Options.

Depending on the format, further options can be specified on the second and third pages, Formats
and Options, specific to the export type. Here it is possible to specify a range of numerical formats,
including currency, float, integer, date, time or date and time, as well as the decimal separator.
Please note that not all of these options may be altered for all export types (for example when
exporting to DBF it is only possible to specify the formats for date/time and time).

Depending upon which format has been specified, additional options may be offered on the third
page, for example:
• Excel - specification of page header and footer.
• HTML - template selection and preview, title, header and footer text as well as a wide range of

advanced options.
• CSV - Quote String check option, and user specification of CSV separator.
• XML - Encoding format may be selected from a pull-down list. There are also check options to

export String, Memo and DateTime fields as text.
• DBF - check options to export strings to DOS, long strings to Memo, and to extract

DateTime as Date.
The export is then finally started using the Start Export button in the bottom right-hand corner.
Following a successful export, a message appears informing of the total number of records
exported. Open your data file in its new format, and you will see how easy it is to export data!

128

Data Export & Import

 1.1 Export data into script
Data can also be exported into a script. The Export Data into Script dialog can be started using the
respective icon on the Data page in the Table Editor and View Editor, the Results page in the SQL
Editor or from the ODBC Viewer.

The following options may be selected before starting the export:
• Export into: File, Clipboard or Script Executive.
• Export as: INSERT statements, UPDATE statements, UPDATE OR INSERT statements or as a

set of EXECUTE PROCEDURE statements.

 2. Import
IBExpert offers two methods for importing data: the IBExpert ODBC Viewer, found in the Tools
menu, or using IBExpert's INSERTEX function.

 2.1 ODBC Viewer
The ODBC Viewer allows you to browse data from any ODBC source available on your PC and
also import data from an ODBC source into an SQL script or directly into a Firebird/InterBase
database.

Setting up and testing the ODBC driver
If you need an ODBC driver, it can be downloaded from http://www.firebirdsql.org. Then use the
Windows menu: Settings / System Control / Administration / Data Source and select fbodbc. This
now allows you to access Firebird data from non-Firebird applications such as, for example,
OpenOffice Base. You can find the correct connection string for the ODBC driver you are using
here: http://www.connectionstrings.com/. Data from other data sources can be imported using the
ODBC Viewer.

Importing data using the ODBC Viewer
Simply select the database from the selection of formats: dBASE or Excel files, or Microsoft Access
databases, to load the database tables.

Double-click on a table in the list on the left, to view the data contents. The view type can be easily
altered by clicking on the buttons at the bottom left: Grid View, Form View and Print.

129

IBExpert & Firebird Guide

You can even query the table contents and view, print or export the results.

The Export data and Export data into script features described above are also available here, along
with the additional option to Export data into table.

Importing Excel files and spread sheets
In Excel it is possible to define a specific area (a whole table or just parts of the data contents) and
give this marked area a name in the upper left area (our example has been defined in Excel as
Products):

This defined data can then be used as a table in the ODBC Viewer.

Alternatively an Excel file which is connected via ODBC can be viewed by typing the query:
 select * from "sheet1$"

where sheet1$ is the name of the spread sheet (visible on the tab at the bottom of the sheet; in
our example, DBDemoProduct). The first line is used always used for the column names.

 2.2 ODBC access with IBEBlock
The following describes a simple way to access data via ODBC using IBExpert's IBEBlock.
Download IBEBlockScriptSamples.zip from http://www.ibexpert.com/download/other_files/. Copy
the Demo.mdb and ODBCAcc.ibeblock files (found in the Blocks/ODBC Access directory) into
a separate directory. Copy ODBCAcc.ibeblock (copy of the script below) into the SQL Editor.

You can find the correct connection string for the ODBC driver you are using here:
http://www.connectionstrings.com/ . Then simply modify the path to Demo.mdb, and press [F9] to
execute the block.

execute ibeblock
returns (CustNo integer, Company varchar(100), Addr1 varchar(100))

 as
 begin
 InCust = 3000;

130

Data Export & Import

 OdbcCon = ibec_CreateConnection(__ctODBC,
'DBQ=D:\Delphi5\CMP\mODBC\DB\demo.mdb;DRIVER=Microsoft Access Driver
(*.mdb)');
 ibec_UseConnection(OdbcCon);

 execute statement 'select Company from customer where CustNo =
4312' into :MyCust;

 for select CustNo, Company, Addr1 from customer
 where CustNo > :InCust
 order by company
 into :CustNo, :Company, :Addr1
 do
 begin
 suspend;
 end
 ibec_CloseConnection(OdbcCon);
 end

More about the many possibilities and functions of IBEBlock can be foundin Chapter 23 IBEBlock.

 2.3 INSERTEX
IBExpert offers a range of further import and export options, one of them being INSERTEX, a
function for importing CSV files. INSERTEX is one of IBExpert's script language extensions, which
offer the developer a number of additional language options. The INSERTEX command can be
used in IBExpert's Script Executive or SQL Editor (both found in the Tools menu).

INSERTEX imports data from a CSV-file into a database table. It has the following syntax:
INSERTEX INTO table_name [(columns_list)]
 FROM CSV file_name
 [SKIP n]
 [DELIMITER delimiter_char]

Argument Description
table_name Name of a table into which to insert data.
columns_list List of columns into which to insert data.
file_name Name of CSV-file from which to import data.
SKIP n Allows the first n lines of CSV-file to be skipped while importing data.
DELIMITER
delimiter_char

Allows a delimiter to be specified, which will be used for parsing data
values.

If this argument isn't specified IBExpert will use a colon as a delimiter.

Values within the CSV-file must be separated with a colon CHAR or any other char. In the latter case
it is necessary to specify a delimiter CHAR using the DELIMITER argument. It is also possible to
specify non-print characters as a delimiter. For example, if values are separated with tab char
(ASCII value $09) it may be specified as DELIMITER #9 or DELIMITER $9.

131

IBExpert & Firebird Guide

To ignore unwanted quotes use the QUOTECHAR '"' option.

If a table table_name is missing in the database, it will be created automatically. In this case the
number of columns in the newly created table will be equal to the number of values in the first line
of the CSV-file. Columns will be named F_1, F_2 etc. The data type of each column is
VARCHAR(255). If the columns_list isn't specified IBExpert will insert data from the very first
column. Otherwise data will only be inserted into specified columns. It is possible to skip the first
several lines of the CSV-file using the SKIP argument. This may be useful if the first line contains
column captions or is empty.

Further import and export options are offered by IBExpert's IBEBlock. IBEBlock is a set of DDL,
DML and other statements that are executed on the server and on the client side, and which
include some specific constructions applicable only in IBExpert or IBEScript (excluding the free
versions of these products), independent of the database server version.

 3. Secure data transfer
Many applications may have external users, who need to connect to the database remotely and
access or exchange database data, often over dialup, satellite or public wide area networks. There
are two key issues here: firstly that by using public band widths there is a security risk. Secondly,
even reasonable amounts of data can congest a poor band width without compression.

Compression reduced the file size, which increases speed. However the big issue for connection
speed is latency, which can be measured for example by pinging the server. Latency is a more
critical factor than the bandwidth.

Many people set up VCNs through to their service, which solves both issues. The VPN does the
compression for you and provides you with a secure tunnel. Alternatively there is an excellent free
tool on the market, Zebedee, offering a tunnel that can be used to compress and encrypt the TCP
traffic between the Firebird server and the client, similar to SSH or SSL. Basically you have a small
piece of software sitting on the server and on the client. You need to specify some port redirections
and it listens on one port, decompresses the data and pushes it through to the correct port where
the Firebird server (or Firebird client) can be reached. By return it compresses and encrypts data
going out. It is even possible to specify client ID files so that the connection is only allowed when
the respective client ID files are available both on the server and the client .

The software can be downloaded from http://www.winton.org.uk/zebedee and is available for
Windows, Linux and Unix. It is open source and completely free.

132

Data & Metadata Manipulation

Chapter 20: Data & Metadata
Manipulation

IBExpert offers a number of options for manipulating data and metadata. Metadata includes the
definition of the database and database objects such as domains, generators, tables, constraints,
indices, views, triggers, stored procedures, user-defined functions (UDFs), blob filters. Metadata is
stored in system tables, which are themselves part of every Firebird/InterBase database. Metadata
for a table includes all domains and generators used by these tables plus the CREATE TABLE
statement. It does not include any referential integrity definitions from this table to other tables or
from other tables to this table.

The current metadata definitions can be viewed on the DDL page in the individual IBExpert object
editors.

 1. Extract Metadata
The Extract Metadata module can be used to generate a partial or full database metadata script,
including table data, privileges and objects descriptions if wished. It allows the user to extract
metadata to file or clipboard. It is even possible to extract blob data and array fields' data (as blob
data into a LOB file). The resulting script can be used to create a new empty database.

Table data can be extracted into separate files (TABLE_1.sql, TABLE_2.sql, TABLE_3.sql
etc.) - the maximum file size can be specified on the Options page; once this size is reached, a new
file is automatically generated by IBExpert, a particularly useful option when working with extremely
large scripts, as problems are often encountered when executing scripts larger than 2 GB.

To begin preparing your metadata extraction, first select a database from the toolbar's drop-down
list of all registered databases. The toolbar's Extract to options include: File, Clipboard, Script
Executive (default), VCS Files and Separate Files.

The Separate Files mode extracts metadata (and data if specified) into a set of files: two files with
metadata (_ibe$start_.sql and _ibe$finish_.sql), files containing table data (one or more
files for each database table) and a runme.sql file, that consists of a number of INPUT
<file_name> statements in the correct order.

If either the File, VCS Files or Separate Files options are selected, it is of course necessary to
specify a file path and name (*.sql or Metadata Extract Configuration *.mec).

The first page, Meta Objects,displays all available objects for the selected database in the usual
IBExpert tree form. The Select Objects Tree feature offers the user the choice whether to extract all
database objects (check option), or specify individual objects, (using the < or > buttons, drag 'n'
dropping the object names or double-clicking on them), or object groups (using the << or >>
buttons, drag 'n' dropping the object headings or double-clicking on them).

133

IBExpert & Firebird Guide

Multiple objects can be selected using the [Ctrl] or [Shift] keys. There is even the option to Add
Related Objects by simply clicking the respective button above the Selected Objects window.

It is also possible to drag objects from the object dependencies trees (found on the Dependencies
page in the object editors) and the field dependencies list (found in the Field Dependencies window
at the bottom of the Fields page in the Table/View editors) into the Selected Objects tree.

The Data Tables page can be used to specify whether data should also be extracted. This allows
both user-defined and system tables to be selected - either all or individually:

134

Data & Metadata Manipulation

By selecting one of the tables in the Selected Tables list on the right-hand side, it is possible to add
a WHERE clause, if wished.

The Extract Metadata Options page offers a wide range of further check options:

including General Options – adding the CREATE DATABASE or CONNECT statement, including
password and limiting the file size; Metadata Options, Data Options and Grants.

The Output page displays the IBExpert log during the extraction. Following completion, if a file was
specified, IBExpert asks whether the file should be loaded into the script editor.

135

IBExpert & Firebird Guide

If the Script Executive has been specified as the output option, the Script Executive is automatically
loaded. The object tree on the left-hand side can be opened to display the individual statements
relating to an object. By clicking on any of these statements, IBExpert springs to that part of SQL
code, which is displayed on the right:

The statements display what IBExpert is doing and in which order. The script displays the creation
of all objects, and then the subsequent insertion of the content data, using the ALTER command.

Extract Metadata is a great tool, and can be useful in a variety of situations. For example, it can be
used to perform an incremental backup, should it be necessary for example, to back up just the
ORDERS table every evening.

Any number of configurations may be saved in various formats: Metadata extract configuration
(*.mec) allows you to quickly and simply load a specified configuration in the Extract Metadata
dialog. IBEBlock (*.ibeblock) enables you to save the current settings as an EXECUTE
STATEMENT statement. IBExpert creates a valid IBEBlock with the ibec_ExtractMetadata
function, which may be used later in scripts. Alternatively select a file format of your choice.

Simply specify the directory and file name you wish to extract to, and then customize the Extract
Metadata block on the IBEBlock page as required and file. This function offers a quick and simple
solution for a number of otherwise cumbersome tasks, such as generating foreign language
versions of your database, subsequent alteration of the character set, alternative backup and
restore or incremental backups.

How does IBExpert extract blobs?
IBExpert uses an original mechanism to extract values of blob fields into a script. This allows you to
store an entire database (metadata and data) in script files and execute these scripts with IBExpert.
The following small example illustrates out method to extract blob values.

136

Data & Metadata Manipulation

For example, a database has a table named COMMENTS:
 CREATE TABLE COMMENTS (COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
COMMENT_TEXT BLOB SUBTYPE TEXT);

This table has three records:

COMMENT_ID COMMENT_TEXT

1 First comment
2 NULL

3 Another comment

If the Extract BLOBs option is unchecked you will get the following script:
 CREATE TABLE COMMENTS (COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
COMMENT_TEXT BLOB SUBTYPE TEXT);

 INSERT INTO COMMENTS (COMMENT_ID) VALUES (1);
 INSERT INTO COMMENTS (COMMENT_ID) VALUES (2);
 INSERT INTO COMMENTS (COMMENT_ID) VALUES (3);

... and, of course, you will lose your comments if you restore your database from this script.

But if the Extract BLOBs option is checked, IBExpert will generate a somewhat different script:
 SET BLOBFILE 'C:\MY_SCRIPTS\RESULT.LOB';

 CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (1,
h0000000_0000000D);
 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (2, NULL);
 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (3,
h000000D_0000000F);

IBExpert also generates a special file with the extension LOB, where blob values are stored. In the
current example result.lob will be 28 bytes long and its contents will be First commentAn-
other comment.

SET BLOBFILE is a special extension of script language that allows the IBExpert Script Executive
to execute scripts containing references to blob field values.

Obtain current generator values
There are two methods to obtain the current generator values in a database. The first is using the
IBExpert menu item Tools / Extract Metadata, where there is an option to set generators on the
Options page.

In Firebird this can also be done using a stored procedure:
 CREATE PROCEDURE GET_GENERATORS
 RETURNS (
 GENERATOR_NAME CHAR(31),

137

IBExpert & Firebird Guide

 CURR_VAL BIGINT)
 AS
 declare variable sql varchar(100);
 BEGIN
 FOR
 select r.rdb$generator_name generator_name, cast(0 as bigint)
curr_val from rdb$generators r
 where r.rdb$generator_name not containing '$'
 INTO :GENERATOR_NAME,
 :CURR_VAL
 DO
 BEGIN
 sql='Select gen_id('||GENERATOR_NAME||',0) from rdb$database';
 execute statement :sql into :curr_val;
 SUSPEND;
 END
 END

Database repair using Extract Metadata
The Firebird core package has no dump tool. So it's important to analyze your metadata scripts to
trace what started to go wrong, where and when. If your backups are failing regularly on the same
table(s) due to irreparable data damage, and you've not been able to solve the problem using
GFIX, this is an alternative way to save at least all remaining healthy data and the database itself.

First attempt to restrict the problem to as few data sets as possible, using the SELECT command on
the table ID field. Then use the IBExpert Tools menu item, Extract Metadata. Connect to your
database and select all tables for metadata and data. Extract to - select separate files from the
drop-down list. Extract all objects and data from all tables.

If any error occurs on specific data, add a WHERE condition for the table concerned. For example,
click on the table name in the right-hand column of Selected Objects and add your WHERE clause to
exclude the range of damaged data, e.g. WHERE ID>1000 AND ID<1100. Then generate your
script (green arrow icon or [F9], deleting the original database file.

If required, add the missing data as far as possible from an older extract file or backup copy of the
database.

Execute runme.all.bat (don't forget to add the path to IBEScript.exe. This starts IBExpert's
IBEScript, runme.all.sql, which loads the files from IBE$Start, then the data files and finally
IBE$Finish.

This will create a new database with all objects and data, even including blob data.

IBE$Start runs the operations such as creating the database and metadata. Tables are
generated, without any primary keys, foreign keys, constraints, triggers, etc. This is followed by a
series of insert commands, using the IBEBlock function, REINSERT. IBE$Finish then inserts all
primary keys, foreign keys etc.

You can, of course carry all this out at script level, using ibec_ExtractMetadata.

This method can also be used if you wish to make an alteration to an existing database, for
example, update from SQL dialect 1 to 3, or specify a character set if no default character set was

138

Data & Metadata Manipulation

specified at the time of database creation. For example, to alter the default character set from NONE
to ISO8859_1, simply open IBE$Start, search CHARACTER SET NONE and replace with
CHARACTER SET ISO8859_1, and then run the runme.all.sql script, as mentioned above.

 2. Search Metadata
This option is useful for finding individual words/digits or word/digit strings in metadata and in object
descriptions. It even searches for and displays field names, as opposed to the Database Explorer
filter, which only searches for object names. It can be found in the IBExpert Tools menu or using the
Edit menu's Find option - Find in Metadata page. The Find Metadata dialog offers a number of
options:

Select previous search criteria listed in the drop-down list. A single active database may be selected
from the second drop-down list; alternatively the Search in all Active Databases option in the
bottom left-hand corner of the dialog can be activated.

Further Search options include Case sensitive, Whole words only, Regular Expression (recognizes
regular expressions in the search string) and Search in (determines which object types should be
searched - domains, tables, views, stored procedures, triggers, exceptions, UDFs.) After clicking on
the Find button, a new Search dialog is opened:

139

IBExpert & Firebird Guide

The Search Options button in the toolbar can be used to restart the Find dialog, in order to specify
new Search conditions. The arrow to the right of this produces a drop-down summary of the search
criteria specified.

The results of the Metadata Search are displayed in the usual IBExpert tree form, sorted by
database object type. By clicking on an object, the object editor is opened in the Search in
Metadata dialog, and can be edited as wished. Alternatively, a double-click on the tree object opens
the object editor.

 3. SQL Editor Special Features
The IBExpert SQL Editor has two special features that allow you to:
• Create a table from query results and populate it with data.
• Move data between two registered databases.

 3.1 Creating a table from query results
It is possible to insert data into any table by executing the INSERT statement:

 INSERT INTO TARGET_TABLE
 SELECT FIELD_1, FIELD_2 FROM SOURCE_TABLE
 WHERE SOMETHING_FIELD <> 5

However this will only work if the table TARGET_TABLE already exists in the database. IBExpert
enables execution of this kind of statement even if the TARGET_TABLE does not exist in the
database. First IBExpert notifies the user that TARGET_TABLE doesn't exist in the database and
offers to create this table using query structure. If confirmed, IBExpert creates the TARGET_TABLE
and then populates it with data from the SELECT.

A small example illustrates how this works, based on a SOURCE_TABLE with the following structure:
 CREATE TABLE SOURCE_TABLE (
 ID INTEGER,
 SOME_TEXT VARCHAR(50),
 SOME_PRICE NUMERIC(15,4),
 SOME_DATE DATE);

When the following statement is executed:
 INSERT INTO TARGET_TABLE
 SELECT * FROM SOURCE_TABLE

and there is no TARGET_TABLE in the database, IBExpert will create TARGET_TABLE as:
 CREATE TABLE TARGET_TABLE (
 ID INTEGER,
 SOME_TEXT VARCHAR(50),
 SOME_PRICE NUMERIC(15,4),
 SOME_DATE DATE);

and after that inserts into this table records retrieved with the SELECT part.

Of course, it is possible to write different INSERT statements. For example:

 INSERT INTO [TARGET_DATABASE].TARGET_TABLE

140

Data & Metadata Manipulation

 SELECT ID, SOME_DATE FROM TEST_TABLE

In this case IBExpert will create table TARGET_TABLE as
 CREATE TABLE TARGET_TABLE (
 ID INTEGER,
 SOME_DATE DATE);

 3.2 Moving data between databases
IBExpert allows you to move data from one database to another by executing a special statement
in the SQL Editor.

Syntax
 INSERT INTO <database_alias>.<table_name>
 [(<columns_list>)]
 <select_statement>

Argument Description

database_alias Alias of a registered database. This must be enclosed in square brackets.
This argument is case-insensitive so

aliases My alias and MY ALIAS are equivalent.

table_name Name of the table to be populated with data.
columns_list List of columns in target table. This argument is not obligatory.
select_statement Any SELECT statement.

Examples

The following statement moves data from SOURCE_TABLE of the current database into
TARGET_TABLE of the database with the alias My test DB:

 INSERT INTO [My test DB].TARGET_TABLE
 SELECT * FROM SOURCE_TABLE

If the table TARGET_TABLE doesn't exist in the target database, IBExpert will create it after your
confirmation with the structure of the SOURCE_TABLE.

For example: to transfer data from the db1 database to the Firebird/InterBase sample database,
EMPLOYEE.FDB, open the SQL Editor for the db1 database, and

 select * from customer

To transfer this data to EMPLOYEE.FDB (with the IBExpert alias name, EMPLOYEE_2_1) write the
following SQL when connected to the source (db1) database:

 insert into [employee_2_1].customerimport
 select * from customer

If the table doesn't already exist, IBExpert will ask if you wish to create it:

141

IBExpert & Firebird Guide

and 10,000 customer records have just been copied into another database without having to worry
about first creating a new table of the same structure or performing some complicated export
routine!

 4. Copy Database Object
Copy Database Object is available as a menu item in the IBExpert Tools menu and also in the
Database Explorer context-sensitive menu, Copy object

Simply select the database (Master Database) and database object (Object to be copied) you wish
to copy, then specify the database where this object is to be copied to (Target Database). The
original object name automatically appears in the New object name field; this can of course be
altered if wished.

Depending upon the object selected, a number of check box Copy options are offered, including
options for exactly which contents should be copied, and how IBExpert is to proceed should the
object already exist.

Start the copy process by clicking the green arrow icon or using [F9]. After the Output script has
been generated, the default IBEBlock is displayed on the Blocks page. You can of course load your
own IBEBlock from file or from the IBExpert User Database. Further options include Select block,
allowing the various database object scripts to be copied.

The Copy Database Object feature is based on IBEBlock functionality and is therefore is fully
customizable.

142

Data & Metadata Manipulation

 5. Database Comparer & Table Data Comparer
The IBExpert Database Comparer allows developers to compare database versions or database
SQL scripts. This is particularly useful, for example, before installing an updated client application

which contains new tables, procedures, exceptions, etc., as it is possible to compare the databases
and - by analyzing the resulting script - view both the changes to the software, as well as those
data changes made by the client, erasing any irrelevant alterations, and applying those which are
relevant, by executing the script. IBExpert has already implemented support of many known
Firebird 2.5 features, including TYPE OF COLUMN, IN AUTONOMOUS TRANSACTION and extended
syntax of EXECUTE STATEMENT.

The Database Comparer can be started from the IBExpert Tools menu. On the Options page, first
select the Source (Master/Reference) Database or SQL script, by clicking the icons to the right of
the path/file input area, to specify drive, path and database name. This is the reference database,
to which the second database is to be compared. Then select the Target (Comparative) Database
or script, i.e. the database which needs to be assessed and altered in order to conform with the
reference database. Instead of searching for the path and directory of the databases you wish to

143

IBExpert & Firebird Guide

compare, you can simply drag 'n' drop both databases from the Database Explorer into the
respective fields in the Database Comparer dialog.

It is possible to store into or load from an external file (using the toolbar icons at the top of the
dialog), and use this together with IBEScript.exe (IBExpert command-line tool). When settings
are saved into an INI file, IBExpert also saves the server version.

Server version offers a drop-down list to allow specification of the Firebird or InterBase server
version and therefore which syntax should be used while comparing the two selected databases.

There are a number of options, which can be checked if they should be included in the comparison.
All options can be selected or deselected simply and quickly using the right-click context-sensitive
menu.

After selecting all features to be (or not to be) compared, click the Compare icon to start the
comparison.

The Log page logs the comparison, which can be halted and restarted at any time by using the
Stop and Compare icons. The results are automatically loaded in the Script Executive. Here it is
easy to see which operations need to be performed in order to make the comparative database
identical to the reference database. On the Statements page it is easy to unselect or select
individual statements using point and click. By executing all SQL statements the comparative
database becomes identical to the master database.

Please note that certain alterations may cause serious problems with your database, due to restric-
tions and limitations in Firebird/InterBase. For example, changing a data type from CHAR to INT.
Also, Firebird seems to have problems with certain dependencies. For example, when dropping a
view with dependent procedures, the Firebird server removes records from RDB$DEPENDENCIES
and doesn't recreate them when the view is recreated.

The Table Data Comparer is similar to the Database Comparer. It allows you to compare data of
two tables in different databases and obtain a script detailing all discrepancies which includes
corresponding INSERT, UPDATE and DELETE statements.

The General page displays the default file path and name for the resulting comparison script. This
can of course be altered as wished. As with the Database Comparer, first select the Master or
Reference Database from the drop-down list of all registered databases. This is the reference

144

Data & Metadata Manipulation

database, to which the second database and its table(s) are to be compared. Then select the
Target Database, i.e. the database whose table(s) need to be assessed and altered in order to
conform with the reference database and table(s). The databases and tables must already exist.

Then select the tables to be compared. Tables with the same name in both databases are listed
next to each other in the Tables to be compared list. If you wish to compare tables with different
names, click the arrow to the right of the table field and select the required table from the list of all
tables in this database. Tables with different names must have the same structure. An error is
raised if there is no primary key defined for the reference table.

To select all tables use the right-click context-sensitive menu. Note that system tables are not
selected when using this function.

Selected generators/sequences can also be synchronized as part of the table comparison.

If you wish you can save your current settings into a file and load previously saved settings from file
using the relevant toolbar icons. Refine your specification on the Options page which offers a
number of check box options.

To start the table comparison simply click the Compare button (green arrow) or [F9].

The Table Data Comparer resolves dependencies between master and detail tables while creating
the script. The resulting log displays whether the database connections were successful, records
searched, time taken and the number of discrepancies found. The resulting script file may then be
loaded into the Script Executive if wished.

145

Script Executive & Script Language Extensions

Chapter 21: Script Executive &
Script Language Extensions

IBExpert's Script Executive has already been briefly presented in previous chapters. This versatile
IBExpert feature can be used to view, edit and execute SQL scripts.

Although Firebird/InterBase can also process such procedure definitions in the SQL Editor, it is
recommended using the Script Executive for more complex work, as it can do much more than the
SQL Editor. There is a wealth of script language extensions including conditional directives, and it
can also be used for executing multiple scripts from a single script. The main advantage of the
Script Executive is that it displays all DDL and DML scripts of a connected database.

It can be started from the IBExpert Tools menu, using the respective icon in the Tools toolbar or
[Ctrl + F12]. It is used for SQLs covering several rows.

Complete scripts can be transferred from the SQL Editor or extracted directly from the Extract
Metadata Editor into the Script Executive using the relevant menu items.

Please note that the Script Executive always uses the default client library specified in the IBExpert
Options menu item Environment Options / Preferences under Default Client Library, unless it is
overridden using the SET CLIENTLIB command.

IBExpert offers full Unicode support. The internal representation of all texts in the code editors is
Windows Unicode (UTF-16LE, two bytes per character). This allows you to use multilingual
characters in your procedures, queries, database object descriptions etc., if you use the UTF8
character set when connecting to your database. When you're working with a database using the
UTF8 character set IBExpert performs automatic conversion from UTF8 to Windows Unicode (when

147

IBExpert & Firebird Guide

opening) and back (when you compiling). This applies to Firebird 2.1 and 2.5 databases. For other
databases you need to enable this behavior manually (if you really need this!) by flagging the Do
NOT perform conversion from/to UTF8 check box in the Database Registration Info. As a rule,
IBExpert knows when it must convert strings from Windows Unicode to UTF8 but sometimes it is
necessary to specify the conversion type manually. This allows you to specify the necessary
character set manually.

The Script page includes features such as code completion - familiar from the SQL Editor. The SQL
Editor menu can be called by right-clicking in the script area. Following statement execution, the
Script page displays any errors highlighted in red. Using the respective icon, the script can be
executed step by step. Any errors appearing in the lower Messages box may be saved to file if
wished, using the right-click menu item Save Messages Log ...

The Statements page displays a list of individual statements in grid form. These statements may be
removed from the script simply by unchecking the left-hand boxes. One, several or all statements
may be checked or unchecked using the right-click menu. Breakpoints can be specified or removed
simply by clicking (or using the space bar) to the left of the selected statement in the BP column.

 1. Executing multiple scripts from a single script
Simply use the following syntax:

 connect 'server:c:\my_db.gdb' ...;

 input 'c:\my_scripts\f2.sql';
 input 'c:\my_scripts\f1.sql';
 input 'c:\my_scripts\f3.sql';

 2. Create multiple CSV files from a script
The following is an example illustrating the creation of multiple CSV files from a script:

 shell del C:\list.dat nowait; --deleting the old file
 shell del C:*.csv nowait; --deleting the old csv files

 connect 'localhost:C:\employee.fdb' user 'SYSDBA' password
'masterke';
 --connect to employee example database

 output 'C:\list.dat'; --record the following result as a simple
text file, based on each unique employee, we create a new
output ...;select ... ;output; line in the dat file

 SELECT distinct
 'OUTPUT C:\'||EMPLOYEE.last_name||'.csv delimiter '';'';'||
 'SELECT distinct EMPLOYEE.last_name, customer.customer,customer.-
phone_no '||
 'FROM SALES INNER JOIN CUSTOMER ON (SALES.CUST_NO =
CUSTOMER.CUST_NO) '||
 'INNER JOIN EMPLOYEE ON (SALES.SALES_REP = EMPLOYEE.EMP_NO) where

148

Script Executive & Script Language Extensions

 EMPLOYEE.last_name=XXXXXX||EMPLOYEE.last_name||''';'||
 'OUTPUT;'
 FROM SALES INNER JOIN CUSTOMER ON (SALES.CUST_NO =
CUSTOMER.CUST_NO) INNER JOIN EMPLOYEE ON

 (SALES.SALES_REP = EMPLOYEE.EMP_NO);

 output; --close the dat file
 input 'C:\list.dat'; --execute them

The data file is created automatically.

The outer query gets one record for each employee, in the inner select, all phone numbers for the
employees if customers are selected.

 3. Script Language Extensions
Script language extensions are unique to IBExpert, and offer the developer a number of additional
language options. These include, among others, conditional directives, DESCRIBE database
objects, as well as SET, SHELL, INSERTEX, OUTPUT and RECONNECT.

All these are fully documented with examples in the IBExpert online documentation at
www.ibexpert.com/doc.

149

Firebird 2.0 Blocks

Chapter 22: Firebird 2.0 Blocks

New to Firebird 2.0, Firebird's block implementation enables complex SQL operations in many
application areas.

A block is a simple feature, using the new EXECUTE BLOCK syntax, which executes a block of
PSQL code as if it were a stored procedure, optionally with input and output parameters and
variable declarations. This allows the user to perform "on the fly" PSQL within a DSQL context. It
performs a block of instructions on the server side, and can in fact be considered a virtual stored
procedure.

To illustrate this, let's consider the following situation: you have a procedure, but you don't really
want or need to store it in your database.:

You just want to create such a procedure on the fly and drop it afterward. So make the following
simple alterations:

execute block
as
declare variable sql varchar(300;
begin
 for
 select rdb$index_name from rdb$indices
 into :sql
 do
 begjn
 sql='SET STATISTICS INDEX' ||sql;
 execute statement :sql;
 end
end

and it performs the same task, but as a dynamic block and not as a stored procedure.

151

IBExpert & Firebird Guide

The block transfers the source code from the client to the server, and executes it at the same
speed as a stored procedure. The block is created and prepared when you start it, and deleted
when you commit or roll back. The server will never use it again.

The major advantage of a block is when you are creating a variety of different but similar
procedures from your client application, for example you have stored procedures for customer
searching; in one stored procedure you are doing the customer search for the sales department,
and in the other stored procedure you are doing the customer search for the invoice department.
They have slightly different search criteria and want to see different columns in the result sets – this
could be an interesting task, as the number of columns can be directly and dynamically created in a
block.

EXECUTE BLOCK is not only a alternative to stored procedures; there are other uses, particularly
for performance tasks. To illustrate this, for example, take a table TEST1, drag it from the Database
Explorer into the SQL Editor. The Text to insert window opens offering a range of options:

To prepare a SELECT INTO with carriage return and line feed, simply click on the SELECT INTO
from the list on the left and check the Insert CR+LF between items. IBExpert then inserts the correct
syntax. In the case of this small table TEST1, this might not appear to be such an advantage, but if
you take a look at a table with a larger number of fields (e.g. the DB1 CUSTOMER table), you will
see how much it helps to have the field names and parameters already inserted into the standard
syntax:

152

Firebird 2.0 Blocks

To ascertain the data type definitions or to declare variables, simply click on the Name + Type in
the left-hand list. Variable prefixes can be inserted (for example: v_) in the field Var prefix below, to
offer you an instant full list of variables for all fields in the table.

Firebird 2.1 also introduced the possibility to use domains for procedures, procedure parameters
and so on. (Please refer to Chapter 12: 14 Using domains in stored procedures for details).

To continue with the implementation of the TEST1 table: an INSERT INTO statement is specified
without carriage return and line feed or a variable prefix:

When it's ready simply apply and you the INSERT INTO command is already formulated in the
SQL Editor or Script Executive:

Now to illustrate one of the main advantages of Firebird blocks, some operations are added, one by
one:

153

IBExpert & Firebird Guide

When the above script is executed in the IBExpert Script Executive, and the IBExpertNetwork-
Monitor is running in the background, the traffic can be viewed immediately:

Add the beginning and closing clauses, to turn these statements into a block:

154

Firebird 2.0 Blocks

The Firebird server now processes all operations in one go, and you can see that all operations
have been sent as one package to the server.

Especially when you need to insert or update a large amount of data, you can write your application
in such a way as this, storing all the insert/update statements as a TString list or similar, writing
EXECUTE BLOCK in front of it, concluding with an END, and executing it as a single statement.

Firebird 2.0 blocks can also be debugged directly in the SQL Editor (or alternatively in the Block
Editor) using the Block Debugger.

There is a limit to the amount of source code that can be transferred in a single package, it may not
be larger than 32 Kb. In the case of larger data packets, it is necessary to split them into multiple
packages, but this is usually still more efficient that sending each command individually.

Transactions cannot be controlled from inside a block because the block is always a part of your
client transaction.

Blocks were implemented in Firebird 2.0. InterBase 2007 introduced something similar but it does
not have all the functionalities that Firebird has.

When you are working with IBExpert, you can use IBEBlocks. Simply write IBEBLOCK instead of
BLOCK and it still works!

155

IBEBlock

Chapter 23: IBEBlock

IBEBlock is a set of DDL, DML and other statements that are executed on the server and on the
client side, and which include some specific constructions applicable only in IBExpert or
IBEScript, independent of the database server version.

With EXECUTE IBEBLOCK you will be able to:
• Work with different connections within a single IBEBLOCK at the same time.
• Move (copy) data from one database to another.
• Join tables from different databases.
• Compare data from different databases and synchronize them.
• Populate a table with test data using random values or values from other tables or even from

other databases.
• Access external databases via ODBC drivers.
• Transaction control across multiple databases.
• Integration of many IBExpert functions in batch files.
• Dispatch and receive e-mails.

to name but a few of the many functions IBEBlock has to offer.

The syntax of IBEBLOCK is similar to that of stored procedures but there are many important exten-
sions. For example:
• You can use EXECUTE STATEMENT with any server, including InterBase 5.x, 6.x, 7.x.
• You can use one-dimensional arrays (lists) of untyped variables and access them by index.
• It isn't necessary to declare variables before using them.
• You can use data sets (temporary memory tables) to store data.
• Code Insight also supports IBEBlock constants and functions.

Single IBEBlocks can be executed in the SQL Editor. They can be debugged in the SQL Editor too,
in the same way as stored procedures and triggers. Also you can include IBEBlocks into your
scripts and execute these scripts as usual - using the Script Executive or IBEScript.exe.

157

IBExpert & Firebird Guide

There are two ways to store blocks and scripts: (i) in a registered database or (ii) in the IBExpert
User Database, which can be activated using the IBExpert Options menu item, Environment
Options / User Database. It is strongly recommended to use the IBExpert User Database as the
main storage for IBExpert for security reasons (all your IBEBlocks are then stored in a Firebird
database). This can be activated using the IBExpert Options menu item, Environment Options /
User Database.

The Database Explorer's Scripts/Blocks page displays all existing IBEScripts and IBEBlocks
saved locally in the database. The Database Explorer's Database page also has a node, Scripts,
displayed in all registered, connected databases.

To create a new script in a registered database, click on the Scripts node in the connected
database, and use the context-sensitive (right-click) menu to open the Block Editor. The IBExpert
Block Editor can be used to edit and execute IBEBlocks and IBEScripts. Each script or block
must have a unique name (up to 100 characters) within the database.

To create a new block or script in the User Database, first enable the option in the IBExpert Options
menu, Environment Options / User Database and restart IBExpert. You should now see a new node
in the Database Explorer: Scripts/Blocks. This allows you to create scripts and blocks using the
context-sensitive menu from the Scripts/Blocks tree and also organize them in folders.

It is even possible to execute Firebird 2.0 blocks stored in registered databases or in the IBExpert
User Database directly from the Database Explorer. Simply use the Database Explorer right-click
context-sensitive menu or open the script in the Block Editor and execute using [F9].

When writing new IBEBlocks, do not forget to save the block by clicking on the Save icon, in order
to commit it, before running it.

158

IBEBlock

Input parameters can be specified by clicking on the Parameters icon (or using [Shift + Ctrl + P]),
and the block run in the usual IBExpert way by using [F9] or the green arrow icon.

Similar to the Procedure and Trigger Debugger, the Block Editor allows you to debug your script or
block. The IBExpert Debugger is described in detail in Chapter 12: 9.1 Stored procedure and trigger
debugger.

The range of IBEBlock language includes procedural extensions as well as a huge range of
functions. These are all fully documented at www.ibexpert.com/doc.

To illustrate the possible deployment of IBEBlocks, we would like to show an example using the
IBExpert Tools menu item, Database Comparer, and ibec_CompareMetadata.

If you've installed your own software application at a customer's you probably won't want to give
him his own IBExpert, and let him play around and manipulate the database structure on his own.
For such a situation we have created inside the IBEBlock language, for example, ibec_Compare-
Metadata, where you can create your own database connection to two databases, db1 and db2,
compare their metadata, and run the resulting script to update the customer's database. (Refer to
the IBEBlock online documentation chapters, ibec_CreateConnection and ibec_CompareMetadata
at www.ibexpert.com/doc, for details of syntax and parameters.)

159

IBExpert & Firebird Guide

This does the same thing as IBExpert's Database Comparer but handles it automatically. It uses the
reference database, in this case db1, and compares it to the customer database, db2, followed by
the name and directory of the script file. This script file contains an SQL script of all the differences
between the two databases.

This IBEBlock can then be stored to a folder, e.g. IBExpert, as comp.ibe. When
ibescript.exe is now started on the command line, it starts a command-line version of IBExpert.
IBEScript can be found in the main directory of the IBExpert full version.

 C:\IBExpert\ibescript comp.ibe

160

IBEBlock

So if you want to update your customer's database, you need ibescript.exe, taken from a
IBExpert VAR License or IBExpert Server Tools, you need a script file, e.g. comp.ibe, a reference
database (i.e. the new version of the database), and the customer's database. Then you simply
execute the script to create a script listing all differences between the two databases, which can be
done in a batch file or using the ibescript.dll directly implemented in your application. In the
next step, after the SQL differences are created, you can say

 C:\IBExpert>ibescript \res.sql

and restore in the main directory.

So there are two steps in the command-line window to update any database to a new structure
based on a reference database, without any human interaction. If you look at the script closely, the
order in which new objects need to be created, and the order in which old objects are deactivated is
sometimes not so easy to understand. Let's imagine you have a stored procedure that uses another
stored procedure which in turn uses a third stored procedure. You want to change the third
procedure. So you need to deactivate your first and second procedure so that the third procedure is
free for changes. This is all handled automatically by IBExpert and its script tools.

The source code of your procedures and IBEBlocks may contain sensitive information. So there is
the possibility to use the -e parameter:

161

IBExpert & Firebird Guide

 C:\IBExpert> ibescript comp.ibe –e

This encrypts the script into binary encrypted code. The file is converted into an ESQL file
(comp.ibe.esql). If the password is used, it can only be encrypted with the password. This
particular file cannot be decrypted, but IBExpert can still execute

 C:\IBExpert> ibescript comp.ibe.esql

without any decryption. And if you ignore the callback (ibec_Progress) functions:
 cbb='execute ibeblock (LogMessage variant)
 as
 begin
 ibec_Progress(LogMessage);
 end';

no messages will appear on the screen during execution. This callback function cbb is just a string
that represents another IBEBlock, ibec_Progress, with this function inside.

Another example of what you can do with such an IBEBlock is ODBC access:
 execute ibeblock
 as
 begin
 FBX = ibec_CreateConnection(__ctFirebird,
 'DBName="localhost/3021:C:\db1.fdb; Clientlib=gds32.dll;
 User=SYSDBA; Password=masterke; Names=NONE; SQLDialect=3;')
 OBX = ibec_CreateConnection(__ctODBC,
 'DBQ=C:\demo.mdb;DRIVER=Microsoft Access Driver (*.mdb)');
 use OBX;
 for
 select CustNo, Company, Addr1
 from customer
 order by company
 into :CustNo, :Company, :Addr1
 do
 begin
 use FBX;
 insert into "customerx"
 ("CustNo", "Company", "Addr")
 values
 (:CustNo, :Company, :Addr1);
 end
 use FBX;
 commit;
 ibec_CloseConnection(OBX);
 ibec_CloseConnection(FBX);
 end

Here the Firebird connection and the the ODBC connection has been created, and then a SELECT
FOR statement is executed on the ODBC connection.

The returning values are put into the variables defined. If you do not want to declare your variables,
IBExpert doesn't require it. The FOR SELECT statement then switches to the Firebird database
(FBX). The data is then inserted into the Firebird database's CUSTOMERX table. Finally the Firebird

162

IBEBlock

connection needs to be committed and then both connections closed. There is also the possibility to
do some exception handling, and for example the ibec_CopyData is able to copy data to a local
Firebird table from any source.

If you don't know what tables already exist in your ODBC partner, it is sometimes hard to write your
own CREATE TABLE statements compatible to the one that you need in your Firebird database.
There is a useful tool in IBExpert, the ODBC Viewer (Chapter 19). This can be used easily to open
the same database.

In the Windows Control Center / Data Sources (ODBC) there is a demo.mdb, which is based on an
MSAccess ODBC driver. Double-clicking on the database name in IBExpert's ODBC Viewer directly
opens the ODBC driver and displays the CUSTOMER table and its data. To select a table whose data
is required in the Firebird database, use the menu item Export to script/table, select the Export into
a table page, give the new table a name, and simply export.

This way you very quickly have a new database table full of the data that was in the original Access
database. If the table data is removed, so that only the metadata structure remains, you can see
how the IBEBlock used earlier transfers the data automatically. This functionality does not depend
on Firebird/InterBase. It can be used between any databases with ODBC connectivity.

Further IBEBlock examples can be viewed in Chapter 17: Reporting.

163

Database Documentation

Chapter 24: Database
Documentation

Database documentation is unfortunately an often unpopular but necessary part of any developer's
(and administrator's) work. With a little effort though, IBExpert provides the necessary tools to gen-
erate up-to-date documentation and the click of a mouse.

 1. Object and field descriptions
All IBExpert object editors offer Description fields for all objects and fields.

The Description page should be used to describe all database object; the Description field for
describing the fields. Although this may seem like a tedious task, it is only necessary to write a brief
description for each object once; this is then displayed in all automatically-generated document-
ation.

 2. Template short cuts
To document code quickly and efficiently, use the IBExpert Options menu item, Keyboard templates
to create your own shortcut: use to insert author, date and time fields automatically and rapidly, with
a simple button click. For example, the abbreviation ME can be specified with the expansion /*
#author #date */ (click the Author and Date buttons to insert the fields, add the comment
symbols, done!). This results in a simple documentation comment at the beginning of all SQLs
listing author and date (i.e. /* SYSDBA 08/07/2009 */) simply by typing ME!

 3. Print metadata
Print Metadata prints the database metadata, along with dependencies, descriptions, and other
options for any database object or object group, providing a quick and yet extremely comprehens-
ive database documentation. The information is printed as a report, using IBExpert's report tem-
plates. Using the Report Manager, these reports can also be customized (the Print Metadata stand-
ard report templates can be found in the IBExpert\Reports\ directory). This is of particular
importance for those businesses working according to DIN certification/ISO standards.

The Print Metadata menu item can be found in the IBExpert Tools menu, or started using the
Printer icon in the Tools toolbar. The Print Metadata Editor is similar to the Extract Metadata Editor.
First select one of the registered databases using the top left toolbar button. Then select the objects
to be printed. It is possible to check Print All, or specify individual database objects (using the < or >
buttons, drag 'n' dropping the object names or double-clicking on them), or object groups (using the
<< or >> buttons, drag 'n' dropping the object headings or double-clicking on them). Multiple objects
can be selected using the [Ctrl] or [Shift] keys. There is even the option to Add Related Objects by
using the button above the Selected Objects window.

165

IBExpert & Firebird Guide

When one of the selected database objects or object groups is highlighted, a number of check
options appear in the lower right panel. These include:

• fields
• constraints
• indices
• dependent objects
• depend on objects
• parameters
• DDL
• description

In order to print a complete database documentation it is of course necessary to select all database
objects, and then check all options for each object group. This could however lead to difficulties in
the case of very large databases, despite the Report Manager's amazing speed!

166

Database Documentation

It is possible to print the report directly from this dialog or preview it first, using the Magnifying
Glass icon.

This opens the Fast Report Preview page, which displays the report as it will be printed, and fur-
thermore offers options such as saving the report to file and searching for text.

 4. Generate HTML documentation
Using this IBExpert Tools menu item, Generate HTML documentation, complete or partial database
documentation can be generated for a named, connected database. This option is an excellent
feature for software documentation, particularly if the the description fields (available in all IBExpert
object editors) were always used as objects were created in the database. This feature fully
supports UTF8.

The toolbar displays the selected connected database. The drop-down lists offers a choice of all
registered databases. The default output directory can be overwritten if wished.

The Generate HTML Documentation Editor is similar to the Extract Metadata Editor with its Select
Objects Tree window. The Objects page allows single or groups of database objects to be selected
for the HTML documentation. Database objects can be specified individually using the < or >
buttons, drag 'n' dropping the object names or double-clicking on them, or object groups may be
specified using the << or >> buttons, drag 'n' dropping the object headings or double-clicking on
them. Multiple objects can be selected using the [Ctrl] or [Shift] keys. Alternatively the Extract All
box can be checked, allowing documentation to be generated for the complete database.

There is even the option to Add Related Objects by using the button above the Selected Objects
window.

The Options page offers a drop-down list of character sets which can be selected for the document-
ation, and lists a series of check box options including single file (i.e. whether one complete file, as
opposed to several smaller files should be generated) and whether:

• indices
• foreign keys
• check constraints
• database object descriptions
• syntax highlighted object definitions
• hyperlinks in object definitions

should be included.

The CSS (cascaded style sheets) page displays the code for the HTML page template. With
knowledge of HTML these style sheets can be adapted as wished. The Output page displays the
code used to generate the HTML documentation.

An IBExpert Help window is automatically opened following successful generation of the HTML
documentation. This begins with a list of contents followed by detailed documentation of the
individual objects.

167

IBExpert & Firebird Guide

The results.html can of course be opened in any popular browser.

By clicking on one of the object subjects, such as tables, a table of all such objects (i.e. all tables)
for this database appear. Clicking on the individual objects then automatically displays the
description (if existent) and the definition.

168

User Manager

Chapter 25: User Manager

The User Manager administrates database users and their roles. Here individual users can be
allocated database and server access. The User Manager applies to the database server and not
the individual database.

To start the User Manager select the IBExpert Tools / User Manager menu item, or click the
relevant icon in the Tools toolbar. The User Manager Editor displays a list of all registered
databases (drop-down list). The server connection may be altered using the drop-down list.

Select the database and server (local or remote) to administrate.

If the registered database is using Firebird version 2.1 or higher and the Trusted authentication
option has been specified in the Database Registration Info, then Windows "Trusted User" security
is also supported here.

All users must be logged in, in order to access the server. What they are actually allowed to do on
the server is then determined using the Firebird/InterBase GRANT and REVOKE commands (see
Chapter 26: Grant Manager for details), or the front-end program.

Please note that to create, edit and delete users and roles you should have the rights of server
administrator.

 1. Users page
On the Users page, a full list of users registered for the named server connection is displayed.
Even if the selected database is not currently connected, the user list can still be seen. This is
because the users are registered directly in the security database on the server, and can therefore
be granted rights for all databases on this server. The AC (Active Users) column shows how many
active connections a user has to the specified database. This works only with active databases.
The Refresh button has been added to refreshes the list of all users. You may be asked for a
password, when selecting an unconnected database in order to ascertain your authority.

A user can be added by the SYSDBA (not the database owner, as users are created for all
databases on the server). Simply click the Add button, and complete the New User form. Again,
only the SYSDBA or is allowed to edit or delete users. When editing, only the user name used for

169

IBExpert & Firebird Guide

logging in may not be changed. It is here that a new password may be entered if the user has
forgotten his old one; or a change of name be necessary, for example, if a user marries.

This list contains all current users. To add, edit or delete users click buttons at the right of the list. In
the Add / Edit User window set the user name and password and (optionally) his first, middle and
last name.

 2. Password
The password is always user-oriented. Passwords are stored encrypted in the server database.
When a user enters his password, this is passed onto the server, which compares the string
entered with the string of the encrypted password stored on the server. The password is NEVER
passed on from the server to the client.

If a user forgets his password, the SYSDBA can enter a new one to replace the old one. Alternat-
ively a UDF can be incorporated into the program, to allow the user to change his password
himself, without having to disturb the SYSDBA or reveal the new password to a third person. An
example of such a UDF can be found in the FreeUDFlib.dll, which can be downloaded from
http://www.ibexpert.com/download/udf/.

Users can be entered and assigned rights directly (using IBExpert's Grant Manager), although it
often makes more sense if the majority of users are assigned user rights using roles. Roles are
used to assign groups of people the same rights. When changes need to be made, only the role
needs to be altered and each user individually.

 3. Roles page
The Roles page can be used to create and delete roles exactly in the same way as with the
database object roles. All roles and their owners are displayed for the selected database. Other
databases on the same server may be selected to display their full range of existing roles.

To add or delete roles click buttons at the right of the list. When creating or deleting a role the
Compile window appears. Commit the transaction and if it is successful the new role is created or
dropped. After the role has been created, users need to be added to the role (please refer to
Membership page below). Role users and rights can then be specified, edited and deleted using
IBExpert's Grant Manager.

Roles can only be altered at system table level. They can however be deleted and new roles added
using the User Manager.

 4. Membership page
The Membership page shows which users have been granted rights to which roles.

The abbreviations G stands for Granted, M for Member of selected role and AO for with ADMIN
option. Users can be assigned roles simply by selecting the user, and checking either the
Grant/Member of selected role boxes or the ADMIN option boxes. For example, all sales staff could
be given the user name SALES with the role SALES. When logging into the system, both these
names need to be entered. Checking the Admin Option automatically entitles the user to pass his
rights on to other users.

170

Grant Manager

Chapter 26: Grant Manager

The Grant Manager is used to administrate database security by controlling user permissions for a
specific database. It allows you to specify the access rights for users, roles and database objects. It
is possible to grant rights for database objects on the Grants page in the object editors.

To start the Grant Manager select the IBExpert menu item, Tools / Grant Manager, use the
respective icon in the Tools toolbar, or double-click on a role in the Database Explorer. Alternatively
use the Database Explorer's right mouse-click menu item Edit Role or key combination [Ctrl + O].

The Grant Manager Editor offers options to select the database, and select a group for which
privileges are to be assigned. Once a database object has been selected, a full list of such
users/objects in this database is displayed in the panel directly below.

The Grants toolbar enables the user to quickly assign or revoke rights to one or more objects, or for
one or more operations. These same operations can also be specified using the right-click pop-up
menu.

It is possible to filter the grants displayed, i.e. for all database objects (default), just the tables, just
the views or just the procedures. Furthermore the user can determine whether all of the selected
objects should be displayed, or only those with grants, or only those not granted. To the right of
these drop-down lists is an empty filter field for user-defined filters. It is also possible to specify
whether system tables should be included or the user-defined filter inverted, using the check boxes
provided.

The main window displays the object grants in a grid, displaying the granted operations Select,
Update, Delete, Insert, Execute and Reference) for the listed objects. A green circle indicates that
access for this operation on this database object has been granted; a green circle held by a hand
indicates that the GRANT WITH GRANT AUTHORITY option has been granted. An empty field
indicates logically that either no rights have been granted, or they have been revoked.

171

IBExpert & Firebird Guide

A further menu option here is Show Column Privileges (check box option). This blends the lower
window in and out, which displays the individual columns for tables and views, allowing Update and
Reference rights to be granted and revoked for individual fields in the selected object.

Rights can be simply granted and revoked by double-clicking (or using the space bar) on the grid
fields (in both the upper (object) and lower (column) windows). Alternatively, to assign several rights
(i.e. select, update, delete and insert) to a single object or to assign one operative right to all
objects displayed, use either the Grant Manager toolbar or the right-click menu. Please note that
Reference rights only allow the user to read data sets if there is a foreign key relationship to other
data. And the Grant All to All command may only be performed by the database owner or the
SYSDBA.

The majority of these operations can also be performed in the Grants pages, found in the individual
database object editors. These were introduced to remind the developer not to forget the
assignment of rights, when creating or altering a database object! They allow the developer to
check existing permissions for the object concerned and, if necessary, subsequently assign rights
for a new or existing object. Rights are however in practice usually administered at the front end.
There is, as a rule, only one system user, with which the program can log into the database.

 1. Granting access to stored procedures
To grant a user the right to execute stored procedures, use the IBExpert Grant Manager EXECUTE
column or the SQL EXECUTE statement. For example, to grant Janet and John the right to
execute the stored procedure CREATE_MORE_ORDERS, use the following:

 GRANT EXECUTE
 ON PROCEDURE CREATE_MORE_ORDERS
 TO Janet, John;

Firebird/InterBase considers stored procedures as virtual users of the database. If a stored
procedure modifies a table, the procedure needs the relevant privileges on that table. So the user
only needs EXECUTE privileges on the procedure and not any separate rights for the table. In this
situation, the stored procedure performs the changes on behalf of the user.

If a stored procedure needs the ability to execute another stored procedure, simply select
Procedures from the Privileges For list and Procedures from the Grants On list, to grant the
EXECUTE privilege on the desired procedure. Using SQL the GRANT statement is necessary,
naming the procedure instead of one or more users (<user_list>).

 2. Using the GRANT AUTHORITY option
A user that has been granted certain privileges, may also be assigned the authority to grant those
privileges in turn to other users. This is known as assigning grant authority. Firebird/InterBase
allows by default only the creator of a table and the SYSDBA to grant additional privileges onto
other users.

Grant authority can be assigned in the IBExpert or the Grants pages in the relevant object editors,
using the Grant All with GRANT OPTION or the Grant to All with GRANT OPTION icons or right-
click menu items. In SQL the WITH GRANT OPTION clause may be used in conjunction with a
grant of privileges, to assign users the authority to grant their privileges in turn to other users.

172

Database Statistics

Chapter 27: Database Statistics

The IBExpert Services menu item, Database Statistics, reveals a wealth of information about your
database. When approaching the Database Statistics analysis, it is important to know what inform-
ation is available, which information is important and how to interpret and use it to solve
performance problems.

A common performance problem is that the database gradually becomes slower and slower. This is
usually due to an open transaction somewhere in the database. Look at the number of record
versions (total record versions). These exist because Firebird still needs to store the old data for
old open transactions. This is handled internally by a transaction number.

In a production database with multiple users you will often see record versions, but if there are no
old open transactions the database will delete these older record versions automatically when they
are no longer needed, i.e. following a commit or rollback. The garbage collector cannot work if there
are open transactions anywhere.

The oldest and newest transaction numbers can be found in the summary at the top of the log
found in the Text page. The larger the difference between the Oldest active transaction (OAT) and
the Next transaction, the bigger performance problems you will encounter. The Firebird server does
not just administrate record versions for the database object which still has an open transaction, but
for the entire database. In repeatable read mode a snapshot is made of the whole database, as
soon as a transaction is started. When the transaction is completed (i.e. committed or rolled back)
the garbage collector will then delete all old record versions that are no longer needed.

The log file and the Tables page show the statistics for all tables: here you can ascertain which
tables have large amount of record versions being held by the server. The max number of versions
means there is one record that has this amount of different versions. This indicates that there is still
one active transaction in the database so that the old record versions cannot be deleted.

To find out what or who is causing such a problem, look at the server while the database is in use.

173

IBExpert & Firebird Guide

The above summary shows us that the next transaction is number 3033, and the oldest active
transactions number is 2525. If system tables are activated in the IBExpert Database Explorer
(check the options using the IBExpert Database menu item, Database Registration Info / Database
Explorer page), you can view and open the Firebird 2.1 MON$TRANSACTIONS table. On the Data
page there is an entry in this example for transaction 2525:

This transaction has an attachment ID number 10. It was started at 10:15 and has been active for
over 30 minutes. A typical transaction would not be active for that length of time. More information
concerning this attachment ID 10 can be found in the MON$ATTACHMENTS table:

Here the MON$SERVER_PID is displayed. If you go to the Windows Task Manager's Processes
page, you will see the process ID numbers (you may first need to select the column for display
using the View menu item, Select columns ..., and check the PID (Process ID) column). You can
then trace the number of the Firebird instance that is used by the server. Furthermore this table
also displays the user and role name, the remote address and, if you use the new Firebird clients,
you will also see the remote PID.

174

Database Statistics

In the above example the Windows Task Manager shows me that the PID 2060 has started this
transaction.

Now you only need to find out who/what is using the Firebird server with the transaction number
2525. Connect via isql or using IBExpert's SQL Editor to find out your own current transaction
number using:

SELECT CURRENT_TRANSACTION FROM RDB$DATABASE;

Once the initiator of the oldest transaction is found it can be committed or rolled back. If we now go
back to the MON$ATTACHMENTS table the oldest record is no longer 2525, and if we go back to the
Database Statistics and run it again, we see the Oldest active transaction is now 3185:

The Oldest snapshot transaction number 3185 shows where the garbage collector will start its
work.

The IBExpert Database Statistics are a vital tool for solving performance problems and discerning
areas for fine-tuning. They are also useful, for example, for determining the largest table, are there
any empty tables, average record length (could you increase performance by splitting, for example,
a large table into several smaller ones?), analyzing indices (comparing their actual selectivity with
the real selectivity - do you need to recompute the selectivity of all indices?, which indices are
unused or useless, analyze their depth, etc. etc.).

175

Optimizing Database Performance

Chapter 28: Optimizing Database
Performance

The aim of all developers is to develop a trouble-free efficient database. However as time goes on
and more and more data is added, altered and deleted, unforeseen performance problems are
often encountered. It is important to recognize any impending problems as early as possible.
IBExpert offers a number of tools for this.

Some of these features, such as Indices, Performance Analysis, SP/Triggers/Views Analyzer,
Logging, Database Backup & Restore, and Database Statistics have already been mentioned in
previous chapters. This section concentrates upon the performance optimization of your Firebird
server. With any system there is always a limiting factor. If you remove that limiting factor,
something else then in turn becomes the limiting factor. It is therefore vital to be aware of all these
factors which contribute to your overall database server performance.

 1. Operating systems
Certainly the most popular operating system today is Microsoft, although Linux is constantly
improving its strong foothold in the market. With regard to Windows it is fairly irrelevant which
version you use. Windows 2000 does have the advantage however, that it does not carry as much
overhead as Windows XP and co. Physically it can be roughly estimated, that a Firebird server
installation on Windows working with VMware, the performance is approximately 30% less than
native processor use. VMware offers a number of advantages, for example that you can back up
the complete VMware, complete with database, configuration etc., enabling the database to be
restarted immediately with the same IP address. And VMware files are pretty well impossible to
corrupt.

Performance variations are minimal when using the same hardware and the same Firebird version.
Slight discrepancies in different areas may be detected, these having different advantages and
disadvantages, which need to be assessed individually for individual application requirements.

The real advantage with Linux is quite simply the stability of the total system. With Windows it is
possible to achieve a high level of stability, there are a number of parameters and settings that
need to be accordingly configured. Linux is certainly better with regard to memory configuration,
and the larger the application, the more advantages you will discover with Linux. And if you wish to
run a web server alongside your Firebird server on the same machine, you should definitely
consider Linux.

If however you have a classic medium-sized system with 10-20 users, you will not detect any signi-
ficant differences in overall performance.

 2. Optimal hard disk use
The optimal hard disk configuration for an efficient Firebird server is to have separate dedicated
hard disks for the operating system, database and temp files. Partitions are of no advantage here,
as the read/write head still has to scan the whole drive. The decisive factor with fixed disks is the

177

IBExpert & Firebird Guide

read/write speed; and a large cache can also improve performance. Raid systems are useful for
large databases, and the larger the disk cache the better. Small databases up to 2 GB can fit in the
cache RAM – that can be the database cache RAM or just the Windows cache RAM.

 3. Optimizing hardware configuration
Take into consideration the following factors when looking at optimizing your hardware:
• Multicore CPU are useful for the Firebird Classic server, at least two cores are advisable for

the Superserver - for the server itself, and another for events.
• Large cache server CPUs (Xeon, Opteron) are useful for all architectures - particularly with

large databases ith a high number of users.
• Server main boards are optimized for I/O speed.
• High speed RAM DDR3/DDR2.

 4. Temporary files
Firebird temp files are created when something needs to be sorted or combined from multiple
tables and no index is usable or there is not enough sort memory available. Firebird temp files
begin with FB and, by default, they are stored in the Windows /temp directory, when the Firebird
server is installed as a service. The Firebird temp directory can be altered and specified in the
firebird.conf.

Temp files can get very big very quickly. One of the reasons for this is that they include the full
space for long CHAR or VARCHAR columns. If you need large character fields, use a blob field. The
size of a blob field is dependent on the database page size, for example, in a database with a page
size of 8 KB, the maximum blob size is 32 GB.

 5. Memory configuration
Memory settings depend on the one hand on the database page size and on the other the default
cache pages specified in firebird.conf. The default value is 2048 of the database pages are
reserved for the cache. This value can be altered in the firebird.conf, the maximum value
being 128,000. However, if the memory specified in the firebird.conf (number of pages multiplied by
the page size) is larger than the actual available memory, it will not be possible to open the
database!

We therefore recommend leaving the default size in the firebird.conf as it is at 2048, and
instead, define in the IBExpert Services menu item, Database Properties, that the database should
use 20.000 pages for the cache. The KB size is calculated automatically, and this is the quantity of
bytes which remains in the working memory, which of course speeds up the database performance.
This cache buffers setting for the database overrides the default cache pages in firebird.conf.

Please note:
• Superserver: cache memory per database = page size * buffers
• Classic server: cache memory per connection = page size * buffers

Therefore it is important to define the cache memory for the Classic server at a lower level than for
the Superserver.

178

Optimizing Database Performance

 6. Optimizing OS configuration
Firstly, remove all unnecessary tasks and services from the database server. Scrutinize anything
listed in the Task Manager, when you are unsure why it's there, stop it running, and if possible
deinstall the application that started it in the first place. A Windows system can run with a minimum
number of processes on dedicated database server.

High performance database servers should not be used for anything else, be it file servers, mail
servers (every time they do a POP grab, you're bound to register a discernible drop in database
performance), or print servers and the like. No antivirus software is at all necessary, no
backup/restore software that handles open file backup, especially not for the database files but also
for the temp files. Even

when invoking a shadow, by backing up your database files, serious degradation can be noticed in
the overall server performance, particularly if you have intensive user traffic at the time. Refer to
Automating the database backup and restore to automate backups to be performed at a low traffic
time period.

And please do not run a 3D OpenGL screen saver; fancy screen savers also contribute to
performance degradation! And if you're using Linux, run the server without the GUI to save even
more memory that can be better used by your database server.

 7. Firebird benchmarks tests
The IBExpert demo database, DB1, can be used for simple server benchmark tests. By running the
db1.sql it is possible to quickly determine discrepancies in performance on different hardware
and OS configurations.

Important: when benchmark testing, take into consideration the potential database size and number
of users in a year's time. Testing performance on double your current database size with double the
number of users will offer you the comfort factor in the near future!

 8. Optimizing the database
1. Split complex tables into several smaller ones (Database normalization).

For reasons of compatibility with legacy databases, it might help to add an updatable view
with the name of the old table and with the same structure.
Old source code can still use the old name for SELECT, INSERT, UPDATE or DELETE; new
source code can work directly on the new smaller tables.
This can provide a real improvement in speed, especially in the case of very complex tables.
Typically it also improves the restore speed considerably.

2. Do not use GUID for primary key fields, as these use much more space and will be slower as
an INTEGER or BIGINT.

3. Do not use very long CHAR/VARCHAR fields unless they are really necessary.
4. Seldom-used columns should be stored in different tables.
5. Use indices only where necessary.
6. Compound indices should only be used on large tables.

179

IBExpert & Firebird Guide

7. If you are upgrading from an older Firebird version to the new 2.1 version, it is also important
that you upgrade all your clients accordingly. The Firebird 2.1 client can communicate much
more effectively with the Firebird 2.1 server, which can mean performance improvements of
up to 40%!

 9. Parameters for optimal performance
1. Database model - if your database model is weak no amount of tweaking other parameters

will make any significant difference. Read Developing a data model in chapter 7 and use
IBExpert's Database Designer to optimize your database model.

2. Test SQL statements (refer to Optimizing SQL statements for further information).
3. Analyze index plans - tons of information, examples and tips can be found here: Index

statistics and index selectivity, Fehler: Referenz nicht gefunden, Performance Analysis.
4. Transaction control - monitor, analyze and improve.
5. Server-side programming - let the server do the work, rather than transferring masses of data

pages to the client and performing your queries there.
6. Optimizing cache - refer to Temporary files, Memory configuration and Optimizing hardware

configuration for further information.
7. Hardware.
8. Operating System.
9. Network.

 10. The Firebird Optimizer and index statistics
All statistics are recalculated only when a database is restored after backing up, or when this is
explicitly requested by the developer. When an index is initially created, its statistical value is 0.

Imagine the following situation: you have a database of all the inhabitants of Great Britain. You
require a list of all men living in Little Bigton. How should the server process the query? The
population of Great Britain is currently around 60 million. Approximately half are men.

Should the server first select all men (around 30 million) and then take these results and select all
those who live in Little Bigton, or should it first select all residents of Little Bigton (which let's say
has a population of around 5,000) and then select all men?

The best selectivity is of course to first select all residents of Little Bigton, and then discern the
number of males. The problem is that when you send the query to the server, it needs further
information to help it decide how to go about executing the query. For this it uses indices, and to
decide which index is the best to use first, it relies on the index selectivity.

Therefore it is extremely important, particularly with new databases where the first data sets are
being entered, to regularly explicitly recompute the selectivity, so that the optimizer can recognize
the most efficient indices. This is not so important with databases where little data manipulation
occurs, as the selectivity will change very little.

 11. Automating the recalculation of index statistics
A common problem is that when an application is delivered to a customer, an "empty" database is
supplied, i.e. it contains only the metadata and no customer data. As different customers enter

180

Optimizing Database Performance

different amounts of data, with time some may complain that their application is too slow in certain
areas. This is most often due to the indices' statistics not having been calculated up to date (or not
having been calculated at all!), which means that the Optimizer cannot use the indices efficiently to
process queries.

If you want to have your software working at its most efficient, always use up-to-date statistic
values to maximize performance (if one customer has many orders for few products all serviced by
two employees and another few orders for many products, serviced by 100 employees, the index
statistics and hence selectivity, will obviously develop differently). Without updating the index
statistics regularly as more and more data is added you will incur performance problems (eg. all
males living in Little Bigton). The command for this is:

 SET STATISTICS INDEX

The index names can be found in a system table called RDB$INDICES. This table also displays the
index value of each index in the RDB$STATISTICS column.

Use:
SELECT RDB$INDEX_NAME FROM RDB$INDICES

to obtain list of all index names. A procedure can then be created directly from this selecting into
Local variables.

(This and the following illustration show the Procedure Editor with deactivated Lazy Mode.)

Simply rename the procedure to REINDEX, alter the variable to declare variable sql
carchar(300); and also into :sql. After the index name has been put into the variable, it should
say:

 BEGIN
 SQL='SET STATISTICS INDEX ' ||SQL;
 EXECUTE STATEMENT :SQL;

Here the SET STATISTICS INDEX statement has been combined with the sql variable. And
inside a Firebird stored procedure it is possible to use this SQL statement, which is inside a
variable, and execute it directly from the procedure.

181

IBExpert & Firebird Guide

To run simply type:
EXECUTE PROCEDURE REINDEX

You do not even need to shut down the database to recompute the selectivity of indices.

Do this regularly and the Optimizer will be able to use indices efficiently.

182

Avoiding Server Problems

Chapter 29: Avoiding Server
Problems

 1. Typical causes of server problems

 1.1 Network problems
If you encounter network problems try to ping the server. Check the firebird.log, as this can
indicate where the source lies.

Approximately half the problems with failure to reach the server are due to a Firewall. If you're
using the default port 3050 make sure this is listed in your Firewall settings. Although Firebird
normally only requires one port, this is not the case if you use the Event Alerter. The Event Alerter is
a mechanism with which you can trigger a message, when a certain event occurs, to be sent to a
client. These Event Alerters are a powerful feature. As soon as you register any events with the
Firebird server it will open a separate port. You can specify which port in the firebird.conf file.
Otherwise it selects a random port.

 1.2 Hardware problems
One of the issues on Firebird server hardware is running out of disk space, often due to temp files.
Many DBAs don't set their temp directory in firebird.conf, and often forget to check the temp
directory when they notice they're running out of space. When the hard drive begins to become full,
Windows stores data pages anywhere it can find space. Which of course degrades performance
when searching for and uploading the data on these pages. Please refer to Chapter 28: 4.
Temporary files for further information.

Hardware defects can happen at any time and can have disastrous effects, if you can't react
quickly. The best defense against such a problem is to run a database shadow on another server or
external hard drive. Please refer to Chapter 16: 3.1. Working with shadows for further information.

 1.3 OS problems
When performance starts to degrade it's important not just to look at queries and programming, but
also at the operating system itself.
• Windows system restore: On Windows My Computer / System Properties the automatic

System restore can be disabled. This also prevents Windows copying all manner of files into
the Win/System32/dllcache directory (it not been unknown to discover files of 5GB and
more in this directory!).

• Automatic Windows update: the infamous automatic Windows update with its automatic
rebooting is the cause of many Firebird server machines suddenly being shut down, because

183

IBExpert & Firebird Guide

no one was sitting in front of the screen to stop it. This must be disabled! And it's not just
Windows. There are many other services running that may deny you server access.

So prevent any updates running and rebooting your system automatically, even antivirus applica-
tions. Close everything up, leaving only those really vital ports free. Backups can be configured via
ftp onto a backup server. As far as possible, use a dedicated server for your Firebird applications.

 2. Detect and avoid server problems
Check the Firebird logs from time to time. This provides an opportunity to notice things that users
don't realize are going wrong. Check the Windows Event log as well. When the daily log starts to
increase in size, look for the causes, e.g. that the server is often restarted. The cause of frequent
Firebird server reboots is often due to UDFs. Writing robust UDFs is vital. Poorly written UDFs can
lead to technical suicide, if you are not familiar with memory management. If 2 processes are using
the same UDF simultaneously, it can well lead to server instability. Before you go ahead and write
your own UDFs for everything, consider taking an existing one from a library such as FreeAd-
hocUDF, and complement it if necessary.

Recommendation:
• Use only robust UDF libraries, such as RFunc.
• Check every UDF you've written yourself not just once, but 10 times!

If you're using two difference Firebird/InterBase flavors concurrently, check that the correct fbcli-
ent.dll/gds32.dll version is installed on the server and all clients. You'd be amazed how often
DBAs are surprised by this or that previously undiscovered dlls suddenly turning up, because
somewhere there is an old InterBase version installed (and maybe even still running). When you
start your Firebird 2 database, it tries to work with the old dll. Ensure that at least the correct client
library is available in your application directory for the application's database version.

Remove any old redundant InterBase versions.

Use the IBExpert Communication Diagnostics to test connect to your server. Analyze any error
messages returned. Alternatively attempt a connection at TCPIP level and pinging the server. When
the server can't be reached this way, it is obviously not a Firebird problem.

 3. Communication Diagnostics
IBExpert's Communication Diagnostics can be started from the Services menu. It also appears
automatically when registering a database and the Test Connect button is pressed. IBExpert's
Communication Diagnostics delivers a detailed protocol of the test connect to a registered
InterBase/Firebird server and the results:

184

Avoiding Server Problems

This is particularly useful when attempting to connect to a remote database server, as detailed
status information concerning the various steps taken to make the connection is displayed, indic-
ating problem areas if the connection is not achieved.

The following protocols are supported:
• TCP/IP (worldwide standard)
• SPX: which used to be used by Novell; now even Novell supports TCP/IP.
• NetBEUI: which is not really a network protocol, it simply accesses the line. It is slow as it

makes everything available everywhere and anyone can access the information. This is also
purely a Windows protocol.

Should problems occur, switch to the relevant protocol page and test again.

The TCP/IP protocol offers the following services:
• 21 and FTP: Each port receives a name. With Firebird this is actually optional, with InterBase:

Win\System32\ drivers\etc\services -> ftp (= the name for-) 21/tcp.
• 3050: This is the standard port for Firebird and InterBase. However this is sometimes altered

for obvious reasons of security, or when other databases are already using this port. If a
different port is to be used for the Firebird/InterBase connection, the port number needs to be
included as part of the server name. For example, if port number 3055 is to be used, the
server name is SERVER/3055.

185

IBExpert & Firebird Guide

• gds_db: For InterBase: name = gds_db = 3050 / tcp (a different port to the standard
3050 can be specified if wished). If this entry is nonexistent Firebird does not care; InterBase
however does! The name gds_db has to be present.

• Ping: can be used if the connection was unsuccessful and the reason is not known. This DOS
command checks which input is correct, and works regardless of whether InterBase.exe
or Firebird.exe is installed. The results show whether a database has been found, and at
which address. This should, as a rule, always work unless of course the server uses a
Firewall which does not allow a Ping to be answered. In this case, use the service FTP (as a
rule the same as the 21 service).

Note that in DOS the TRACERT command lists the protocol route. TCP/IP intelligently takes another
direction if one or part of the lines on the quickest route is blocked or down.

Problems may occasionally arise when attempting to connect to a remote server, due to Firewall
issues. These can usually be solved by simply changing the port assignment in firebird.conf
from 3050 to 3051.

186

Command-Line Utilities

Chapter 30: Command-Line Utilities

 1. IBExpert's IBEScript.exe
IBEScript.exe can be found in the IBExpert root directory, and needs to be started from DOS.

Syntax
 IBEScript script_filename [options]

-S Silent mode.
-V<verbose_file> Verbose output file. If <verbose_file> exists, IBEScript will

overwrite it.
-v<verbose_file> Verbose output file. If <verbose_file> exists, IBEScript will

append message to this file.
-E Display only error messages.
-N Continue after error.
-T Write timestamp into log.
-D Connections string (use it if your script does not contain

CONNECT or CREATE DATABASE statements).

-P Connection password (use only with -D option).

-R Connection role (use only with -D option).

-U Connection user name (use only with -D option).

-C Character set (use only with -D option).

-L<1|2|3> SQL dialect (use only with -D option; 1 if not specified)

-i Idle priority.

WARNING: all options are case-sensitive!

There are two possible ways to encrypt/decrypt scripts and to execute encrypted scripts:

1. Encrypting without the password. In this case there is no possibility to decrypt an encrypted
script but it is possible to execute this script with IBEScript.

2. Encrypting with the password. In this case it possible to decrypt the script and execute it with
IBExpert if the correct password is specified.

The following options control the encrypting and decrypting:

-e encrypts a script file and create a file with the extension .esql

187

IBExpert & Firebird Guide

if the output file is not specified (no execution will be performed).
-d decrypts an encrypted script file if it was encrypted with

password (no execution will be performed).
-p<password> encrypt/decrypt password.
-o<file_name> output file name for encrypted and decrypted scripts.

Again: all options are case-sensitive!

Please note that IBExpert cannot work with scripts larger than 2 GB. Should the script exceed 2
GB, you will need to split it into two or more smaller ones.

Example 1
 IBEScript "C:\MyScripts\CreateDB.sql"

Example 2
 IBEScript C:\MyScripts\CreateDB.sql -S -UScriptLog.txt

 2. IBEScript.dll
You can use IBEScript.dll in your applications to execute scripts from file or from a string
buffer. There is a small demo application illustrating its use in the IBEScriptDll folder. Please
also refer to the IBEScriptDll Readme.txt.

For regulations regarding distribution of any of the IBExpert modules (ibexpert.exe,
ibescript.exe, ibescript.dll) together with your application, please refer to
www.ibexpert.com.

 2.1 IBEScriptDll Readme.txt
IBEScript.dll exports the following functions: ExecScriptFile, which executes script from
file and ExecScriptText which executes script from string buffer.

CONNECT: connects to the database if there is no CONNECT statement in the script.

Refer to the demo application in the IBEScriptDll folder for examples of ExecScriptFile.

Example using the CONNECT function:
 procedure TForm1.Button2Click(Sender: TObject);
 var
 Hndl : THandle;
 ESP : TExecuteScriptProc;
 CP : TConnectDBProc;
 s : string;
 Res : integer;
 begin
 ErrCount := 0;
 StmtCount := 0;
 mLog.Lines.Clear;

188

Command-Line Utilities

 s := mScript.Text;
 if Trim(s) = '' then
 begin
 ShowMessage('Nothing to do!');
 Exit;
 end;
 try
 Hndl := LoadLibrary(PChar('IBEScript.dll'));
 if (Hndl > HINSTANCE_ERROR) then
 begin
 ESP := GetProcAddress(Hndl, 'ExecScriptText');
 CP := GetProcAddress(Hndl, 'Connect');
 if (@ESP <> nil) and (@CP <> nil) then
 begin
 Pages.ActivePage := tsOutput;
 Res := CP(PChar('db_name=localhost:c:\empty.fdb;
password=masterkey; user_name=SYSDBA;'
 +
 'lc_ctype=win1251; sql_role_name=ADMIN;
sql_dialect=3;' +
 'clientlib="c:\program
files\firebird\bin\fbclient.dll"'), @CEH);
 if Res = 0 then
 ESP(PChar(s), @HandleError, @BeforeExec, @AfterExec);
 end;
 end;
 finally
 if Hndl > HINSTANCE_ERROR then
 FreeLibrary(Hndl);
 end;
 end;

 3. Firebird/InterBase Command-Line Tools
Several command-line tools are provided with Firebird/InterBase. They perform the same range of
functions as the Server Manager and run on both UNIX and Windows platforms. Like the Server
Manager, they can access servers on any platform that Firebird/InterBase supports. The command-
line tools include the following:

• fbguard.exe

• fbserver.exe

• fb_inet_server.exe

• fbsvcmgr

• NBAK

• NBACKUP

• GBAK

• GFIX

189

IBExpert & Firebird Guide

• GSEC

• GSTAT

• IBLOCKPR (Windows) GDS_LOCK_PRINT (Unix)

• IBMGR

• ISQL - Interactive SQL

The majority of the options provided by these command-line tools are also offered by IBExpert. The
individual tools are described in detail in the IBExpert online documentation.

190

Epilogue

Hopefully you have now gained an insight into the huge potential of IBExpert and Firebird. Unfortu-
nately it is not possible withing the realms of this introductory guide to present all features and
functions. Should you wish to deepen/broaden your knowledge we recommend the comprehensive
online documentation at www.ibexpert.com/doc where, in addition to a complete and detailed
IBExpert documentation, you will find a wealth of database technology articles, language
references and Firebird release notes and quick start guides.

And in the rare case that you should not find an answer to your problem there, we
recommend the forum at http://www.firebirdexperts.com/.

Hopefully the relationship you have begun with IBExpert and Firebird will last for many
years to come!

191

Epilogue

Index

Index

A
ACTIVE

trigger status 66
Adding a new table 53
AFTER

Trigger position 66
An Introduction to Stored Procedure 27
Array 59, 78
Ascending

Index 68
Ascending index 68
Ascendng

Index 68
AutoInc 54
AutoInc

Field 54
autoincrement 53

B
Backup

database backup and restore 56
Backup database 107p.
Basic SQL commands

alias 33
ALTER 31, 37
CONTAINING 33
CREATE 31, 37
DELETE 31, 37
DROP 31, 37
EXECUTE 31
EXISTS operator 36
IN operator 36
INNER JOIN 34
INSERT 31, 36
JOIN 34

INNER JOIN34
LEFT OUTER JOIN34
RIGHT OUTER JOIN34

ORDER BY33
 1. SELECT31

Sub-SELECTs34
UNION SELECT35

SELECT across multiple tables 34
SET 31
SQL 31
SQL Editor 31

UPDATE 31, 36
WHERE clause 33

BEFORE
Trigger position 66

BEFORE INSERT 94
BEGIN … END 81
Benchmarks tests 177
BIG INTEGER 75
BIGINT 53
Binary Large OBject 73
blob 73, 136
Blob

Segment size 74
Subtype 74

Blob filter 67
Blob Viewer/Editor. 73
Blobs 136
Boolean 79
BREAK 87
Breakpoints 89

Debug procedure 89p.
Stored procedure 89

C
Careful mode

Debug procedure 90
CASCADE 55
CASCADE

Referential integrity 55
change language

IBExpert interface language 18
CHAR 74
Character set 139
Charset 48
CHECK constraint 59
CHECK OPTION 62
Client Library 47
CLOSE <cursor_name> 81
Collate 75
Column 60
Command-line utilities 181
Complex SELECTs93
Compound index 40
CONNECT 51

i

Index

Constraint 44, 54, 59
Constraints 54
Constraints

Table Editor54
CONTAINING 91
context-sensitive menu 23
Context-sensitive right-click menu

Database Designer 50
Copy Database Object 141
CREATE DATABASE 46, 50
Create Database

Local server 46
Remote server 46

Create multiple CSV files 146
CREATE PROCEDURE 81
CREATE SHADOW 112
Create Table 53
CREATE TRIGGER 81
Create View from Table 61
Creating your first database43
CURRENT_DATE 77
CURRENT_TIMESTAMP 77

D
Data Analysis 121

Calculated Measures Manager 124
Columns 122
Cube 122
Cube Structure 121
Data Analysis Cube Manager 123
Dimensions122
Main display area 122
Measures 122
OLAP 121

Data Logging Triggers
General Templates 103

Data model 43
Data modeling 45
Data type 73
database 49
Database

Documentation 163
Database backup

Backup Metadata only 108
Backup Options 108
Convert to Tables 109
Format 109
Garbage collection 108, 110
Ignore transactions in Limbo 108
Old metadata description 109
Verbose 109

Database Backup & Restore 107
database backup and restore 56
Database Comparer 142, 158
database design 43
Database Designer45, 49
Database documentation

Generate HTML documentation 165
Object and field descriptions 163
Print metadata 163
Template short cuts 163

Database Explorer 50, 156
Database Explorer, the main navigator,

considerably simplifying the work with InterBase/
Firebird databases and database objects. 22

database model 49
database normalization 43
database object 49
Database objects 53, 59
Database Properties 39
Database repair 138
Database shadow 112
Chapter 27: Database Statistics 171

Garbage collector 171
MON$TRANSACTIONS table 172
Tables page 171
Text page 171

Database trigger 65
DATE 77
DB1

backup 107
demo database 21

Debugger 157
Debugging 89
DECIMAL 76
DECLARE <cursor_name> CURSOR

FOR ... 81
DECLARE VARIABLE 81
DELETE 94, 143
DELETE

Trigger type66
Descending

Index 68
Descending index 68
Diagrams page

Database Designer 50
DB Explorer 50

Disable Performance Analysis 39
DISTINCT41
Domain 59
Domain integrity 60

ii

Index

Domains in stored procedures 95
DOUBLE PRECISION 76
E
Excel

Export 127
Exception 67
Executable

Stored procedure 83
Executable procedure 83
EXECUTE BLOCK 40, 149
EXECUTE IBEBLOCK 115, 155
Execute multiple scripts 146
EXECUTE PROCEDURE 64, 81, 83,

180
EXECUTE STATEMENT 85, 88, 142,

155
EXIT 83
Export 51, 127
Export data into script 129
Export data into script

Export 129
Export formats 128
Extract blobs 136
Extract Metadata 133

Data Tables134
Meta Objects 133
Options page 133, 135

F
Fast mode

Debug procedure 90
fb_inet_server.exe 183
fbclient.dll 13
fbguard.exe 183
fbserver.exe 183
fbsvcmgr 183
FETCH <cursor_name> INTO ... 81
Fields

Description 163
Find in Metadata 139
Firebird

Classic server 11p.
download

Download Firebird,11
Embedded 11
Embedded Server 12
Firebird Guardian 12
Install

client-only install14
Firebird Installer12

Install Firebird11, 15
Linux14
Posix platforms13
Windows14
Windows platforms13
ZIP installation14

Superserver 11p.
Firebird 2.0 blocks 149, 156
Firebird Guardian 13, 15
Firebird Optimizer 178
Firebird Zip kit 11
firebird.conf 15, 39, 41, 47, 176
FirebirdServerDefaultInstance 16
FIRST 85
FLOAT 76
FOR EXECUTE ... DO ... 85
FOR SELECT … DO 64
FOR select DO … 81
Foreign key 44, 50, 54, 68

G
Garbage collector

Database Statistics 171
GBAK 183
GDS_LOCK_PRINT 184
GDS32.DLL 13
General Templates 103
Generate HTML documentation

CSS 165
Options page 165
Output page 165

Generator 53, 66, 137
GFIX 112, 183
Grant All to All

Grant 170
Grant All with Grant option

Grant Manager 170
Chapter 26: Grant Manager169

Edit Role 169
Grant All to All 170
Grant with Grant Authority 169
Granting access to stored procedures
170
Grants 169
WITH GRANT OPTION 170

Grant to All with Grant option
Grant Manager 170

Grant with Grant Authority
Grant Manager 169

Granting access to stored procedures
Grant Manager 170

Grants page

iii

Index

Grant Manager 169
GROUP BY 41
GSEC 184
GSTAT 184

H
HK-Software Services Control Center
15, 119
hkIM.exe 15
I
IBEBlock 119, 155
ibec_CreateReport 116
ibec_ExportReport 117
ibec_ExtractMetadata 136, 138
IBEScript 155
IBEScript.dll 182
IBEScript.exe 143, 159, 181

Decrypt script 181
Encrypt script 181

IBEScriptDll Readme.txt 182
IBExpert

Customer Version 17
download

Download IBExpert17
Install

Install IBExpert17
Linux

Install IBExpert18
setup_customer.exe 17
Trial Version 17
Windows

Install IBExpert17
IBExpertBackupRestore 114

HK-Software Services Control Center
(SCC) 114

IBExpertInstanceManager 13, 15
IBExpertJobScheduler 119
IBExpertNetworkMonitor 152
IBExpetInstanceManager

IpcName 16
RemotePipeName 16
RemoteServiceName 16
RemoteServicePort 16
RootDirectory 16
Service runtime info 16

IBLOCKPR 184
IBMGR 184
IF condition THEN ... ELSE 81
Iindex statistics 178
Import 129
Importing Excel files

Import 130
IN AUTONOMOUS TRANSACTION 142
Inactive

Trigger status 66
Index 38, 54, 68, 97
Index plan91
Index selectivity 69
Index statistics 38, 40, 69, 178
Indices 68
INSERT 94, 140, 143
INSERT

Trigger type66
INSERT ... RETURNING 86
INSERT INTO 151
 2.2 INSERTEX 130

Import 130
Install

Linux
Install Firebird under Linux20
Install IBExpert under Wine20
Wine tools18

Installing multiple Firebird servers 15
INTEGER 75
INTO 86
ISC4.GDB47
ISQL 184

J
JOIN 38, 40, 60, 93

L
LEAVE <label> 81
LEAVE and BREAK 87
LIKE 41, 91
LOCALHOST 46
Log Actions 103
Log Actions page

Log Manager 103
Log Data

Log Manager 104
Log file 104
Log Manager 103
Logging 103
Logs 40
M
Membership page

User Manager 168
Memory configuration 176
Metadata 56, 133, 139
metadata

iv

Index

253 changes of table left 56
Model Navigator 50

Database Designer 50
SQL Assistant 50

Model Options 49p.
Model Options

Database Designer 49, 50
MON$ATTACHMENTS 172
MON$ATTACHMENTS table

MON$SERVER_PID 172
MON$TRANSACTIONS table

Database Statistics 172
Moving data between databases 141
N
n:1

relationships 45
n:m

Create database 46
Data modelin 45
Database Designer 45
Relationships 45

NBACKUP 183
NBAK 183
NEW and OLD context variables 66

Trigger 66
New field 54

Field 54
Next transaction 171

Database Statistics 171
NEXT VALUE FOR <generator> 81
NO ACTION 55
NO ACTION

Referential integrity 55
Non-select procedures 65
NOT NULL 59, 80
NULL 59, 80
NUMERIC76
O
Obtain current generator values 137
ODBC driver 155
ODBC Viewer 129
Oldest active transaction (OAT) 171

Database Statistics 171
Next transaction 171

online documentation 44
OPEN <cursor_name> 81
Operating systems 175
Optimizer 38, 40, 69
Optimizing database performance 177

Optimizing database performance 175
Operating systems 175
Optimal hard disk use175
Optimizing hardware configuration
176
Optimizing OS configuration 177

Optimizing procedures 91
Optimizing SQL statements 40
Options page

Log Manager 104
ORDER BY 40, 68

P
Page

Description page 163
Page Size 47
Parameters and Variables 90

Debug procedure 90
Password 47

User Manager 168
Performance Analysis 39, 41, 91
Performance analysis

Additional 39
Graphical Summary 39

PivotCubeForm
Data Analysis 121

Plan Analysis 92
Plan Analyzer 38, 41
Port 3050 46
Primary key 43, 53, 62, 68p.
primary key

compound primary key 43
Naming conventions 43
system object 44

 3. Print 51
Metadata 163

print Metadata
Print Preview 165

print previe
Print 51

print preview
Print 51

PROJECT60
PSQL 62, 65, 81
R
Read-only view 61
Recompile all stored procedures and

triggers 71, 97
Recompute Selectivity 38, 70

v

Index

Recompute selectivity of all indices 38,
70

Recompute the selectivity of all indices
93
Recursions and modularity 88
Recursive procedures 88
Recursive procedures

Stored procedure 88
Referential integrity55
register a database

Register 21
Relational database 60
relationship 50
Relationships 44
Report Designer

ReportManager 115
Report Manager 115
Reporting 115
Restore

database backup and restore 56
 3. Restore database 110

Client Library File 111
Commit after each table 111
Deactivate indexes 110
Don't enforce validity conditions 111
Metadata only 111
Page size 111
Replace existing database 111
Schadow files

Don't recreate shadow files111
Use all space 111
Verbose 111

Reverse Engineer 49
Reverse Engineer ...

Database Designer 49
Role 68
Roles page

User Manager 168
Row 60
run to cursor 89
Run to cursor

Debug procedure 89
Stored procedure 89

S
Script Executive 21, 136, 144
Script Executive & Script Language

Extensions 145
Script language extensions 147
Search Metadata 139
Search options 139

security.fdb 16, 47
security.fdb or security2.fdb 47
security2.fdb 16, 47
SELECT 39, 60, 138
SELECT … INTO : variable_list 81
Select procedures 64
SELECT statement61p.
Selectable

Stored procedure 83
Selectable procedure 83
 11. Selectable stored procedures 93

Stored procedure 93
Sequence 66
Server-side programming 25
Service description 114
SET DEFAULT 55
SET DEFAULT

Referential integrity 55
SET NULL 55
SET NULL

Referential integrity 55
SET STATISTICS 70, 71
SET STATISTICS INDEX 179
SET TERM 81
SET TERM

Stored procedure 81
SMALL INTEGER 75
SORT 38
SP/Triggers/Views Analyzer 97
Special features 140
SQL Dialect 47
SQL Editor 31, 140, 155
SQL Editor

code templates 38
SQL Performance 38
SQL script21
STARTING WITH 93
Statements

Debug procedure 90
step into 89
Step into

Debug procedure 89
Stored procedure 89

Stored procedure 25, 39, 62
Stored Procedure

INITALL 28
input parameters 27
return values 27

Stored procedure and trigger debugger
84, 89

vi

Index

stored procedure and trigger language
81
SUSPEND 64, 83, 93
SYSDBA 47
system object 44
System tables 68

T
Table 60
Table Data Comparer 143
Table Editor 54
Table trigger 66
Template short cuts

Keyboard templates 163
Templates50
Templates

Database Designer 50
Temporary files 176
Test Data Generator 56
Test Data Generator

Create test data 56
TIME 77
TIMESTAMP 77
Trace 89

Debug procedure 89
Stored procedure 89

Transaction control 155
Trigger 57, 60, 65, 67, 94
Trigger

Universal triggers 61
Trigger types 66
TYPE OF COLUMN 142

U
UDF (User-Defined Function) 67
UNION 60
Universal triggers 90
Universal triggers

Trigger 90
Updatable view 60, 61
UPDATE 94, 143

UPDATE
Trigger type66

UPDATE ... RETURNING 86
User Database 156
Chapter 25: User Manager 167

Membership page 168
Password 168
Roles page 168
Trusted authentication 167
Users page 167

User-Defined Function (UDF) 67
Users page

User Manager 167
 2. Using the GRANT AUTHORITY

option 170
Grant Manager 170

UTF8 165

V
VARCHAR 74
Variable = Expression 81
 3.1 View 60

updatable view 60

W
Watches

Debug procedure 90
WHERE 40, 93, 138
WHILE ... DO 87
WHILE condition DO 81
Windows Task Manager 172
WITH CHECK OPTION 61p.
Working with shadows 112
Writing exceptions 101

Exception 101

 1:1

Relationships 44

/
/* comments */ 81

vii

AN INTRODUCTION TO
IBEXPERT & FIREBIRD
[Copy from Foreword]

If you develop SQL databases, professionally or as a hobby, and need an efficient and
powerful tool, you cannot go wrong with IBExpert. It 4enables you in just a short space of
time to become acquainted with and achieve a command of the open source database,
Firebird, as well as its commercial relative, InterBase. There are powerful and yet easy-to-
learn editors for all vital functions. Development of database objects, database models,
stored procedure and trigger programming, performance tuning -all th8is and much more
can be executed simply and quickly using IBExpert.

The Firebird server is an extremely powerful open source database system,which in spite of
its very simple installation and administration, offers all essential functions otherwi8se found
only in commercial database systems such as Oracle or Informix. However, following
installation the Firebird user has but a few command-line tools at his disposal, there is no
powerful GUI tool for data definition and administration included in the kit. This, along with
the very limited documentation, is the first hurdle that Firebird users need to overcome.

This is where IBExpert comes to the rescue, whether in the form of the free, functionally
limited Personal Edition, the gratis Educational Version or the commercial Full Version
including all modules, which is also available as a 45-day Trial Version. These resources
enable the user the acquire the technical proficiency required for professional applications.
This guide is intended as an introduction for both database developers and administrators,
enabling …

IBExpert KG
Im Gewerbepark 8
27798 Hude
Germany

Phone.: +49 (0) 4408 3593492
Fax: +49 (0) 4408 3593499
E-mail: info@ibexpert.com

