
Firebird 2.1 Release Notes
Helen Borrie (Collator/Editor)

9 January 2008 - Document v. 0210_34 - for Firebird 2.1 RC 1

Firebird 2.1 Release Notes
9 January 2008 - Document v. 0210_34 - for Firebird 2.1 RC 1
Helen Borrie (Collator/Editor)

iv

Table of Contents
1. General Notes .. 1

Bug Reporting ... 2
Documentation ... 2

2. New in Firebird 2 .. 3
New Features Implemented .. 3

On-Disk Structure .. 3
Database Triggers .. 3
SQL and Objects ... 3
Procedural SQL ... 4
Security ... 5
International Language Support .. 5
Platform Support .. 5
Administrative ... 5
Remote Interface .. 6
Derived Tables ... 6
PSQL Now Supports Named Cursors .. 6
Reimplemented Protocols on Windows ... 6
Reworking of Garbage Collection ... 7
Porting of the Services API to Classic is Complete .. 8
Lock Timeout for WAIT Transactions .. 8
New Implementation of String Search Operators .. 8
Reworking of Updatable Views .. 9
Additional Database Shutdown Modes Introduced ... 9
UDFs Improved re NULL Handling .. 9
Run-time Checking for Concatenation Overflow .. 10
Changes to Synchronisation Logic .. 10
Support for 64-bit Platforms ... 10
Record Enumeration Limits Increased ... 10
Debugging Improvements ... 11
Improved Connection Handling on POSIX Superserver .. 11
PSQL Invariant Tracking Reworked .. 11
ROLLBACK RETAIN Syntax Support ... 12
No More Registry Search on Win32 Servers .. 12
More Optimizer Improvements ... 12

3. Changes to the Firebird API and ODS .. 13
API (Application Programming Interface) ... 13

Cleanup of ibase.h .. 13
Lock Timeout for WAIT Transactions ... 13
isc_dsql_sql_info() Now Includes Relation Aliases .. 13
Enhancement to isc_blob_lookup_desc() .. 13
API Identifies Client Version .. 14
Additions to the isc_database_info() Structure ... 14
Additions to the isc_transaction_info() Structure .. 14
Improved Services API ... 15
New Function for Delivering Error Text .. 16
Accommodation of New Shutdown <state> Parameters .. 16

ODS (On-Disk Structure) Changes .. 17
New ODS Number ... 17

Firebird 2.1 Release Notes

v

Size limit for exception messages increased ... 17
New Description Field for Generators ... 18
New Description Field for SQL Roles ... 18
“ODS Type” Recognition ... 18
Smarter DSQL Error Reporting ... 18
New Column in RDB$Index_Segments ... 18

4. Global Improvements in Firebird 2.1 ... 19
Forced Writes on Linux Now Works! ... 19

Forensics .. 19
Instant Fix for an Older Firebird ... 20

Databases on Raw Devices ... 20
Moving a Database to a Raw Device .. 20
Special Issues for nbak/nbackup .. 20
Further Advice about Raw Devices ... 21

Remote Interface Improvements .. 22
API Changes .. 22

XSQLVAR .. 22
Optimization .. 23

Optimization for Multiple Index Scans .. 23
Optimize sparse bitmap operations .. 23

Configuration and Tuning ... 23
Increased Lock Manager Limits & Defaults ... 23
Page sizes of 1K and 2K Deprecated .. 23
Enlarge Disk Allocation Chunks ... 24
Bypass Filesystem Caching on Superserver ... 25

Other Global Improvements .. 26
Garbage Collector Rationalisation ... 26
Immediate Release of External Files ... 26
Synchronization of DSQL metadata cache objects in Classic server ... 26
BLOB Improvements ... 26
Type Flag for Stored Procedures ... 26
Help for Getting Core Dumps on Linux .. 27

5. Data Definition Language (DDL) .. 28
Quick Links ... 28

Database Triggers ... 28
Global Temporary Tables ... 30
Views Enhancements .. 31
SQL2003 compliance for CREATE TRIGGER .. 32
SQL2003 Compliant Alternative for Computed Fields .. 32
CREATE SEQUENCE ... 33
REVOKE ADMIN OPTION ... 34
SET/DROP DEFAULT Clauses for ALTER TABLE ... 34
Syntaxes for Changing Exceptions .. 34
ALTER EXTERNAL FUNCTION .. 35
COMMENT Statement ... 35
Extensions to CREATE VIEW Specification ... 36
RECREATE TRIGGER Statement Implemented .. 36
Usage Enhancements .. 36

6. Data Manipulation Language (DML) ... 38
Quick Links ... 38

Common Table Expressions .. 39
The LIST Function ... 42

Firebird 2.1 Release Notes

vi

The RETURNING Clause .. 43
UPDATE OR INSERT Statement ... 45
New JOIN Types ... 46
INSERT with Defaults ... 47
BLOB Subtype 1 Compatibility with VarChar ... 47
Full Equality Comparisons Between BLOBs .. 48
RDB$DB_KEY Returns NULL in Outer Joins .. 48
Sorting on BLOB and ARRAY Columns is Now Disallowed .. 48
Built-in Functions ... 48
Functions Enhanced in V.2.0.x ... 50
DSQL Parsing of Table Names is Stricter .. 51
EXECUTE BLOCK Statement .. 53
Derived Tables ... 54
ROLLBACK RETAIN Syntax .. 56
ROWS Syntax .. 56
Enhancements to UNION Handling ... 57
Enhancements to NULL Logic .. 58
Subqueries and INSERT Statements Can Now Accept UNION Sets .. 60
New Extensions to UPDATE and DELETE Syntaxes ... 61
Extended Context Variables .. 61
Improvements in Handling User-specified Query Plans .. 65
Improvements in Sorting .. 67
NEXT VALUE FOR Expression ... 68
RETURNING Clause for INSERT Statements ... 68

Articles .. 69
SELECT Statement & Expression Syntax .. 69
Data Type of an Aggregation Result ... 71

7. Procedural SQL (PSQL) ... 72
Quick Links ... 72

Domains in PSQL .. 72
COLLATE in Stored Procedures and Parameters ... 73
WHERE CURRENT OF Now Allowed for Views ... 73
Context Variable ROW_COUNT Enhanced ... 73
Explicit Cursors ... 74
Defaults for Stored Procedure Arguments .. 75
LEAVE <label> Syntax Support ... 77
OLD Context Variables Now Read-only .. 78
PSQL Stack Trace .. 79
Call a UDF as a Void Function (Procedure) .. 80

8. New Reserved Words and Changes ... 81
Newly Reserved Words .. 81
Changed from Non-reserved to Reserved ... 81
Keywords Added as Non-reserved .. 81
Keywords No Longer Reserved .. 82
No Longer Reserved as Keywords .. 82

9. Indexing & Optimizations ... 83
Optimizations in V.2.1 ... 83
Improved PLAN Clause ... 83
Optimizer Improvements .. 83

For All Databases .. 84
For ODS 11 Databases only ... 85

Enhancements to Indexing .. 86

Firebird 2.1 Release Notes

vii

252-byte index length limit is gone ... 86
Expression Indexes ... 86
Changes to Null keys handling ... 87
Improved Index Compression ... 87
Selectivity Maintenance per Segment .. 88

10. International Language Support (INTL) ... 89
New INTL Interface for Non-ASCII Character Sets ... 89

Architecture ... 89
Enhancements .. 89
INTL Plug-ins .. 91
New Character Sets/Collations .. 92
Developments in V.2.1 ... 93
ICU Character Sets .. 93
The UNICODE Collations .. 95
Specific Attributes for Collations .. 95
Collation Changes in V.2.1 ... 96

Metadata Text Conversion .. 97
Repairing Your Metadata Text .. 97

Supported Character Sets .. 98
11. Administrative Features .. 99

Monitoring Tables .. 99
The Concept .. 99
Scope and Security ... 99
Metadata .. 100
Usage ... 103
Cancel a Running Query ... 104

More Context Information .. 104
12. Security .. 106

Summary of Changes ... 106
New security database .. 106
Using Windows Security to Authenticate Users .. 106
Better password encryption ... 106
Users can modify their own passwords .. 106
Non-server access to security database is rejected .. 107
Active protection from brute-force attack ... 107
Vulnerabilities have been closed ... 107

Details of the Security Changes in Firebird 2 ... 107
Authentication .. 108
gsec in Firebird 2 ... 109
Protection from Brute-force Hacking ... 109

Using Windows Security to Authenticate Users ... 109
SQL Privileges ... 110
Administrators .. 110
Configuration Parameter “Authentication” ... 110
Forcing Trusted Authentication ... 111

Classic Server on POSIX .. 111
For Any Platform ... 112
Other Security Improvements .. 112

isc_service_query() wrongly revealed the full database file spec .. 112
Any user could view the server log through the Services API .. 112

Dealing with the New Security Database ... 112
Doing the Security Database Upgrade ... 113

Firebird 2.1 Release Notes

viii

13. Command-line Utilities ... 115
General Enhancements .. 115

Utilities Support for Database Triggers .. 115
Firebird Services .. 115

New Command-line Utility fbsvcmgr .. 115
Backup Tools ... 118

New On-line Incremental Backup .. 118
gbak Backup/Porting/Restore Utility .. 121

ISQL Query Utility .. 122
New Switches .. 122
New Commands and Enhancements .. 124

gsec Authentication Manager .. 127
gsec return code ... 127

gfix Server Utility .. 127
New Shutdown States (Modes) ... 127

Builds and Installs .. 128
Parameter for Instance name added to instsvc.exe .. 128
Revised Win32 Installer Docs ... 129
Gentoo/FreeBSD detection during install ... 129

14. External Functions (UDFs) .. 130
Ability to Signal SQL NULL via a Null Pointer .. 130
UDF library diagnostic messages improved ... 131
UDFs Added and Changed ... 131

IB_UDF_rand() vs IB_UDF_srand() .. 131
IB_UDF_lower ... 132

General UDF Changes .. 132
Build Changes .. 132

15. New Configuration Parameters and Changes .. 133
RelaxedAliasChecking .. 133
MaxFileSystemCache ... 133
DatabaseGrowthIncrement .. 134
ExternalFileAccess ... 134
LegacyHash ... 134
Redirection ... 135

About Multi-hop ... 135
GCPolicy ... 135
OldColumnNaming ... 135
UsePriorityScheduler .. 136
TCPNoNagle has changed .. 136
Removed or Deprecated Parameters .. 136

CreateInternalWindow .. 136
DeadThreadsCollection is no longer used .. 136

16. Firebird 2 Project Teams ... 137
Appendix A: New Built-in Functions .. 139
Appendix B: International Character Sets .. 149

New Character Sets and Collations Implemented ... 149
Narrow Character Sets .. 150
ICU Character Sets ... 150

Appendix C: Security Database Upgrade for Firebird 2 .. 156
Security Upgrade Script .. 156

ix

List of Tables
16.1. Firebird Development Teams .. 137

1

Chapter 1

General Notes
This is the first (and, hopefully, the final) release candidate for Firebird 2.1. Thanks to all who have field-tested
the Alpha and Beta versions and reported problems. As you can tell from the bug-fix list, you found plenty for
us to do, even in the second Beta!

About These Notes

If you have been tracking the alpha and beta binary kits for v.2.1, you would have noticed that the most recent
v.2.0.x release notes were included. This near-final edition of the v.2.1 release notes is a merger of the notes
developed during the v.2.1 and v.2.0 beta and sub-release cycles, so the v.2.0.x documentation is no longer
distributed with the v.2.1 binaries.

The Installation, Migration/Compatibility and Bug Fixes sections are no longer included in the release notes
document. Instead, you will find them in the /doc/ subdirectory as separate documents.

Field Testing

This is designated a release candidate, which means it is a “late beta” with all of the planned additions and
enhancements implemented. As with all pre-release versions, we ask you to test this one rigorously in the field
on dispensable copies of your favourite databases! Bear in mind that this is not the final release, so do think
twice before deciding to install it into a production environment!

Important

From the QA Team

The 2.1 release has many interesting new features that you can play with, like database triggers, temporary
and monitoring tables, common table expressions, recursive queries and dozens of new inbuilt functions. We
encourage you to see what you can achieve with these new features and let us know about any deficiency.

You are enthusiastically invited to post to the firebird-devel list good descriptions of any bugs or beasts you
encounter, or post bug reports directly to our Issue Tracker.

To help smoothe the transition from older versions, we encourage you to test this release with your applications
and stress it with real-world data and loads, enabling as many hidden regressions or performance issues as
possible to surface and be fixed before final release.

Tell us it's OK, too!

We're interested in your feedback even if you don't find any issues. “Positive” feedback helps to shorten the
release cycle because, without it, it is hard to gauge how much the build is being tested in the field, in terms of
both scale and functionality. The “quality index” is estimated using download count, direct feedback, hearsay,
development stage, and such. If the positive feedback doesn't come in, the only way we can compensate for
it is to lengthen the release cycle.

So don't hesitate to share your successful test results with us. You can send your comments and findings to
pcisar AT users DOT sourceforge DOT net

Within reason, you can also ask support questions in firebird-devel but please restrict the questions to matters
concerning the new v.2.1 features. The firebird- devel list is not a support forum for Firebird newbies!

http://tracker.firebirdsql.org

General Notes

2

On the other hand, support questions about Firebird 2.1 Betas (or any other alpha or beta builds) are not welcome
in the firebird-support list, so we ask you to respect our forum rules.

Bug Reporting

• If you think you have discovered a new bug in this release, please make a point of reading the instructions
for bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

• If you think a bug fix hasn't worked, or has caused a regression, please locate the original bug report in the
Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide details of
the OS platform. Include reproducible test data in your report and post it to our Tracker.

2. You are warmly encouraged to make yourself known as a field-tester of this alpha by subscribing to the
field-testers' list and posting the best possible bug description you can.

3. If you want to start a discussion thread about a bug or an implementation, please do so by subscribing to the
firebird-devel list. In that forum you might also see feedback about any tracker ticket you post regarding
this alpha.

Documentation

You will find README documents for many of the new v.2 and v.2.1 features in your installation kit, installed
by default in the /doc/ sub-directory.

An automated "Release Notes" page in the Tracker provides lists and links for all of the Tracker tickets associated
with this version and its various builds. Use this link.

For your convenience, the many bug-fixes and regressions fixed during the development of Firebird 2.0.x and
2.1 are listed in descending chronological order in the separate Bugfixes document.

—Firebird 2 Project Team

http://www.firebirdsql.org/index.php?op=devel&sub=qa&id=bugreport_howto
http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?projectId=10000&styleName=Html&version=10041

3

Chapter 2

New in Firebird 2

New Features Implemented

This chapter summarises the new features implemented in Firebird 2, encompassing both v.2.1 and the v.2.0.x
series.

On-Disk Structure

Databases created or restored under Firebird 2 have an on-disk structure (ODS) of 11 or higher.

• Firebird 2.1 creates databases with an ODS of 11.1. It can read databases of lower ODS but most of its new
features will be unavailable to such databases.

• Firebird 2.0.x servers create databases with an ODS of 11 (sometimes expressed as 11.0). If you wish to have
the full range of v.2.1 features available, you should upgrade ODS 11 and lower databases by backing them
up and restoring them under v.2.1.

Database Triggers

(v.2.1) Newly implemented “database triggers” are user-defined PSQL modules that can be designed to fire in
various connection-level and transaction- level events. See Database Triggers.

SQL and Objects

Global Temporary Tables

(v.2.1) SQL standards-compliant global temporary tables have been implemented. These pre-defined tables are
instantiated on request for connection-specific or transaction-specific use with non-persistent data, which the
Firebird engine stores in temporary files. See Global Temporary Tables.

Common Table Expressions, Recursive DSQL Queries

(v.2.1) Standards-compliant common table expressions, which make dynamic recursive queries possible, are
introduced. See Common Table Expressions.

RETURNING Clause

(v.2.1) Optional RETURNING clause for all singleton operations update, insert and delete operations. See RE-
TURNING Clause.

New in Firebird 2

4

UPDATE OR INSERT Statements for MERGE Functionality

(v.2.1) Now you can write a statement that is capable of performing either an update to an existing record or an
insert, depending on whether the targeted record exists. See UPDATE OR INSERT Statement.

LIST() function

(v.2.1) A new aggregate function LIST(<SOMETHING>) retrieves all of the SOMETHINGs in a group and
aggregates them into a comma-separated list. See LIST Function.

Lots of New Built-in Functions

(v.2.1) Built-in functions replacing many of the UDFs from the Firebird- distributed UDF libraries. For a full
list with examples, see Built-in Functions.

“Short” BLOBs Can Masquerade as Long VARCHARs

(v.2.1) At various levels of evaluation, the engine now treats text BLOBs that are within the 32,765-byte size
limit as though they were varchars. Now functions like cast, lower, upper, trim and substring will work with
these BLOBs, as well as concatenation and assignment to string types. See Text BLOB Compatibility.

Procedural SQL

Domains for Defining PSQL Variables and Arguments

(v.2.1) PSQL local variables and input and output arguments for stored procedures can now be declared using
domains in lieu of canonical data types. See Domains in PSQL.

COLLATE in Stored Procedures and Parameters

(v.2.1) Collations can now be applied to PSQL variables and arguments. See COLLATE in Stored Procedures.

Enhancement to PSQL error stack trace
V. Khorsun

Feature request CORE-970

(v.2.1) A PSQL error stack trace now shows line and column numbers.

http://tracker.firebirdsql.org/browse/CORE-970

New in Firebird 2

5

Security

Windows Security to Authenticate Users

(v.2.1) Windows “Trusted User” security can be applied for authenticating Firebird users on a Windows host.
See Windows Trusted User Security.

International Language Support

The CREATE COLLATION Command

(v.2.1) The DDL command CREATE COLLATION has been introduced for implementing a collation, obviating
the need to use the script for it. See CREATE COLLATION statement.

Unicode Collations Anywhere

(v.2.1) Two new Unicode collations can be applied to any character set using a new mechanism. See UNICODE
Collations.

Platform Support

Ports to Windows 2003 64-bit
D. Yemanov

Feature request CORE-819 and CORE-682

(v.2.1) 64-bit Windows platform (AMD64 and Intel EM64T) ports of Classic, Superserver and Embedded mod-
els.

Administrative

Database Monitoring via SQL

(v.2.1) Implementation of run-time database snapshot monitoring (transactions, tables, etc.) via SQL over some
new system tables that use the new global temporary tables. See Monitoring Tables.

Included in the set of tables is one named MON$DATABASE that provides a lot of the database header infor-
mation that could not be obtained previously via SQL: such details as the on-disk structure (ODS) version, SQL
dialect, sweep interval, OIT and OAT and so on.

It is possible to use the information from the monitoring tables to cancel a rogue query. See Cancel a Running
Query.

http://tracker.firebirdsql.org/browse/CORE-819
http://tracker.firebirdsql.org/browse/CORE-682

New in Firebird 2

6

More Context Information

Context information providing the server engine version has been added, for retrieving via SELECT calls to the
RDB$GET_CONTEXT function. See More Context Information.

Remote Interface

(v.2.1) The remote protocol has been slightly improved to perform better in slow networks once drivers are
updated to utilise the changes. Testing showed that API round trips were reduced by about 50 percent, resulting
in about 40 per cent fewer TCP round trips. See Remote Interface Improvement.

Derived Tables
A. Brinkman

Implemented support for derived tables in DSQL (subqueries in FROM clause) as defined by SQL200X. A
derived table is a set, derived from a dynamic SELECT statement. Derived tables can be nested, if required, to
build complex queries and they can be involved in joins as though they were normal tables or views.

More details under Derived Tables in the DML chapter.

PSQL Now Supports Named Cursors
D. Yemanov

Multiple named (i.e. explicit) cursors are now supported in PSQL and in DSQL EXECUTE BLOCK statements.
More information in the PSQL chapter Explicit Cursors.

Reimplemented Protocols on Windows
D. Yemanov

Two significant changes have been made to the Windows-only protocols.-

Local Protocol--XNET

Firebird 2.0 has replaced the former implementation of the local transport protocol (often referred to as IPC or
IPServer) with a new one, named XNET.

It serves exactly the same goal, to provide an efficient way to connect to server located on the same machine as
the connecting client without a remote node name in the connection string. The new implementation is different
and addresses the known issues with the old protocol.

Like the old IPServer implementation, the XNET implementation uses shared memory for inter-process com-
munication. However, XNET eliminates the use of window messages to deliver attachment requests and it also
implements a different synchronization logic.

Benefits of the XNET Protocol over IPServer

Besides providing a more robust protocol for local clients, the XNET protocol brings some notable benefits:

New in Firebird 2

7

• it works with Classic Server

• it works for non-interactive services and terminal sessions

• it eliminates lockups when a number of simultaneous connections are attempted

Performance

The XNET implementation should be similar to the old IPServer implementation, although XNET is expected
to be slightly faster.

Disadvantages

The one disadvantage is that the XNET and IPServer implementations are not compatible with each other. This
makes it essential that your fbclient.dll version should match the version of the server binaries you are using
(fbserver.exe or fb_inet_server.exe) exactly. It will not be possible to to establish a local connection if this detail
is overlooked. (A TCP localhost loopback connection via an ill-matched client will still do the trick, of course).

Change to WNET (“NetBEUI”) Protocol

WNET (a.k.a. NetBEUI) protocol no longer performs client impersonation.

In all previous Firebird versions, remote requests via WNET are performed in the context of the client security
token. Since the server serves every connection according to its client security credentials, this means that, if the
client machine is running some OS user from an NT domain, that user should have appropriate permissions to
access the physical database file, UDF libraries, etc., on the server filesystem. This situation is contrary to what
is generally regarded as proper for a client-server setup with a protected database.

Such impersonation has been removed in Firebird 2.0. WNET connections are now truly client-server and behave
the same way as TCP ones, i.e., with no presumptions with regard to the rights of OS users.

Reworking of Garbage Collection
V. Khorsun

Since Firebird 1.0 and earlier, the Superserver engine has performed background garbage collection, maintain-
ing information about each new record version produced by an UPDATE or DELETE statement. As soon as the
old versions are no longer “interesting”, i.e. when they become older than the Oldest Snapshot transaction (seen
in the gstat -header output) the engine signals for them to be removed by the garbage collector.

Background GC eliminates the need to re-read the pages containing these versions via a SELECT COUNT(*)
FROM aTable or other table-scanning query from a user, as occurs in Classic and in versions of InterBase prior
to v.6.0. This earlier GC mechanism is known as cooperative garbage collection.

Background GC also averts the possibility that those pages will be missed because they are seldom read. (A
sweep, of course, would find those unused record versions and clear them, but the next sweep is not necessarily
going to happen soon.) A further benefit is the reduction in I/O, because of the higher probability that subse-
quently requested pages still reside in the buffer cache.

Between the point where the engine notifies the garbage collector about a page containing unused versions and
the point when the garbage collector gets around to reading that page, a new transaction could update a record

New in Firebird 2

8

on it. The garbage collector cannot clean up this record if this later transaction number is higher than the Oldest
Snapshot or is still active. The engine again notifies the garbage collector about this page number, overriding
the earlier notification about it and the garbage will be cleaned at some later time.

In Firebird 2.0 Superserver, both cooperative and background garbage collection are now possible. To manage
it, the new configuration parameter GCPolicy was introduced. It can be set to:

• cooperative - garbage collection will be performed only in cooperative mode (like Classic) and the engine
will not track old record versions. This reverts GC behaviour to that of IB 5.6 and earlier. It is the only option
for Classic.

• background - garbage collection will be performed only by background threads, as is the case for Firebird 1.5
and earlier. User table-scan requests will not remove unused record versions but will cause the GC thread to
be notified about any page where an unused record version is detected. The engine will also remember those
page numbers where UPDATE and DELETE statements created back versions.

• combined (the installation default for Superserver) - both background and cooperative garbage collection are
performed.

Note

The Classic server ignores this parameter and always works in “cooperative” mode.

Porting of the Services API to Classic is Complete
N. Samofatov

Porting of the Services API to Classic architecture is now complete. All Services API functions are now available
on both Linux and Windows Classic servers, with no limitations. Known issues with gsec error reporting in
previous versions of Firebird are eliminated.

Lock Timeout for WAIT Transactions
A. Karyakin, D. Yemanov

All Firebird versions provide two transaction wait modes: NO WAIT and WAIT. NO WAIT mode means that
lock conflicts and deadlocks are reported immediately, while WAIT performs a blocking wait which times out
only when the conflicting concurrent transaction ends by being committed or rolled back.

The new feature extends the WAIT mode by making provision to set a finite time interval to wait for the con-
current transactions. If the timeout has passed, an error (isc_lock_timeout) is reported.

Timeout intervals are specified per transaction, using the new TPB constant isc_tpb_lock_timeout in the API or,
in DSQL, the LOCK TIMEOUT <value> clause of the SET TRANSACTION statement.

New Implementation of String Search Operators
N. Samofatov

1. The operators now work correctly with BLOBs of any size. Issues with only the first segment being searched
and with searches missing matches that straddle segment boundaries are now gone.

New in Firebird 2

9

2. Pattern matching now uses a single-pass Knuth-Morris-Pratt algorithm, improving performance when com-
plex patterns are used.

3. The engine no longer crashes when NULL is used as ESCAPE character for LIKE

Reworking of Updatable Views
D. Yemanov

A reworking has been done to resolve problems with views that are implicitly updatable, but still have update
triggers. This is an important change that will affect systems written to take advantage of the undocumented
[mis]behaviour in previous versions.

For details, see the notes in the Compatibility chapter of the separate Installation Notes document.

Additional Database Shutdown Modes Introduced
N. Samofatov

Single-user and full shutdown modes are implemented using new [state] parameters for the gfix -shut and
gfix -online commands.

Syntax Pattern

 gfix <command> [<state>] [<options>]
 <command>> ::= {-shut | -online}
 <state> ::= {normal | multi | single | full}
 <options> ::= {-force <timeout> | -tran | -attach}

• normal state = online database

• multi state = multi-user shutdown mode (the legacy one, unlimited attachments of SYSDBA/owner are al-
lowed)

• single state = single-user shutdown (only one attachment is allowed, used by the restore process)

• full state = full/exclusive shutdown (no attachments are allowed)

For more details, refer to the section on Gfix New Shutdown Modes, in the Utilities chapter.

For a list of shutdown state flag symbols and an example of usage, see Shutdown State in the API.

UDFs Improved re NULL Handling
C. Valderrama

Signalling SQL NULL

• Ability to signal SQL NULL via a NULL pointer (see Signal SQL NULL in UDFs).

New in Firebird 2

10

• External function library ib_udf upgraded to allow the string functions ASCII_CHAR, LOWER, LPAD,
LTRIM, RPAD, RTIM, SUBSTR and SUBSTRLEN to return NULL and have it interpreted correctly.

The script ib_udf_upgrade.sql can be applied to pre-v.2 databases that have these functions declared,
to upgrade them to work with the upgraded library. This script should be used only when you are using the
new ib_udf library with Firebird v2 and operation requests are modified to anticipate nulls.

Run-time Checking for Concatenation Overflow
D. Yemanov

Compile-time checking for concatenation overflow has been replaced by run-time checking.

From Firebird 1.0 onward, concatenation operations have been checked for the possibility that the resulting
string might exceed the string length limit of 32,000 bytes, i.e. overflow. This check was performed during the
statement prepare, using the declared operand sizes and would throw an error for an expressions such as:

 CAST('qwe' AS VARCHAR(30000)) || CAST('rty' AS VARCHAR(30000))

From Firebird 2.0 onward, this expression throws only a warning at prepare time and the overflow check is
repeated at runtime, using the sizes of the actual operands. The result is that our example will be executed without
errors being thrown. The isc_concat_overflow exception is now thrown only for actual overflows, thus bringing
the behaviour of overflow detection for concatenation into line with that for arithmetic operations.

Changes to Synchronisation Logic
N. Samofatov

1. Lock contention in the lock manager and in the SuperServer thread pool manager has been reduced sig-
nificantly

2. A rare race condition was detected and fixed, that could cause Superserver to hang during request processing
until the arrival of the next request

3. Lock manager memory dumps have been made more informative and OWN_hung is detected correctly

4. Decoupling of lock manager synchronization objects for different engine instances was implemented

Support for 64-bit Platforms
A. Peshkov, N. Samofatov

Firebird 2.0 will support 64-bit platforms.

Record Enumeration Limits Increased
N. Samofatov

40-bit (64-bit internally) record enumerators have been introduced to overcome the ~30GB table size limit
imposed by 32-bit record enumeration.

New in Firebird 2

11

Debugging Improvements
Various Contributors

Improved Reporting from Bugchecks

BUGCHECK log messages now include file name and line number. (A. Brinkman)

Updated Internal Structure Reporting

Routines that print out various internal structures (DSQL node tree, BLR, DYN, etc) have been updated. (N.
Samofatov)

New Debug Logging Facilities

Thread-safe and signal-safe debug logging facilities have been implemented. (N. Samofatov)

Diagnostic Enhancement

Syslog messages will be copied to the user's tty if a process is attached to it. (A. Peshkov)

Improved Connection Handling on POSIX Superserver
A. Peshkov

Posix SS builds now handle SIGTERM and SIGINT to shutdown all connections gracefully. (A. Peshkov)

PSQL Invariant Tracking Reworked
N. Samofatov

Invariant tracking in PSQL and request cloning logic were reworked to fix a number of issues with recursive
procedures, for example SF bug #627057.

Invariant tracking is the process performed by the BLR compiler and the optimizer to decide whether an "in-
variant" (an expression, which might be a nested subquery) is independent from the parent context. It is used to
perform one-time evaluations of such expressions and then cache the result.

If some invariant is not determined, we lose in performance. If some variant is wrongly treated as invariant,
we see wrong results.

Example

 select * from rdb$relations
 where rdb$relation_id <
 (select rdb$relation_id from rdb$database)

New in Firebird 2

12

This query performs only one fetch from rdb$database instead of evaluating the subquery for every row of
rdb$relations.

ROLLBACK RETAIN Syntax Support
D. Yemanov

Firebird 2.0 adds an optional RETAIN clause to the DSQL ROLLBACK statement to make it consistent with
COMMIT [RETAIN].

See ROLLBACK RETAIN Syntax in the chapter about DML.

No More Registry Search on Win32 Servers
D. Yemanov

The root directory lookup path has changed so that server processes on Windows no longer use the Registry.

Important

The command-line utilities still check the Registry.

More Optimizer Improvements
A. Brinkman

Better cost-based calculation has been included in the optimizer routines.

13

Chapter 3

Changes to the
Firebird API and ODS

API (Application Programming Interface)

Some needed changes have been performed in the Firebird API. They include.-

Cleanup of ibase.h
D. Yemanov, A. Peshkov

The API header file, ibase.h has been subjected to a cleanup. with the result that public headers no longer contain
private declarations.

Lock Timeout for WAIT Transactions
A. Karyakin, D. Yemanov

The new feature extends the WAIT mode by making provision to set a finite time interval to wait for the con-
current transactions. If the timeout has passed, an error (isc_lock_timeout) is reported.

Timeout intervals can now be specified per transaction, using the new TPB constant isc_tpb_lock_timeout in
the API.

Note

The DSQL equivalent is implemented via the LOCK TIMEOUT <value> clause of the SET TRANSACTION
statement.

isc_dsql_sql_info() Now Includes Relation Aliases
D. Yemanov

The function call isc_dsql_sql_info() has been extended to enable relation aliases to be retrieved, if required.

Enhancement to isc_blob_lookup_desc()
A. dos Santos Fernandes

isc_blob_lookup_desc() now also describes blobs that are outputs of stored procedures

Changes to the Firebird API and ODS

14

API Identifies Client Version
N. Samofatov

The macro definition FB_API_VER is added to ibase.h to indicate the current API version. The number corre-
sponds to the appropriate Firebird version.

The current value of FB_API_VER is 20 (two-digit equivalent of 2.0). This macro can be used by client appli-
cations to check the version of ibase.h its being compiled with.

Additions to the isc_database_info() Structure
V. Khorsun

The following items have been added to the isc_database_info() function call structure:

isc_info_active_tran_count

Returns the number of currently active transactions.

isc_info_creation_date

Returns the date and time when the database was [re]created.

To decode the returned value, call isc_vax_integer twice to extract (first) the date and (second) the time
portions of the ISC_TIMESTAMP. Then, use isc_decode_timestamp() as usual.

Additions to the isc_transaction_info() Structure
V. Khorsun

The following items have been added to the isc_transaction_info() function call structure:

isc_info_tra_oldest_interesting

Returns the number of the oldest [interesting] transaction when the current transaction started. For snapshot
transactions, this is also the number of the oldest transaction in the private copy of the transaction inventory
page (TIP).

isc_info_tra_oldest_active

• For a read-committed transaction, returns the number of the current transaction.

• For all other transactions, returns the number of the oldest active transaction when the current transaction
started.

Changes to the Firebird API and ODS

15

isc_info_tra_oldest_snapshot

Returns the number of the lowest tra_oldest_active of all transactions that were active when the current
transaction started.

Note

This value is used as the threshold ("high-water mark") for garbage collection.

isc_info_tra_isolation

Returns the isolation level of the current transaction. The format of the returned clumplets is:

isc_info_tra_isolation,
 1, isc_info_tra_consistency | isc_info_tra_concurrency |
 2, isc_info_tra_read_committed,
 isc_info_tra_no_rec_version | isc_info_tra_rec_version

That is, for Read Committed transactions, two items are returned (isolation level and record versioning policy)
while, for other transactions, one item is returned (isolation level).

isc_info_tra_access

Returns the access mode (read-only or read-write) of the current transaction. The format of the returned clumplets
is:

isc_info_tra_access, 1, isc_info_tra_readonly | isc_info_tra_readwrite

isc_info_tra_lock_timeout

Returns the lock timeout set for the current transaction.

Improved Services API

The following improvements have been added to the Services API:

Parameter isc_spb_trusted_auth

(V.2.1, ODS 11.1) isc_ spb_ trusted_ auth applies only to Windows and is used to force Firebird to use
Windows trusted authentication for the requested service.

Changes to the Firebird API and ODS

16

Parameter isc_spb_dbname

(V.2.1, ODS 11.1) For any services related to the security database, provides the ability to supply the name of
the security database when invoking a security service remotely. It is equivalent to supplying the -database
switch when calling the gsec utility remotely.

Task Execution Optimized
D. Yemanov

Services are now executed as threads rather than processes on some threadable CS builds (currently 32- bit
Windows and Solaris).

New Function for Delivering Error Text
C. Valderrama

The new function fb_interpret() replaces the former isc_interprete() for extracting the text for a Firebird
error message from the error status vector to a client buffer.

Important

isc_interprete() is vulnerable to overruns and is deprecated as unsafe. The new function should be used instead.

Accommodation of New Shutdown <state> Parameters
D. Yemanov

API Access to database shutdown is through flags appended to the isc_dpb_shutdown parameter in the DBP
argument passed to isc_attach_database(). The symbols for the <state> flags are:

#define isc_dpb_shut_cache 0x1
#define isc_dpb_shut_attachment 0x2
#define isc_dpb_shut_transaction 0x4
#define isc_dpb_shut_force 0x8
#define isc_dpb_shut_mode_mask 0x70

#define isc_dpb_shut_default 0x0
#define isc_dpb_shut_normal 0x10
#define isc_dpb_shut_multi 0x20
#define isc_dpb_shut_single 0x30
#define isc_dpb_shut_full 0x40

Example of Use in C/C++

char dpb_buffer[256], *dpb, *p;
ISC_STATUS status_vector[ISC_STATUS_LENGTH];
isc_db_handle handle = NULL;

Changes to the Firebird API and ODS

17

dpb = dpb_buffer;

*dpb++ = isc_dpb_version1;

const char* user_name = “SYSDBA”;
const int user_name_length = strlen(user_name);
*dpb++ = isc_dpb_user_name;
*dpb++ = user_name_length;
memcpy(dpb, user_name, user_name_length);
dpb += user_name_length;

const char* user_password = “masterkey”;
const int user_password_length = strlen(user_password);
*dpb++ = isc_dpb_password;
*dpb++ = user_password_length;
memcpy(dpb, user_password, user_password_length);
dpb += user_password_length;

// Force an immediate full database shutdown
*dpb++ = isc_dpb_shutdown;
*dpb++ = isc_dpb_shut_force | isc_dpb_shut_full;

const int dpb_length = dpb - dpb_buffer;

isc_attach_database(status_vector,
 0, “employee.db”,
 &handle,
 dpb_length, dpb_buffer);

if (status_vector[0] == 1 && status_vector[1])
{
 isc_print_status(status_vector);
}
else
{
 isc_detach_database(status_vector, &handle);
}

ODS (On-Disk Structure) Changes

On-disk structure (ODS) changes include the following:

New ODS Number

Firebird 2.0 creates databases with an ODS (On-Disk Structure) version of 11.

Size limit for exception messages increased
V. Khorsun

Maximum size of exception messages raised from 78 to 1021 bytes.

Changes to the Firebird API and ODS

18

New Description Field for Generators
C. Valderrama

Added RDB$DESCRIPTION to RDB$GENERATORS, so now you can include description text when creating
generators.

New Description Field for SQL Roles
C. Valderrama

Added RDB$DESCRIPTION and RDB$SYSTEM_FLAG to RDB$ROLES to allow description text and to flag
user-defined roles, respectively.

“ODS Type” Recognition
N. Samofatov

Introduced a concept of ODS type to distinguish between InterBase and Firebird databases.

Smarter DSQL Error Reporting
C. Valderrama

The DSQL parser will now try to report the line and column number of an incomplete statement.

New Column in RDB$Index_Segments
D. Yemanov, A. Brinkman

A new column RDB$STATISTICS has been added to the system table RDB$INDEX_SEGMENTS to store the
per-segment selectivity values for multi-key indexes.

Note

The column of the same name in RDB$INDICES is kept for compatibility and still represents the total index
selectivity, that is used for a full index match.

19

Chapter 4

Global Improvements
in Firebird 2.1

Some global improvements and changes have been implemented in Firebird 2.1, as engine development moves
towards the architectural changes planned for Firebird 3.

Note

Unless otherwise indicated, these improvements apply from v.2.1 forward.

Forced Writes on Linux Now Works!
A. Peshkov

For maximum database safety, we configure databases for synchronous writes, a.k.a. Forced Writes ON. This
mode—strongly recommended for normal production usage—makes the write() system call return only after
the physical write to disk is complete. In turn, it guarantees that, after a COMMIT, any data modified by the
transaction is physically on the hard-drive, not waiting in the operating system's cache.

Its implementation on Linux was very simple - invoke fcntl(dbFile, F_SETFL, O_SYNC).

Yet databases on Linux were sometimes corrupted anyway.

Forensics

Speed tests on Linux showed that setting O_SYNC on a file has no effect at all on performance! Fine, fast
operating system we may think? Alas, no, it's a documented bug in the Linux kernel!

According to the Linux manual, “On Linux this command (i.e. fcntl(fd, F_SETFL, flags)) can only change the
O_APPEND, O_ASYNC, O_DIRECT, O_NOATIME, and O_NONBLOCK flags”. Though it is not document-
ed in any place known to me, it turns out that an attempt to set any flag other than those listed in the manual
(such as O_SYNC, for example) won't work but it does not cause fcntl() to return an error, either.

For Firebird and for InterBase versions since Day One, it means that Forced Writes has never worked on Linux.
It certainly works on Windows. It seems likely that this is not a problem that affects other operating systems,
although we cannot guarantee that. To make sure, you can check whether the implementation of fcntl() on your
OS is capable of setting the O_SYNC flag.

The technique used currently, introduced in the Beta 2 release of Firebird 2.1, is to re-open the file. It should
guarantee correct operation on any OS, provided the open() system call works correctly in this respect. It appears
that no such problems are reported.

The Firebird developers have no idea why such a bug would remain unfixed almost two years after getting into
the Linux kernel's bug-tracker. Apparently, in Linux, a documented bug evolves into a feature...

http://bugzilla.kernel.org/show_bug.cgi?id=5994

Global Improvements in Firebird 2.1

20

Instant Fix for an Older Firebird

Here's a tip if you want to do an instant fix for the problem in an older version of Firebird: use the “sync” option
when mounting any partition with a Firebird database on board. An example of a line in /etc/fstab:

 /dev/sda9 /usr/database ext3 noatime,sync 1 2

Databases on Raw Devices
A. Peshkov

File system I/O can degrade performance severely when a database in Forced Writes mode grows rapidly. On
Linux, which lacks the appropriate system calls to grow the database efficiently, performance with Forced Writes
can be as much as three times slower than with asynchronous writes.

When such conditions prevail, performance may be greatly enhanced by bypassing the file system entirely and
restoring the database directly to a raw device. A Firebird database can be recreated on any type of block device.

Moving a Database to a Raw Device

Moving your database to a raw device can be as simple as restoring a backup directly to an unformatted partition
in the local storage system. For example,

 gbak -c my.fbk /dev/sda7

will restore your database on the third logical disk in the extended partition of your first SCSI or SATA hard-drive
(disk0).

Note

The database does not have a “database name” other than the device name itself. In the example given, the
name of the database is '/dev/sda7'.

Special Issues for nbak/nbackup

The physical backup utility nbackup must be supplied with an explicit file path and name for its difference
file, in order to avoid this file being written into the /dev/ directory. You can achieve this with the following
statement, using isql:

isql /dev/sda7
SQL> alter database add difference file '/tmp/dev_sda7';

Global Improvements in Firebird 2.1

21

To keep the size of the nbak copy within reasonable bounds, it is of benefit to know how much storage on the
device is actually occupied. The '-s' switch of nbackup will return the size of the database in database pages:

nbackup -s -l /dev/sda7
77173

Don't confuse the result here with the block size of the device. The figure returned—77173—is the number of
pages occupied by the database. Calculate the physical size (in bytes) as (number of pages * page size). If you
are unsure of the page size, you can query it from the database header using gstat -h:

 # gstat -h /dev/sda7
 Database "/dev/sda7"
 Database header page information:
 Flags 0
 Checksum 12345
 Generation 43
 Page size 4096 <———
 ODS version 11.1

Examples of nbackup Usage with a Raw Device

1. A backup can be performed in a script, using the output from the '-s' switch directly. For example,

DbFile=/dev/sda7
DbSize=`nbackup -L $DbFile -S` || exit 1
dd if=$DbFile ibs=4k count=$DbSize | # compress and record DVD
nbackup -N $DbFile

2. A physical backup using nbackup directly from the command line:

nbackup -B 0 /dev/sda7 /tmp/lvl.0

Further Advice about Raw Devices

Although no other specific issues are known at this point about the use of raw device storage for databases,
keep in mind that

• the growth and potential growth of the database is less obvious to end-users than one that lives as a file within
a file system. If control of the production system's environment is out of your direct reach, be certain to deploy
adequate documentation for any monitoring that will be required!

• the very Windows-knowledgeable might want to try out the concept of raw device storage on Windows
systems. It has not been a project priority to explore how it might be achieved on that platform. However, if
you think you know a way to do it, please feel welcome to test the idea in your Windows lab and report your
observations—good or bad or indifferent—back to the firebird-devel list.

Global Improvements in Firebird 2.1

22

•
Tip

Maintain your raw devices in aliases.conf. That way, in the event of needing to reconfigure the storage
hardware, there will be no need to alter any connection strings in your application code.

Remote Interface Improvements
V. Khorsun, D. Yemanov

Feature request CORE-971

The remote protocol has been slightly improved to perform better in slow networks. In order to achieve this,
more advanced packets batching is now performed, along with some buffer transmission optimizations. In a
real world test scenario, these changes showed about 50 per cent fewer API round trips, thus incurring about
40 per cent fewer TCP roundtrips.

In Firebird 2.1 the remote interface limits the packet size of the response to various isc_XXX_info calls to the
real used length of the contained data, whereas before it sent the full specified buffer back to the client buffer,
even if only 10 bytes were actually filled. Firebird 2.1 remote interface sends back only 10 bytes in this case.

Some of our users should see a benefit from the changes, especially two-tier clients accessing databases over
the Internet.

The changes can be summarised as

a. Batched packets delivery. Requires both server and client of version v2.1, enabled upon a successful pro-
tocol handshake. Delays sending packets of certain types which can be deferred for batched transfer with
the next packet. (Allocate/deallocate statement operations come into this category, for example.)

b. Pre-fetching some pieces of information about a statement or request and caching them on the client side
for (probable) following API calls. Implemented on the client side only, but relies partly on the benefits
of reduced round trips described in (a).

It works with any server version, even possibly providing a small benefit for badly written client applica-
tions, although best performance is not to be expected if the client is communicating with a pre-V.2.1 server.

c. Reduced information responses from the engine (no trailing zeroes). As the implementation is server-side
only, it requires a V.2.1 server and any client. Even old clients will work with Firebird 2.1 and see some
benefit from the reduction of round trips, although the old remote interface, unlike the new, will still send
back big packets for isc_dsql_prepare().

The changes work with either TCP/IP or NetBEUI. They are backward-compatible, so existing client code will
not be broken. However, existing code will not enable the enhancements unless drivers are updated.

API Changes

XSQLVAR
A. dos Santos Fernandes

The identifier of the connection character set or, when the connection character set is NONE, the BLOB character
set, is now passed in the XSQLVAR: : sqlscale item of text BLOBs.

http://tracker.firebirdsql.org/browse/CORE-971

Global Improvements in Firebird 2.1

23

Optimization

Optimization for Multiple Index Scans
V. Khorsun

Feature request CORE-1069

An optimization was done for index scanning when more than one index is to be scanned with AND conjunctions.

Optimize sparse bitmap operations
V. Khorsun

Feature request CORE-1070

Optimization was done for sparse bitmap operations (set, test and clear) when values are mostly consecutive.

Configuration and Tuning

Increased Lock Manager Limits & Defaults
D. Yemanov

Feature requests CORE-958 and CORE-937

• the maximum number of hash slots is raised from 2048 to 65,536. Because the actual setting should be
a prime number, the exact supported maximum is 65,521 (the biggest prime number below 65,536). The
minimum is 101.

• the new default number of hash slots is 1009

• the default lock table size has been increased to 1 Mb on all platforms

Page sizes of 1K and 2K Deprecated
D. Yemanov

Feature request CORE-969

Page sizes of 1K and 2K are deprecated as inefficient.

Note

The small page restriction applies to new databases only. Old ones can be attached to regardless of their page
size.

http://tracker.firebirdsql.org/browse/CORE-1069
http://tracker.firebirdsql.org/browse/CORE-1070
http://tracker.firebirdsql.org/browse/CORE-958
http://tracker.firebirdsql.org/browse/CORE-937
http://tracker.firebirdsql.org/browse/CORE-969

Global Improvements in Firebird 2.1

24

Enlarge Disk Allocation Chunks
V. Khorsun

Feature request CORE-1229

Until v.2.1, Firebird had no special rules about allocating disk space for database file pages. Because of depen-
dencies between pages that it maintains itself, to service its “careful write” strategy, it has just written to new-
ly-allocated pages in indeterminate order.

For databases using ODS 11.1 and higher, Firebird servers from v.2.1 onward use a different algorithm for
allocating disk space, to address two recognised problems associated with the existing approach:

1. Corruptions resulting from out-of-space conditions on disk

The indeterminate order of writes can give rise to a situation that, at a point where the page cache contains
a large number of dirty pages and Firebird needs to request space for a new page in the process of writing
them out, there is insufficient disk space to fulfil the request. Under such conditions it often happens that the
administrator decides to shut down the database in order to make some more disk space available, causing
the remaining dirty pages in the cache to be lost. This leads to serious corruptions.

2. File fragmentation

Allocating disk space in relatively small chunks can lead to significant fragmentation of the database file
at file system level, impairing the performance of large scans, as during a backup, for example.

The Solution

The solution is to introduce some rules and rationales to govern page writes according to the state of available
disk space, as follows.-

a. Each newly allocated page writes to disk immediately before returning to the engine. If the page cannot be
written then the allocation does not happen: the PIP bit remains uncleared and the appropriate I/O error is
raised. Corruption cannot arise, since it is guaranteed that all dirty pages in cache have disk space allocated
and can be written safely.

Because this change adds an extra write for each newly-allocated page, some performance penalty is to be
expected. To mitigate the effect, writes of newly-allocated pages are performed in batches of up to 128 Kb
and Firebird keeps track of the number of these “initialized” pages in the PIP header.

Note

A page that has been allocated, released and re-allocated is already “space in hand”, meaning that no
further verification is required in order to “initialize” it. Hence, a newly allocated page is subjected to this
double-write only if it is a block that has never been allocated before.

http://tracker.firebirdsql.org/browse/CORE-1229

Global Improvements in Firebird 2.1

25

b. To address the issue of file fragmentation, Firebird now uses the appropriate call to the API of the file
system to preallocate disk space in relatively large chunks.

Preallocation also gives room to avoid corruptions in the event of an “out of disk space” condition. Chances
are that the database will have enough space preallocated to continue operating until the administrator can
make some disk space available.

Important

Windows Only (for Now)

Currently, only Windows file systems publish such API calls, which means that, for now, this aspect of
the solution is supported only in the Windows builds of Firebird. However, similar facilities have recently
been added to the Linux API, allowing the prospect that a suitable API function call will appear in such
popular file systems as ext3 in future.

DatabaseGrowthIncrement Configuration Parameter

For better control of disk space preallocation, the new parameter DatabaseGrowthIncrement has been added to
firebird. conf. It represents the upper limit for the preallocation chunk size in bytes.

Important

Please be sure to read the details regarding this configuration, under DatabaseGrowthIncrement in the chapter
entitled “New Configuration Parameters and Changes”.

Bypass Filesystem Caching on Superserver
V. Khorsun

Feature requests CORE-1381 and CORE-1480

Firebird uses and maintains its own cache in memory for page buffers. The operating system, in turn, may
re-cache Firebird's cache in its own filesystem cache. If Firebird is configured to use a cache that is large relative
to the available RAM and Forced Writes is on, this cache duplication drains resources for little or no benefit.

Often, when the operating system tries to cache a big file, it moves the Firebird page cache to the swap, causing
intensive, unnecessary paging. In practice, if the Firebird page cache size for Superserver is set to more than 80
per cent of the available RAM, resource problems will be extreme.

Note

Filesystem caching is of some benefit on file writes, but only if Forced Writes is OFF, which is not recom-
mended for most conditions.

Now, Superserver on both Windows and POSIX can be configured by a new configuration parameter, Max-
FileSystemCache, to prevent or enable filesystem caching. It may provide the benefit of freeing more memory
for other operations such as sorting and, where there are multiple databases, reduce the demands made on host
resources.

http://tracker.firebirdsql.org/browse/CORE-1381
http://tracker.firebirdsql.org/browse/CORE-1480

Global Improvements in Firebird 2.1

26

Note

For Classic, there is no escaping filesystem caching.

For details of the MaxFileSystemCache parameter, see MaxFileSystemCache.

Other Global Improvements

Garbage Collector Rationalisation
V. Khorsun

Feature request CORE-1071

The background garbage collector process was reading all back versions of records on a page, including those
created by active transactions. Since back versions of active records cannot be considered for garbage collection,
it was wasteful to read them.

Immediate Release of External Files
D. Yemanov

Feature request CORE-969

The engine will now release external table files as soon as they are no longer in use by user requests.

Synchronization of DSQL metadata cache objects in Classic server
A. dos Santos Fernandes

Feature request CORE-976

No details.

BLOB Improvements
A. dos Santos Fernandes

Feature request CORE-1169

Conversion of temporary blobs to the destination blob type now occurs when materializing.

Type Flag for Stored Procedures
D. Yemanov

Feature request CORE-779

Introduced a type flag for stored procedures, adding column RDB$PROCEDURE_TYPE to the table RDB
$PROCEDURES. Possible values are:

http://tracker.firebirdsql.org/browse/CORE-1071
http://tracker.firebirdsql.org/browse/CORE-969
http://tracker.firebirdsql.org/browse/CORE-976
http://tracker.firebirdsql.org/browse/CORE-969
http://tracker.firebirdsql.org/browse/CORE-779

Global Improvements in Firebird 2.1

27

- 0 or NULL -
legacy procedure (no validation checks are performed)

- 1 -
selectable procedure (one that contains a SUSPEND statement)

- 2 -
executable procedure (no SUSPEND statement, cannot be selected from)

Help for Getting Core Dumps on Linux
A. Peshkov

Feature request CORE-1558

The configuration parameter BugcheckAbort provides the capability to make the server stop trying to continue
operation after a bugcheck and instead, to call abort() immediately and dump a core file. Since a bugcheck
usually occurs as a result of a problem the server does not recognise, continuing operation with an unresolved
problem is not usually possible anyway, and the core dump can provide useful debug information.

In the more recent Linux distributions the default setups no longer dump core automatically when an application
crashes. Users often have troubles trying to get them working. Differing rules for Classic and Superserver,
combined with a lack of consistency between the OS setup tools from distro to distro, make it difficult to help
out with any useful “general rule”.

Code has been added for Classic and Superserver on Linux to bypass these problems and automate generation of a
core dump file when an abort() on BUGCHECK occurs. The Firebird server will make the required 'cwd' (change
working directory) to an appropriate writable location (/tmp) and set the core file size limit so that the 'soft' limit
equals the 'hard' limit.

Note

In a release version, the automated core-dumping is active only when the BugcheckAbort parameter in
firebird.conf is set to true (1). In a debug version, it is always active.

If you need to enable the facility, don't forget that the server needs to be restarted to activate a parameter change.

http://tracker.firebirdsql.org/browse/CORE-1558

28

Chapter 5

Data Definition
Language (DDL)

In this chapter are the additions and improvements that have been added to the SQL data definition language
subset in the Firebird 2 development cycle. Those marked as introduced in v.2.1 are available only to ODS 11.1
and higher databases.

Quick Links

• Database Triggers
• Global Temporary Tables
• Column Aliases in CREATE VIEW
• CREATE TRIGGER SQL2003 Variant
• Alternative Syntax for Computed Fields
• CREATE SEQUENCE
• REVOKE ADMIN OPTION
• SET/DROP DEFAULT Clauses
• Syntaxes for Changing Exceptions
• ALTER EXTERNAL FUNCTION
• COMMENT Statement
• CREATE VIEW Extensions
• Create FKs Without Exclusive Access
• Changed Logic for View Updates
• Descriptive Identifiers for BLOB Subtypes
• CREATE COLLATION statement

Database Triggers
Adriano dos Santos Fernandes

(v.2.1) A database trigger is a PSQL module that is executed when a connection or transaction event occurs.
The events and the timings of their triggers are as follows.-

CONNECT
• Database connection is established

• A transaction is started

• Triggers are fired; uncaught exceptions roll back the transaction, disconnect the attachment and are re-
turned to the client

• The transaction is committed

DISCONNECT
• A transaction is started

Data Definition Language (DDL)

29

• Triggers are fired; uncaught exceptions roll back the transaction, disconnect the attachment and are swal-
lowed

• The transaction is committed

• The attachment is disconnected

TRANSACTION START
Triggers are fired in the newly-created user transaction; uncaught exceptions are returned to the client and
the transaction is rolled back.

TRANSACTION COMMIT
Triggers are fired in the committing transaction; uncaught exceptions roll back the trigger's savepoint, the
commit command is aborted and the exception is returned to the client.

Note

For two-phase transactions, the triggers are fired in the “prepare”, not in the commit.

TRANSACTION ROLLBACK
Triggers are fired during the roll-back of the transaction. Changes done will be rolled back with the trans-
action. Exceptions are swallowed

Syntax

<database-trigger> ::=
 {CREATE | RECREATE | CREATE OR ALTER}
 TRIGGER <name>
 [ACTIVE | INACTIVE]
 ON <event>
 [POSITION <n>]
 AS
 BEGIN
 ...
 END

<event> ::=
 CONNECT
 | DISCONNECT
 | TRANSACTION START
 | TRANSACTION COMMIT
 | TRANSACTION ROLLBACK

Rules and Restrictions

1. Database triggers type cannot be changed.

2. Permission to create, recreate, create or alter, or drop database triggers is restricted to the database owner
and SYSDBA.

Utilities Support for Database Triggers

New parameters were added to gbak, nbackup and isql to suppress database triggers from running. They are
available only to the database owner and SYSDBA:

Data Definition Language (DDL)

30

 gbak -nodbtriggers
 isql -nodbtriggers
 nbackup -T

Global Temporary Tables
Vlad Khorsun

(v.2.1) Global temporary tables (GTTs) are tables that are stored in the system catalogue with permanent meta-
data, but with temporary data. Data from different connections (or transactions, depending on the scope) are
isolated from each other, but the metadata of the GTT are shared among all connections and transactions.

There are two kinds of GTT:

• with data that persists for the lifetime of connection in which the specified GTT was referenced; and

• with data that persists only for the lifetime of the referencing transaction.

Syntax and Rules for GTTs

CREATE GLOBAL TEMPORARY TABLE
 ...
 [ON COMMIT <DELETE | PRESERVE> ROWS]

Creates the metadata for the temporary table in the system catalogue.

The clause ON COMMIT sets the kind of temporary table:

ON COMMIT PRESERVE ROWS
Data left in the given table after the end of the transaction remain in database until the connection ends.

ON COMMIT DELETE ROWS
Data in the given table are deleted from the database immediately after the end of the transaction. ON COM-
MIT DELETE ROWS is used by default if the optional clause ON COMMIT is not specified.

CREATE GLOBAL TEMPORARY TABLE
is a regular DDL statement that is processed by the engine the same way as a CREATE TABLE statement
is processed. Accordingly, it not possible to create or drop a GTT within a stored procedure or trigger.

Relation Type

GTT definitions are distinguished in the system catalogue from one another and from permanent tables by the
value of RDB$RELATIONS. RDB$RELATION_ TYPE:

• A GTT with ON COMMIT PRESERVE ROWS option has RDB$RELATION_TYPE = 4

A GTT with ON COMMIT DELETE ROWS option has RDB$RELATION_TYPE = 5.

Note

For the full list of values, see RDB$TYPES.

Data Definition Language (DDL)

31

Structural Feature Support

The same structural features that you can apply to regular tables (indexes, triggers, field-level and table level
constraints) are also available to a GTT, with certain restrictions on how GTTs and regular tables can interrelate.-

a. references between persistent and temporary tables are forbidden

b. A GTT with ON COMMIT PRESERVE ROWS cannot have a reference on a GTT with ON COMMIT
DELETE ROWS

c. A domain constraint cannot have a reference to any GTT.

Implementation Notes

An instance of a GTT—a set of data rows created by and visible within the given connection or transaction—is
created when the GTT is referenced for the first time, usually at statement prepare time. Each instance has its
own private set of pages on which data and indexes are stored. The data rows and indexes have the same physical
storage layout as permanent tables.

When the connection or transaction ends, all pages of a GTT instance are released immediately. It is similar to
what happens when a DROP TABLE is performed, except that the metadata definition is retained, of course.
This is much quicker than the traditional row-by-row delete + garbage collection of deleted record versions.

Note

This method of deletion does not cause DELETE triggers to fire, so do not be tempted to define Before or After
Delete triggers on the false assumption that you can incorporate some kind of “last rites” that will be execute
just as your temporary data breathes its last!

The data and index pages of all GTT instances are placed in separate temporary files. Each connection has its
own temporary file created the first time the connection references some GTT.

Note

These temporary files are always opened with Forced Writes = OFF, regardless of the database setting for
Forced Writes.

No limit is placed on the number of GTT instances that can coexist. If you have N transactions active simulta-
neously and each transaction has referenced some GTT then you will have N instances of the GTT.

Views Enhancements
D. Yemanov

A couple of enhancements were made to view definitions in v.2.1.-

Use Column Aliases in CREATE VIEW

Feature requestCORE-831

http://tracker.firebirdsql.org/browse/CORE-831

Data Definition Language (DDL)

32

(v.2.1) Column aliases can now be processed as column names in the view definition.

Example

CREATE VIEW V_TEST AS
 SELECT ID,
 COL1 AS CODE,
 COL2 AS NAME
 FROM TAB;

SQL2003 compliance for CREATE TRIGGER
A. dos Santos Fernandes

Feature request CORE-711

(v.2.1) Alternative syntax is now available for CREATE TRIGGER that complies with SQL2003.

Syntax Patterns

Existing Form

create trigger t1
 FOR atable
 [active] before insert or update
as
 begin
 ...
 end

SQL2003 Form

create trigger t2
 [active] before insert or update
 ON atable
as
 begin
 ...
 end

Note the different positions of the clause identifying the table and the different keywords pointing to the table
identifier (existing: FOR; SQL2003: ON).

Both syntaxes are valid and are available also for all CREATE TRIGGER, RECREATE TRIGGER and CRE-
ATE OR ALTER TRIGGER statements.

SQL2003 Compliant Alternative for Computed Fields
D. Yemanov

Feature request CORE-1386

http://tracker.firebirdsql.org/browse/CORE-711
http://tracker.firebirdsql.org/browse/CORE-1386

Data Definition Language (DDL)

33

(v.2.1) SQL-compliant alternative syntax GENERATED ALWAYS AS was implemented for defining a com-
puted field in CREATE/ALTER TABLE.

Syntax Pattern

<column name> [<type>] GENERATED ALWAYS AS (<expr>)

It is fully equivalent semantically with the legacy form:

<column name> [<type>] COMPUTED [BY] (<expr>)

Example

CREATE TABLE T (PK INT, EXPR GENERATED ALWAYS AS (PK + 1))

CREATE SEQUENCE
D. Yemanov

SEQUENCE has been introduced as a synonym for GENERATOR, in accordance with SQL-99. SEQUENCE
is a syntax term described in the SQL specification, whereas GENERATOR is a legacy InterBase syntax term.
Use of the standard SEQUENCE syntax in your applications is recommended.

A sequence generator is a mechanism for generating successive exact numeric values, one at a time. A sequence
generator is a named schema object. In dialect 3 it is a BIGINT, in dialect 1 it is an INTEGER.

Syntax patterns

 CREATE { SEQUENCE | GENERATOR } <name>
 DROP { SEQUENCE | GENERATOR } <name>
 SET GENERATOR <name> TO <start_value>
 ALTER SEQUENCE <name> RESTART WITH <start_value>
 GEN_ID (<name>, <increment_value>)
 NEXT VALUE FOR <name>

Examples

1.

 CREATE SEQUENCE S_EMPLOYEE;

2.

 ALTER SEQUENCE S_EMPLOYEE RESTART WITH 0;

See also the notes about NEXT VALUE FOR.

Data Definition Language (DDL)

34

Warning

ALTER SEQUENCE, like SET GENERATOR, is a good way to screw up the generation of key values!

REVOKE ADMIN OPTION
D. Yemanov

SYSDBA, the database creator or the owner of an object can grant rights on that object to other users. However,
those rights can be made inheritable, too. By using WITH GRANT OPTION, the grantor gives the grantee the
right to become a grantor of the same rights in turn. This ability can be removed by the original grantor with
REVOKE GRANT OPTION FROM user.

However, there's a second form that involves roles. Instead of specifying the same rights for many users (soon
it becomes a maintenance nightmare) you can create a role, assign a package of rights to that role and then grant
the role to one or more users. Any change to the role's rights affect all those users.

By using WITH ADMIN OPTION, the grantor (typically the role creator) gives the grantee the right to become
a grantor of the same role in turn. Until FB v2, this ability couldn't be removed unless the original grantor
fiddled with system tables directly. Now, the ability to grant the role can be removed by the original grantor
with REVOKE ADMIN OPTION FROM user.

SET/DROP DEFAULT Clauses for ALTER TABLE
C. Valderrama

Domains allow their defaults to be changed or dropped. It seems natural that table fields can be manipulated the
same way without going directly to the system tables.

Syntax Pattern

 ALTER TABLE t ALTER [COLUMN] c SET DEFAULT default_value;
 ALTER TABLE t ALTER [COLUMN] c DROP DEFAULT;

Note

• Array fields cannot have a default value.

• If you change the type of a field, the default may remain in place. This is because a field can be given the
type of a domain with a default but the field itself can override such domain. On the other hand, the field
can be given a type directly in whose case the default belongs logically to the field (albeit the information
is kept on an implicit domain created behind scenes).

Syntaxes for Changing Exceptions
D. Yemanov

The DDL statements RECREATE EXCEPTION and CREATE OR ALTER EXCEPTION (feature request SF
#1167973) have been implemented, allowing either creating, recreating or altering a custom exception, depend-
ing on whether it already exists.

Data Definition Language (DDL)

35

RECREATE EXCEPTION

RECREATE EXCEPTION is exactly like CREATE EXCEPTION if the exception does not already exist. If it
does exist, its definition will be completely replaced, if there are no dependencies on it.

CREATE OR ALTER EXCEPTION

CREATE OR ALTER EXCEPTION will create the exception if it does not already exist, or will alter the defi-
nition if it does, without affecting dependencies.

ALTER EXTERNAL FUNCTION
C. Valderrama

ALTER EXTERNAL FUNCTION has been implemented, to enable the entry_point or the module_name
to be changed when the UDF declaration cannot be dropped due to existing dependencies.

COMMENT Statement
C. Valderrama

The COMMENT statement has been implemented for setting metadata descriptions.

Syntax Pattern

 COMMENT ON DATABASE IS {'txt'|NULL};
 COMMENT ON <basic_type> name IS {'txt'|NULL};
 COMMENT ON COLUMN tblviewname.fieldname IS {'txt'|NULL};
 COMMENT ON PARAMETER procname.parname IS {'txt'|NULL};

An empty literal string '' will act as NULL since the internal code (DYN in this case) works this way with blobs.

 <basic_type>:
 DOMAIN
 TABLE
 VIEW
 PROCEDURE
 TRIGGER
 EXTERNAL FUNCTION
 FILTER
 EXCEPTION
 GENERATOR
 SEQUENCE
 INDEX
 ROLE
 CHARACTER SET
 COLLATION
 SECURITY CLASS1

1not implemented, because this type is hidden.

Data Definition Language (DDL)

36

Extensions to CREATE VIEW Specification
D. Yemanov

FIRST/SKIP and ROWS syntaxes and PLAN and ORDER BY clauses can now be used in view specifications.

From Firebird 2.0 onward, views are treated as fully-featured SELECT expressions. Consequently, the clauses
FIRST/SKIP, ROWS, UNION, ORDER BY and PLAN are now allowed in views and work as expected.

Syntax

For syntax details, refer to Select Statement & Expression Syntax in the chapter about DML.

RECREATE TRIGGER Statement Implemented
D. Yemanov

The DDL statement RECREATE TRIGGER statement is now available in DDL. Semantics are the same as for
other RECREATE statements.

Usage Enhancements

The following changes will affect usage or existing, pre-Firebird 2 workarounds in existing applications or
databases to some degree.

Creating Foreign Key Constraints No Longer Requires Exclusive Access
V. Horsun

Now it is possible to create foreign key constraints without needing to get an exclusive lock on the whole
database.

Changed Logic for View Updates

Apply NOT NULL constraints to base tables only, ignoring the ones inherited by view columns from domain
definitions.

Descriptive Identifiers for BLOB Subtypes
A. Peshkov, C. Valderrama

Previously, the only allowed syntax for declaring a blob filter was:

 declare filter <name> input_type <number> output_type <number>
 entry_point <function_in_library> module_name <library_name>;

The alternative new syntax is:

Data Definition Language (DDL)

37

 declare filter <name> input_type <mnemonic> output_type <mnemonic>
 entry_point <function_in_library> module_name <library_name>;

where <mnemonic> refers to a subtype identifier known to the engine.

Initially they are binary, text and others mostly for internal usage, but an adventurous user could write a new
mnemonic in rdb$types and use it, since it is parsed only at declaration time. The engine keeps the numerical
value. Remember, only negative subtype values are meant to be defined by users.

To get the predefined types, do

 select RDB$TYPE, RDB$TYPE_NAME, RDB$SYSTEM_FLAG
 from rdb$types
 where rdb$field_name = 'RDB$FIELD_SUB_TYPE';

 RDB$TYPE RDB$TYPE_NAME RDB$SYSTEM_FLAG
 ========= ============================ =================

 0 BINARY 1
 1 TEXT 1
 2 BLR 1
 3 ACL 1
 4 RANGES 1
 5 SUMMARY 1
 6 FORMAT 1
 7 TRANSACTION_DESCRIPTION 1
 8 EXTERNAL_FILE_DESCRIPTION 1

Examples

Original declaration:

 declare filter pesh input_type 0 output_type 3
 entry_point 'f' module_name 'p';

Alternative declaration:

 declare filter pesh input_type binary output_type acl
 entry_point 'f' module_name 'p';

Declaring a name for a user defined blob subtype (remember to commit after the insertion):

 SQL> insert into rdb$types
 CON> values('RDB$FIELD_SUB_TYPE', -100, 'XDR', 'test type', 0);
 SQL> commit;
 SQL> declare filter pesh2 input_type xdr output_type text
 CON> entry_point 'p2' module_name 'p';
 SQL> show filter pesh2;
 BLOB Filter: PESH2
 Input subtype: -100 Output subtype: 1
 Filter library is p
 Entry point is p2

38

Chapter 6

Data Manipulation
Language (DML)

In this chapter are the additions and improvements that have been added to the SQL data manipulation language
subset in the Firebird 2 development cycle. Those marked as introduced in v.2.1 are available only to ODS 11.1
and higher databases.

Important

A new configuration parameter, named RelaxedAliasChecking was added to the firebird.conf in Firebird 2.1
to permit a slight relaxation of the Firebird 2.0.x restrictions on mixing relation aliases and table names in a
query (see DSQL Parsing of Table Names is Stricter, below).

This parameter will not be a permanent fixture in Firebird but is intended as a migration aid for those needing
time to adjust existing code. More information under RelaxedAliasChecking in the chapter “New Configuration
Parameters”.

Quick Links

• Common Table Expressions
• LIST Function
• RETURNING Clause
• UPDATE OR INSERT Statement
• New JOIN Types

- NAMED COLUMNS & NATURAL JOIN
- CROSS JOIN

• INSERT with Defaults
• Text BLOB Compatibility
• Compare BLOB=BLOB
• Sorting on BLOBs Disallowed
• RDB$DB_KEY Returns NULL in Outer Joins
• New Built-in Functions
• Enhancements to Built-in Functions
• IIF() Expression
• Improvement in CAST() Behaviour
• Expression Arguments for SUBSTRING()
• DSQL Parsing of Table Names is Stricter
• EXECUTE BLOCK Statement
• Derived Tables
• ROLLBACK RETAIN Syntax
• ROWS Syntax
• UNION DISTINCT
• Improved Type Coercion in UNIONs
• UNIONs Allowed in ANY/ALL/IN Subqueries
• New [NOT] DISTINCT Predicate

Data Manipulation Language (DML)

39

• NULL Comparison Rule Relaxed
• NULLs Ordering Changed
• UNION Sets in Subquery Constructs
• Extended Context Variables
• Query Plans Improvements
• GROUP or ORDER by Alias Name
• GROUP BY Arbitrary Expressions
• Order * Sets by Implicit Degree Number
• NEXT VALUE FOR
• RETURNING Clause for INSERT Statements
• Articles

1. Select Statement & Expression Syntax
2. Data Type of an Aggregation Result

Common Table Expressions

Vlad Khorsun
Based on work by Paul Ruizendaal for Fyracle project

(v.2.1) A common table expression (CTE) is like a view that is defined locally within a main query. The engine
treats a CTE like a derived table and no intermediate materialisation of the data is performed.

Benefits of CTEs

Using CTEs allows you to specify dynamic queries that are recursive:

• The engine begins execution from a non-recursive member.

• For each row evaluated, it starts executing each recursive member one-by-one, using the current values from
the outer row as parameters.

• If the currently executing instance of a recursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

The memory and CPU overhead of a recursive CTE is much less than that of an equivalent recursive stored
procedure.

Recursion Limit

Currently the recursion depth is limited to a hard-coded value of 1024.

Syntax and Rules for CTEs

select :
 select_expr for_update_clause lock_clause
select_expr :
 with_clause select_expr_body order_clause rows_clause
 | select_expr_body order_clause rows_clause
with_clause :
 WITH RECURSIVE with_list | WITH with_list

Data Manipulation Language (DML)

40

with_list :
 with_item | with_item ',' with_list
with_item :
 symbol_table_alias_name derived_column_list
 AS '(' select_expr ')'
select_expr_body :
 query_term
 | select_expr_body UNION distinct_noise query_term
 | select_expr_body UNION ALL query_term

A less formal representation:

WITH [RECURSIVE]
 CTE_A [(a1, a2, …)]
 AS (SELECT …),

 CTE_B [(b1, b2, …)]
 AS (SELECT …),
...
SELECT ...
 FROM CTE_A, CTE_B, TAB1, TAB2 ...
 WHERE ...

Rules for Non-Recursive CTEs

• Multiple table expressions can be defined in one query

• Any clause legal in a SELECT specification is legal in table expressions

• Table expressions can reference one another

• References between expressions should not have loops

• Table expressions can be used within any part of the main query or another table expression

• The same table expression can be used more than once in the main query

• Table expressions (as subqueries) can be used in INSERT, UPDATE and DELETE statements

• Table expressions are legal in PSQL code

• WITH statements can not be nested

Example of a non-recursive CTE

WITH
 DEPT_YEAR_BUDGET AS (
 SELECT FISCAL_YEAR, DEPT_NO,
 SUM(PROJECTED_BUDGET) AS BUDGET
 FROM PROJ_DEPT_BUDGET
 GROUP BY FISCAL_YEAR, DEPT_NO
)
SELECT D.DEPT_NO, D.DEPARTMENT,
 B_1993.BUDGET AS B_1993, B_1994.BUDGET AS B_1994,
 B_1995.BUDGET AS B_1995, B_1996.BUDGET AS B_1996

Data Manipulation Language (DML)

41

 FROM DEPARTMENT D
 LEFT JOIN DEPT_YEAR_BUDGET B_1993
 ON D.DEPT_NO = B_1993.DEPT_NO
 AND B_1993.FISCAL_YEAR = 1993
 LEFT JOIN DEPT_YEAR_BUDGET B_1994
 ON D.DEPT_NO = B_1994.DEPT_NO
 AND B_1994.FISCAL_YEAR = 1994
 LEFT JOIN DEPT_YEAR_BUDGET B_1995
 ON D.DEPT_NO = B_1995.DEPT_NO
 AND B_1995.FISCAL_YEAR = 1995
 LEFT JOIN DEPT_YEAR_BUDGET B_1996
 ON D.DEPT_NO = B_1996.DEPT_NO
 AND B_1996.FISCAL_YEAR = 1996

 WHERE EXISTS (
 SELECT * FROM PROJ_DEPT_BUDGET B
 WHERE D.DEPT_NO = B.DEPT_NO)

Rules for Recursive CTEs

• A recursive CTE is self-referencing (has a reference to itself)

• A recursive CTE is a UNION of recursive and non-recursive members:

- At least one non-recursive member (anchor) must be present

- Non-recursive members are placed first in the UNION

- Recursive members are separated from anchor members and from one another with UNION ALL clauses,
i.e.,

 non-recursive member (anchor)
 UNION [ALL | DISTINCT]
 non-recursive member (anchor)
 UNION [ALL | DISTINCT]
 non-recursive member (anchor)
 UNION ALL
 recursive member
 UNION ALL
 recursive member

• References between CTEs should not have loops

• Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are
not allowed in recursive members

• A recursive member can have only one reference to itself and only in a FROM clause

• A recursive reference cannot participate in an outer join

Example of a recursive CTE

WITH RECURSIVE
 DEPT_YEAR_BUDGET AS

Data Manipulation Language (DML)

42

 (
 SELECT FISCAL_YEAR, DEPT_NO,
 SUM(PROJECTED_BUDGET) AS BUDGET
 FROM PROJ_DEPT_BUDGET
 GROUP BY FISCAL_YEAR, DEPT_NO
),

 DEPT_TREE AS
 (
 SELECT DEPT_NO, HEAD_DEPT, DEPARTMENT,
 CAST('' AS VARCHAR(255)) AS INDENT
 FROM DEPARTMENT
 WHERE HEAD_DEPT IS NULL

 UNION ALL

 SELECT D.DEPT_NO, D.HEAD_DEPT, D.DEPARTMENT,
 H.INDENT || ' '
 FROM DEPARTMENT D
 JOIN DEPT_TREE H
 ON D.HEAD_DEPT = H.DEPT_NO
)

 SELECT D.DEPT_NO,
 D.INDENT || D.DEPARTMENT AS DEPARTMENT,
 B_1993.BUDGET AS B_1993,
 B_1994.BUDGET AS B_1994,
 B_1995.BUDGET AS B_1995,
 B_1996.BUDGET AS B_1996

 FROM DEPT_TREE D
 LEFT JOIN DEPT_YEAR_BUDGET B_1993
 ON D.DEPT_NO = B_1993.DEPT_NO
 AND B_1993.FISCAL_YEAR = 1993

 LEFT JOIN DEPT_YEAR_BUDGET B_1994
 ON D.DEPT_NO = B_1994.DEPT_NO
 AND B_1994.FISCAL_YEAR = 1994

 LEFT JOIN DEPT_YEAR_BUDGET B_1995
 ON D.DEPT_NO = B_1995.DEPT_NO
 AND B_1995.FISCAL_YEAR = 1995

 LEFT JOIN DEPT_YEAR_BUDGET B_1996
 ON D.DEPT_NO = B_1996.DEPT_NO
 AND B_1996.FISCAL_YEAR = 1996

The LIST Function

Oleg Loa
Dmitry Yemanov

(v.2.1) This function returns a string result with the concatenated non-NULL values from a group. It returns
NULL if there are no non-NULL values.

Format

Data Manipulation Language (DML)

43

<list function> ::=
 LIST '(' [{ALL | DISTINCT}] <value expression> [',' <delimiter value>
] ')'

<delimiter value> ::=
 { <string literal> | <parameter> | <variable> }

Syntax Rules

1. If neither ALL nor DISTINCT is specified, ALL is implied.

2. If <delimiter value> is omitted, a comma is used to separate the concatenated values.

Other Notes

1. Numeric and date/time values are implicitly converted to strings during evaluation.

2. The result value is of type BLOB with SUB_TYPE TEXT for all cases except list of BLOB with different
subtype.

3. Ordering of values within a group is implementation-defined.

Examples

/* A */
 SELECT LIST(ID, ':')
 FROM MY_TABLE

/* B */
 SELECT TAG_TYPE, LIST(TAG_VALUE)
 FROM TAGS
 GROUP BY TAG_TYPE

The RETURNING Clause

Dmitry Yemanov
Adriano dos Santos Fernandes

(v.2.1) The purpose of this SQL enhancement is to enable the column values stored into a table as a result of the
INSERT, UPDATE OR INSERT, UPDATE and DELETE statements to be returned to the client.

The most likely usage is for retrieving the value generated for a primary key inside a BEFORE-trigger. The
RETURNING clause is optional and is available in both DSQL and PSQL, although the rules differ slightly.

In DSQL, the execution of the operation itself and the return of the set occur in a single protocol round trip.

Because the RETURNING clause is designed to return a singleton set in response to completing an operation on
a single record, it is not valid to specify the clause in a statement that inserts, updates or deletes multiple records.

Note

In DSQL, the statement always returns the set, even if the operation has no effect on any record. Hence, at this
stage of implementation, the potential exists to return an “empty” set. (This may be changed in future.)

Data Manipulation Language (DML)

44

Syntax Patterns

INSERT INTO ... VALUES (...)
 [RETURNING <column_list> [INTO <variable_list>]]

INSERT INTO ... SELECT ...
 [RETURNING <column_list> [INTO <variable_list>]]

UPDATE OR INSERT INTO ... VALUES (...) ...
 [RETURNING <column_list> [INTO <variable_list>]]

UPDATE ... [RETURNING <column_list> [INTO <variable_list>]]

DELETE FROM ...
 [RETURNING <column_list> [INTO <variable_list>]]

Rules for Using a RETURNING Clause

1. The INTO part (i.e. the variable list) is allowed in PSQL only, for assigning the output set to local variables.
It is rejected in DSQL.

2. The presence of the RETURNING clause causes an INSERT statement to be described by the API as
isc_ info_ sql_ stmt_ exec_ procedure rather than isc_ info_ sql_ stmt_ insert. Existing con-
nectivity drivers should already be capable of supporting this feature without special alterations.

3. The RETURNING clause ignores any explicit record change (update or delete) that occurs as a result of
the execution of an AFTER trigger.

4. OLD and NEW context variables can be used in the RETURNING clause of UPDATE and INSERT OR
UPDATE statements.

5. In UPDATE and INSERT OR UPDATE statements, field references that are unqualified or qualified by
table name or relation alias are resolved to the value of the corresponding NEW context variable.

Examples

1.

INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2)
 RETURNING F1, F2 INTO :V1, :V2;

2.

INSERT INTO T2 (F1, F2)
 VALUES (1, 2)
 RETURNING ID INTO :PK;

3.

DELETE FROM T1
 WHERE F1 = 1
 RETURNING F2;

Data Manipulation Language (DML)

45

4.

UPDATE T1
 SET F2 = F2 * 10
 RETURNING OLD.F2, NEW.F2;

UPDATE OR INSERT Statement
Adriano dos Santos Fernandes

(v.2.1) This syntax has been introduced to enable a record to be either updated or inserted, according to whether
or not it already exists (checked with IS NOT DISTINCT). The statement is available in both DSQL and PSQL.

Syntax Pattern

UPDATE OR INSERT INTO <table or view> [(<column_list>)]
 VALUES (<value_list>)
 [MATCHING <column_list>]
 [RETURNING <column_list> [INTO <variable_list>]]

Examples

1.

UPDATE OR INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2);

2.

UPDATE OR INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (:ID, :NAME)
 RETURNING ID;

3.

UPDATE OR INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2)
 MATCHING (F1);

4.

UPDATE OR INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (:ID, :NAME)
 RETURNING OLD.NAME;

Usage Notes

1. When MATCHING is omitted, the existence of a primary key is required.

2. INSERT and UPDATE permissions are needed on <table or view>.

Data Manipulation Language (DML)

46

3. If the RETURNING clause is present, then the statement is described as isc_ info_ sql_ stmt_ exec_
procedure by the API; otherwise, it is described as isc_ info_ sql_ stmt_ insert.

Note

A “multiple rows in singleton select” error will be raised if the RETURNING clause is present and more than
one record matches the search condition.

New JOIN Types
Adriano dos Santos Fernandes

(v.2.1) Two new JOIN types are introduced: the NAMED COLUMNS join and its close relative, the NATURAL
join.

Syntax and Rules

<named columns join> ::=
 <table reference> <join type> JOIN <table reference>
 USING (<column list>)

<natural join> ::=
 <table reference> NATURAL <join type> JOIN <table primary>

Named columns join

1. All columns specified in <column list> should exist in the tables at both sides.

2. An equi-join (<left table>.<column> = <right table>.<column>) is automatically created for all columns
(ANDed).

3. The USING columns can be accessed without qualifiers—in this case, the result is equivalent to
COALESCE(<left table>.<column>, <right table>.<column>).

4. In “SELECT *”, USING columns are expanded once, using the above rule.

Natural join

1. A “named columns join” is automatically created with all columns common to the left and right tables.

2. If there is no common column, a CROSS JOIN is created.

Examples

/* 1 */
select * from employee
 join department

Data Manipulation Language (DML)

47

 using (dept_no);

/* 2 */
select * from employee_project
 natural join employee
 natural join project;

CROSS JOIN
D. Yemanov

(V.2.0.x) CROSS JOIN is now supported. Logically, this syntax pattern:

 A CROSS JOIN B

is equivalent to either of the following:

 A INNER JOIN B ON 1 = 1

or, simply:

 FROM A, B

INSERT with Defaults
D. Yemanov

Feature request

(v.2.1) It is now possible to INSERT without supplying values, if Before Insert triggers and/or declared defaults
are available for every column and none is dependent on the presence of any supplied 'NEW' value.

Example

INSERT INTO <table>
 DEFAULT VALUES
 [RETURNING <values>]

BLOB Subtype 1 Compatibility with VarChar
A. dos Santos Fernandes

(v.2.1) At various levels of evaluation, the engine now treats text BLOBs that are within the 32,765-byte string
size limit as though they were varchars. Operations that now allow text BLOBs to behave like strings are as-
signments, conversions and concatenations, as well as the functions CAST, LOWER, UPPER, TRIM and SUB-
STRING.

http://tracker.firebirdsql.org/browse/CORE-863

Data Manipulation Language (DML)

48

Full Equality Comparisons Between BLOBs

(v.2.0.x) Comparison can be performed on the entire content of a text BLOB.

RDB$DB_KEY Returns NULL in Outer Joins
A. dos Santos Fernandes

Feature request CORE-979

(v.2.1) By some anomaly, the physical RDB$DB_KEY has always returned a value on every output row when
specified in an outer join, thereby making a test predicated on the assumption that a non-match returns NULL in
all fields return False when it ought to return True. Now, RDB$DB_KEY returns NULL when it should do so.

Sorting on BLOB and ARRAY Columns is Now Disallowed
Dmitry Yemanov

(v.2.1) Previous versions of the engine allowed BLOBs and arrays to be sorted on. While both GROUP BY and
ORDER BY on BLOBs could be prepared successfully, a run-time error was thrown for GROUP BY, due to
inability to convert a blob to a sortable type. ORDER BY "worked" (after a fashion) in all versions, with the
sort operating on the BLOB_ID.

Such a level of tolerance produces wrong or undesirable results. Due to the sorter restrictions, re-implementing
it in any way that makes sense in practice is not possible. Hence, from v.2.1 onwards, any sorting operation that
involves a BLOB or ARRAY type column is rejected at the PREPARE stage.

Built-in Functions

(v.2.1) Some existing built-in functions have been enhanced, while a large number of new ones has been added.

New Built-in Functions

Adriano dos Santos Fernandes
Oleg Loa
Alexey Karyakin

A number of built-in functions has been implemented in V.2.1 to replace common UDFs with the same names.
The built-in functions will not be used if the UDF of the same name is declared in the database.

Note

The choice between UDF and built-in function is decided when compiling the statement. If the statement is
compiled in a PSQL module whilst the UDF is available in the database, then the module will continue to
require the UDF declaration to be present until it is next recompiled.

The new built-in function DECODE() does not have an equivalent UDF in the libraries that are distributed
with Firebird.

http://tracker.firebirdsql.org/browse/CORE-979

Data Manipulation Language (DML)

49

The functions are detailed in Appendix A.

Note

Several of these built-in functions were already available in Firebird 2/ODS 11, viz., LOWER(), TRIM(),
BIT_LENGTH(), CHAR_LENGTH() and OCTET_LENGTH().

Enhancements to Functions
A. dos Santos Fernandes

EXTRACT(WEEK FROM DATE)
Feature request CORE-663

The EXTRACT() function is extended to support the ISO-8601 ordinal week numbers. For example:

EXTRACT (WEEK FROM date '30.09.2007')

returns 39

Specify the Scale for TRUNC()
Feature request CORE-1340

In Beta 1 the implementation of the TRUNC() function supported only one argument, the value to be trun-
cated. From Beta 2, an optional second argument can be supplied to specify the scale of the truncation. For
example:

select
 trunc(987.65, 1),
 trunc(987.65, -1)
 from rdb$database;

returns 987.60, 980.00

For other examples of using TRUNC() with and without the optional scale argument, refer to the alphabetical
listing of functions in Appendix A.

Milliseconds Handling for EXTRACT(), DATEADD() and DATEDIFF()
Feature request CORE-1387

From v.2.1 Beta 2, EXTRACT(), DATEADD() and DATEDIFF() can operate with milliseconds (represent-
ed as an integer number). For example:

EXTRACT (MILLISECOND FROM timestamp '01.01.2000 01:00:00.1234')

returns 123

DATEADD (MILLISECOND, 100, timestamp '01.01.2000 01:00:00.0000')
DATEDIFF (MILLISECOND, timestamp '01.01.2000 02:00:00.0000', timestamp '01.01.2000 01:00:00.0000')

http://tracker.firebirdsql.org/browse/CORE-663
http://tracker.firebirdsql.org/browse/CORE-1340
http://tracker.firebirdsql.org/browse/CORE-1387

Data Manipulation Language (DML)

50

For more explanatory examples of using DATEADD() and DATEDIFF(), refer to the alphabetical listing
of functions in Appendix A.

DATEADD and DATEDIFF Expanded Form Semantics
Improvement request CORE-1490

The semantics used in the choice of keywords for the expanded form of the DATEDIFF() function syntax
will be changed in the next beta or release candidate. In the pattern:

DATEDIFF(<timestamp_part> FROM <date_time> FOR <date_time>)

the keywords FROM and FOR will be changed to:

DATEDIFF(<timestamp_part> FROM <date_time> TO <date_time>)

The contracted form is not affected.
Similarly, the FOR keyword in the expanded form of DATEADD() will be changed to TO.

Functions Enhanced in V.2.0.x

Some function enhancements were already available in the V.2.0.x releases:

IIF() Expression
O. Loa

(V.2.0.x) An IIF() expression can be used as a shortcut for a CASE expression that tests exactly two conditions.
It returns the value of the first sub-expression if the given search condition evaluates to TRUE, otherwise it
returns a value of the second sub-expression.

 IIF (<search_condition>, <value1>, <value2>)

is implemented as a shortcut for

 CASE
 WHEN <search_condition> THEN <value1>
 ELSE <value2>
 END

Example

 SELECT IIF(VAL > 0, VAL, -VAL) FROM OPERATION

http://tracker.firebirdsql.org/browse/CORE-1490

Data Manipulation Language (DML)

51

Improvement in CAST() Behaviour
D. Yemanov

(V.2.0.x) The infamous “Datatype unknown” error (SF Bug #1371274) when attempting some castings has been
eliminated. It is now possible to use CAST to advise the engine about the data type of a parameter.

Example

 SELECT CAST(? AS INT) FROM RDB$DATABASE

Expression Arguments for SUBSTRING()
O. Loa, D. Yemanov

(V.2.0.x) The built-in function SUBSTRING() can now take arbitrary expressions in its parameters.

Formerly, the inbuilt SUBSTRING() function accepted only constants as its second and third arguments (start
position and length, respectively). Now, the arguments can be anything that resolves to a value, including host
parameters, function results, expressions, subqueries, etc.

Note

The length of the resulting column is the same as the length of the first argument. This means that, in the
following

x = varchar(50);
substring(x from 1 for 1);

the new column has a length of 50, not 1. (Thank the SQL standards committee!)

DSQL Parsing of Table Names is Stricter
A. Brinkman

Alias handling and ambiguous field detecting have been improved. In summary:

1. When a table alias is provided for a table, either that alias, or no alias, must be used. It is no longer valid
to supply only the table name.

2. Ambiguity checking now checks first for ambiguity at the current level of scope, making it valid in some
conditions for columns to be used without qualifiers at a higher scope level.

Examples

1. When an alias is present it must be used; or no alias at all is allowed.

a. This query was allowed in FB1.5 and earlier versions:

 SELECT
 RDB$RELATIONS.RDB$RELATION_NAME
 FROM

Data Manipulation Language (DML)

52

 RDB$RELATIONS R

but will now correctly report an error that the field "RDB$RELATIONS.RDB$RELATION_NAME"
could not be found.

Use this (preferred):

 SELECT
 R.RDB$RELATION_NAME
 FROM
 RDB$RELATIONS R

or this statement:

 SELECT
 RDB$RELATION_NAME
 FROM
 RDB$RELATIONS R

b. The statement below will now correctly use the FieldID from the subquery and from the updating table:

 UPDATE
 TableA
 SET
 FieldA = (SELECT SUM(A.FieldB) FROM TableA A
 WHERE A.FieldID = TableA.FieldID)

Note

In Firebird it is possible to provide an alias in an update statement, but many other database vendors
do not support it. These SQL statements will improve the interchangeability of Firebird's SQL with
other SQL database products.

c. This example did not run correctly in Firebird 1.5 and earlier:

 SELECT
 RDB$RELATIONS.RDB$RELATION_NAME,
 R2.RDB$RELATION_NAME
 FROM
 RDB$RELATIONS
 JOIN RDB$RELATIONS R2 ON
 (R2.RDB$RELATION_NAME = RDB$RELATIONS.RDB$RELATION_NAME)

If RDB$RELATIONS contained 90 records, it would return 90 * 90 = 8100 records, but in Firebird
2 it will correctly return 90 records.

2. a. This failed in Firebird 1.5, but is possible in Firebird 2:

 SELECT
 (SELECT RDB$RELATION_NAME FROM RDB$DATABASE)

Data Manipulation Language (DML)

53

 FROM
 RDB$RELATIONS

b. Ambiguity checking in subqueries: the query below would run in Firebird 1.5 without reporting an
ambiguity, but will report it in Firebird 2:

 SELECT
 (SELECT
 FIRST 1 RDB$RELATION_NAME
 FROM
 RDB$RELATIONS R1
 JOIN RDB$RELATIONS R2 ON
 (R2.RDB$RELATION_NAME = R1.RDB$RELATION_NAME))
 FROM
 RDB$DATABASE

EXECUTE BLOCK Statement
V. Khorsun

The SQL language extension EXECUTE BLOCK makes "dynamic PSQL" available to SELECT specifications.
It has the effect of allowing a self-contained block of PSQL code to be executed in dynamic SQL as if it were
a stored procedure.

Syntax pattern

 EXECUTE BLOCK [(param datatype = ?, param datatype = ?, ...)]
 [RETURNS (param datatype, param datatype, ...)]
 AS
 [DECLARE VARIABLE var datatype; ...]
 BEGIN
 ...
 END

For the client, the call isc_dsql_sql_info with the parameter isc_info_sql_stmt_type returns

• isc_info_sql_stmt_select if the block has output parameters. The semantics of a call is similar to a
SELECT query: the client has a cursor open, can fetch data from it, and must close it after use.

• isc_info_sql_stmt_exec_procedure if the block has no output parameters. The semantics of a call
is similar to an EXECUTE query: the client has no cursor and execution continues until it reaches the end
of the block or is terminated by a SUSPEND.

The client should preprocess only the head of the SQL statement or use '?' instead of ':' as the parameter indicator
because, in the body of the block, there may be references to local variables or arguments with a colon prefixed.

Example

The user SQL is

 EXECUTE BLOCK (X INTEGER = :X)
 RETURNS (Y VARCHAR)
 AS

Data Manipulation Language (DML)

54

 DECLARE V INTEGER;
 BEGIN
 INSERT INTO T(...) VALUES (... :X ...);
 SELECT ... FROM T INTO :Y;
 SUSPEND;
 END

The preprocessed SQL is

 EXECUTE BLOCK (X INTEGER = ?)
 RETURNS (Y VARCHAR)
 AS
 DECLARE V INTEGER;
 BEGIN
 INSERT INTO T(...) VALUES (... :X ...);
 SELECT ... FROM T INTO :Y;
 SUSPEND;
 END

Derived Tables
A. Brinkman

Implemented support for derived tables in DSQL (subqueries in FROM clause) as defined by SQL200X. A
derived table is a set, derived from a dynamic SELECT statement. Derived tables can be nested, if required, to
build complex queries and they can be involved in joins as though they were normal tables or views.

Syntax Pattern

 SELECT
 <select list>
 FROM
 <table reference list>

 <table reference list> ::= <table reference> [{<comma> <table reference>}...]

 <table reference> ::=
 <table primary>
 | <joined table>

 <table primary> ::=
 <table> [[AS] <correlation name>]
 | <derived table>

 <derived table> ::=
 <query expression> [[AS] <correlation name>]
 [<left paren> <derived column list> <right paren>]

 <derived column list> ::= <column name> [{<comma> <column name>}...]

Examples

a) Simple derived table:

Data Manipulation Language (DML)

55

 SELECT
 *
 FROM
 (SELECT
 RDB$RELATION_NAME, RDB$RELATION_ID
 FROM
 RDB$RELATIONS) AS R (RELATION_NAME, RELATION_ID)

b) Aggregate on a derived table which also contains an aggregate

 SELECT
 DT.FIELDS,
 Count(*)
 FROM
 (SELECT
 R.RDB$RELATION_NAME,
 Count(*)
 FROM
 RDB$RELATIONS R
 JOIN RDB$RELATION_FIELDS RF ON (RF.RDB$RELATION_NAME = R.RDB$RELATION_NAME)
 GROUP BY
 R.RDB$RELATION_NAME) AS DT (RELATION_NAME, FIELDS)
 GROUP BY
 DT.FIELDS

c) UNION and ORDER BY example:

 SELECT
 DT.*
 FROM
 (SELECT
 R.RDB$RELATION_NAME,
 R.RDB$RELATION_ID
 FROM
 RDB$RELATIONS R
 UNION ALL
 SELECT
 R.RDB$OWNER_NAME,
 R.RDB$RELATION_ID
 FROM
 RDB$RELATIONS R
 ORDER BY
 2) AS DT
 WHERE
 DT.RDB$RELATION_ID <= 4

Points to Note

• Every column in the derived table must have a name. Unnamed expressions like constants should be added
with an alias or the column list should be used.

• The number of columns in the column list should be the same as the number of columns from the query
expression.

• The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

Data Manipulation Language (DML)

56

ROLLBACK RETAIN Syntax
D. Yemanov

The ROLLBACK RETAIN statement is now supported in DSQL.

A “rollback retaining” feature was introduced in InterBase 6.0, but this rollback mode could be used only via
an API call to isc_rollback_retaining(). By contrast, “commit retaining” could be used either via an API call to
isc_commit_retaining() or by using a DSQL COMMIT RETAIN statement.

Firebird 2.0 adds an optional RETAIN clause to the DSQL ROLLBACK statement to make it consistent with
COMMIT [RETAIN].

Syntax pattern: follows that of COMMIT RETAIN.

ROWS Syntax
D. Yemanov

ROWS syntax is used to limit the number of rows retrieved from a select expression. For an uppermost-level
select statement, it would specify the number of rows to be returned to the host program. A more understandable
alternative to the FIRST/SKIP clauses, the ROWS syntax accords with the latest SQL standard and brings some
extra benefits. It can be used in unions, any kind of subquery and in UPDATE or DELETE statements.

It is available in both DSQL and PSQL.

Syntax Pattern

 SELECT ...
 [ORDER BY <expr_list>]
 ROWS <expr1> [TO <expr2>]

Examples

1.

 SELECT * FROM T1
 UNION ALL
 SELECT * FROM T2
 ORDER BY COL
 ROWS 10 TO 100

2.

 SELECT COL1, COL2,
 (SELECT COL3 FROM T3 ORDER BY COL4 DESC ROWS 1)
 FROM T4

3.

Data Manipulation Language (DML)

57

 DELETE FROM T5
 ORDER BY COL5
 ROWS 1

Points to Note

1. When <expr2> is omitted, then ROWS <expr1> is semantically equivalent to FIRST <expr1>. When both
<expr1> and <expr2> are used, then ROWS <expr1> TO <expr2> means the same as FIRST (<expr2>
- <expr1> + 1) SKIP (<expr1> - 1)

2. There is nothing that is semantically equivalent to a SKIP clause used without a FIRST clause.

Enhancements to UNION Handling

The rules for UNION queries have been improved as follows:

UNION DISTINCT Keyword Implementation
D. Yemanov

UNION DISTINCT is now allowed as a synonym for simple UNION, in accordance with the SQL-99 specifi-
cation. It is a minor change: DISTINCT is the default mode, according to the standard. Formerly, Firebird did
not support the explicit inclusion of the optional keyword DISTINCT.

Syntax Pattern

 UNION [{DISTINCT | ALL}]

Improved Type Coercion in UNIONs
A. Brinkman

Automatic type coercion logic between subsets of a union is now more intelligent. Resolution of the data type
of the result of an aggregation over values of compatible data types, such as case expressions and columns at
the same position in a union query expression, now uses smarter rules.

Syntax Rules

Let DTS be the set of data types over which we must determine the final result data type.

1. All of the data types in DTS shall be comparable.

2. Case:

a. If any of the data types in DTS is character string, then:

i. If any of the data types in DTS is variable-length character string, then the result data type is
variable-length character string with maximum length in characters equal to the largest maximum
amongst the data types in DTS.

ii. Otherwise, the result data type is fixed-length character string with length in characters equal to
the maximum of the lengths in characters of the data types in DTS.

Data Manipulation Language (DML)

58

iii. The characterset/collation is used from the first character string data type in DTS.

b. If all of the data types in DTS are exact numeric, then the result data type is exact numeric with scale
equal to the maximum of the scales of the data types in DTS and the maximum precision of all data
types in DTS.

Note

NOTE :: Checking for precision overflows is done at run-time only. The developer should take
measures to avoid the aggregation resolving to a precision overflow.

c. If any data type in DTS is approximate numeric, then each data type in DTS shall be numeric else
an error is thrown.

d. If some data type in DTS is a date/time data type, then every data type in DTS shall be a date/time
data type having the same date/time type.

e. If any data type in DTS is BLOB, then each data type in DTS shall be BLOB and all with the same
sub-type.

UNIONs Allowed in ANY/ALL/IN Subqueries
D. Yemanov

The subquery element of an ANY, ALL or IN search may now be a UNION query.

Enhancements to NULL Logic

The following features involving NULL in DSQL have been implemented:

New [NOT] DISTINCT Test Treats Two NULL Operands as Equal
O. Loa, D. Yemanov

A new equivalence predicate behaves exactly like the equality/inequality predicates, but, instead of testing for
equality, it tests whether one operand is distinct from the other.

Thus, IS NOT DISTINCT treats (NULL equals NULL) as if it were true, since one NULL (or expression re-
solving to NULL) is not distinct from another. It is available in both DSQL and PSQL.

Syntax Pattern

 <value> IS [NOT] DISTINCT FROM <value>

Examples

1.

 SELECT * FROM T1
 JOIN T2

Data Manipulation Language (DML)

59

 ON T1.NAME IS NOT DISTINCT FROM T2.NAME;

2.

 SELECT * FROM T
 WHERE T.MARK IS DISTINCT FROM 'test';

Note

Points to note

1. Because the DISTINCT predicate considers that two NULL values are not distinct, it never evaluates to
the truth value UNKNOWN. Like the IS [NOT] NULL predicate, it can only be True or False.

2. The NOT DISTINCT predicate can be optimized using an index, if one is available.

NULL Comparison Rule Relaxed
D. Yemanov

A NULL literal can now be treated as a value in all expressions without returning a syntax error. You may now
specify expressions such as

 A = NULL
 B > NULL
 A + NULL
 B || NULL

Note

All such expressions evaluate to NULL. The change does not alter nullability-aware semantics of the engine,
it simply relaxes the syntax restrictions a little.

NULLs Ordering Changed to Comply with Standard
N. Samofatov

Placement of nulls in an ordered set has been changed to accord with the SQL standard that null ordering be
consistent, i.e. if ASC[ENDING] order puts them at the bottom, then DESC[ENDING] puts them at the top;
or vice-versa. This applies only to databases created under the new on-disk structure, since it needs to use the
index changes in order to work.

Important

If you override the default nulls placement, no index can be used for sorting. That is, no index will be used for an
ASCENDING sort if NULLS LAST is specified, nor for a DESCENDING sort if NULLS FIRST is specified.

Examples

Data Manipulation Language (DML)

60

 Database: proc.fdb
 SQL> create table gnull(a int);
 SQL> insert into gnull values(null);
 SQL> insert into gnull values(1);
 SQL> select a from gnull order by a;
 A
 ============
 <null>
 1

 SQL> select a from gnull order by a asc;

 A
 ============
 <null>
 1

 SQL> select a from gnull order by a desc;

 A
 ============
 1
 <null>

 SQL> select a from gnull order by a asc nulls first;

 A
 ============
 <null>
 1

 SQL> select a from gnull order by a asc nulls last;

 A
 ============
 1
 <null>

 SQL> select a from gnull order by a desc nulls last;

 A
 ============
 1
 <null>

 SQL> select a from gnull order by a desc nulls first;

 A
 ============
 <null>
 1

Subqueries and INSERT Statements Can Now Accept UNION Sets
D. Yemanov

SELECT specifications used in subqueries and in INSERT INTO <insert-specification> SELECT.. statements
can now specify a UNION set.

Data Manipulation Language (DML)

61

New Extensions to UPDATE and DELETE Syntaxes
O. Loa

ROWS specifications and PLAN and ORDER BY clauses can now be used in UPDATE and DELETE state-
ments.

Users can now specify explicit plans for UPDATE/DELETE statements in order to optimize them manually. It
is also possible to limit the number of affected rows with a ROWS clause, optionally used in combination with
an ORDER BY clause to have a sorted recordset.

Syntax Pattern

 UPDATE ... SET ... WHERE ...
 [PLAN <plan items>]
 [ORDER BY <value list>]
 [ROWS <value> [TO <value>]]

or

 DELETE ... FROM ...
 [PLAN <plan items>]
 [ORDER BY <value list>]
 [ROWS <value> [TO <value>]]

Extended Context Variables

A number of new facilities have been added to extend the context information that can be retrieved:

Sub-second Values Enabled for Time and DateTime Variables
D. Yemanov

CURRENT_TIMESTAMP, 'NOW' Now Return Milliseconds

The context variable CURRENT_TIMESTAMP and the date/time literal 'NOW' will now return the sub-second
time part in milliseconds.

Seconds Precision Enabled for CURRENT_TIME and CURRENT_TIMESTAMP

CURRENT_TIME and CURRENT_TIMESTAMP now optionally allow seconds precision

The feature is available in both DSQL and PSQL.

Syntax Pattern

 CURRENT_TIME [(<seconds precision>)]
 CURRENT_TIMESTAMP [(<seconds precision>)]

Data Manipulation Language (DML)

62

Examples

 1. SELECT CURRENT_TIME FROM RDB$DATABASE;
 2. SELECT CURRENT_TIME(3) FROM RDB$DATABASE;
 3. SELECT CURRENT_TIMESTAMP(3) FROM RDB$DATABASE;

Note

1. The maximum possible precision is 3 which means accuracy of 1/1000 second (one millisecond). This
accuracy may be improved in the future versions.

2. If no seconds precision is specified, the following values are implicit:

• 0 for CURRENT_TIME

• 3 for CURRENT_TIMESTAMP

New System Functions to Retrieve Context Variables
N. Samofatov

Values of context variables can now be obtained using the system functions RDB$GET_CONTEXT and RDB
$SET_CONTEXT. These new built-in functions give access through SQL to some information about the current
connection and current transaction. They also provide a mechanism to retrieve user context data and associate
it with the transaction or connection.

Syntax Pattern

 RDB$SET_CONTEXT(<namespace>, <variable>, <value>)
 RDB$GET_CONTEXT(<namespace>, <variable>)

These functions are really a form of external function that exists inside the database intead of being called
from a dynamically loaded library. The following declarations are made automatically by the engine at database
creation time:

Declaration

 DECLARE EXTERNAL FUNCTION RDB$GET_CONTEXT
 VARCHAR(80),
 VARCHAR(80)
 RETURNS VARCHAR(255) FREE_IT;

 DECLARE EXTERNAL FUNCTION RDB$SET_CONTEXT
 VARCHAR(80),
 VARCHAR(80),
 VARCHAR(255)
 RETURNS INTEGER BY VALUE;

Usage

RDB$SET_CONTEXT and RDB$GET_CONTEXT set and retrieve the current value of a context variable.
Groups of context variables with similar properties are identified by Namespace identifiers. The namespace
determines the usage rules, such as whether the variables may be read and written to, and by whom.

Data Manipulation Language (DML)

63

Note

Namespace and variable names are case-sensitive.

• RDB$GET_CONTEXT retrieves current value of a variable. If the variable does not exist in namespace, the
function returns NULL.

• RDB$SET_CONTEXT sets a value for specific variable, if it is writable. The function returns a value of 1
if the variable existed before the call and 0 otherwise.

• To delete a variable from a context, set its value to NULL.

Pre-defined Namespaces

A fixed number of pre-defined namespaces is available:

USER_SESSION

Offers access to session-specific user-defined variables. You can define and set values for variables with any
name in this context.

USER_TRANSACTION

Offers similar possibilities for individual transactions.

SYSTEM

Provides read-only access to the following variables:

• NETWORK_PROTOCOL :: The network protocol used by client to connect. Currently used values:
“TCPv4”, “WNET”, “XNET” and NULL.

• CLIENT_ADDRESS :: The wire protocol address of the remote client, represented as a string. The value is
an IP address in form "xxx.xxx.xxx.xxx" for TCPv4 protocol; the local process ID for XNET protocol; and
NULL for any other protocol.

• DB_NAME :: Canonical name of the current database. It is either the alias name (if connection via file names
is disallowed DatabaseAccess = NONE) or, otherwise, the fully expanded database file name.

• ISOLATION_LEVEL :: The isolation level of the current transaction. The returned value will be one of
"READ COMMITTED", "SNAPSHOT", "CONSISTENCY".

• TRANSACTION_ID :: The numeric ID of the current transaction. The returned value is the same as would
be returned by the CURRENT_TRANSACTION pseudo-variable.

• SESSION_ID :: The numeric ID of the current session. The returned value is the same as would be returned
by the CURRENT_CONNECTION pseudo-variable.

• CURRENT_USER :: The current user. The returned value is the same as would be returned by the
CURRENT_USER pseudo-variable or the predefined variable USER.

• CURRENT_ROLE :: Current role for the connection. Returns the same value as the CURRENT_ROLE
pseudo-variable.

Data Manipulation Language (DML)

64

Notes

To avoid DoS attacks against the Firebird Server, the number of variables stored for each transaction or session
context is limited to 1000.

Example of Use

 set term ^;
 create procedure set_context(User_ID varchar(40), Trn_ID integer) as
 begin
 RDB$SET_CONTEXT('USER_TRANSACTION', 'Trn_ID', Trn_ID);
 RDB$SET_CONTEXT('USER_TRANSACTION', 'User_ID', User_ID);
 end ^

 create table journal (
 jrn_id integer not null primary key,
 jrn_lastuser varchar(40),
 jrn_lastaddr varchar(255),
 jrn_lasttransaction integer
)^

CREATE TRIGGER UI_JOURNAL FOR JOURNAL BEFORE INSERT OR UPDATE
 as
 begin
 new.jrn_lastuser = rdb$get_context('USER_TRANSACTION', 'User_ID');
 new.jrn_lastaddr = rdb$get_context('SYSTEM', 'CLIENT_ADDRESS');
 new.jrn_lasttransaction = rdb$get_context('USER_TRANSACTION', 'Trn_ID');
 end ^
 commit ^
 execute procedure set_context('skidder', 1) ^

 insert into journal(jrn_id) values(0) ^
 set term ;^

Since rdb$set_context returns 1 or zero, it can be made to work with a simple SELECT statement.

Example

 SQL> select rdb$set_context('USER_SESSION', 'Nickolay', 'ru')
 CNT> from rdb$database;

 RDB$SET_CONTEXT
 ===============
 0

0 means not defined already; we have set it to 'ru'

 SQL> select rdb$set_context('USER_SESSION', 'Nickolay', 'ca')
 CNT> from rdb$database;

 RDB$SET_CONTEXT
 ===============
 1

Data Manipulation Language (DML)

65

1 means it was defined already; we have changed it to 'ca'

 SQL> select rdb$set_context('USER_SESSION', 'Nickolay', NULL)
 CNT> from rdb$database;

 RDB$SET_CONTEXT
 ===============
 1

1 says it existed before; we have changed it to NULL, i.e. undefined it.

 SQL> select rdb$set_context('USER_SESSION', 'Nickolay', NULL)
 CNT> from rdb$database;

 RDB$SET_CONTEXT
 ===============
 0

0, since nothing actually happened this time: it was already undefined .

Improvements in Handling User-specified Query Plans
D. Yemanov

1. Plan fragments are propagated to nested levels of joins, enabling manual optimization of complex outer
joins

2. A user-supplied plan will be checked for correctness in outer joins

3. Short-circuit optimization for user-supplied plans has been added

4. A user-specified access path can be supplied for any SELECT-based statement or clause

Syntax rules

The following schema describing the syntax rules should be helpful when composing plans.

PLAN ({ <stream_retrieval> | <sorted_streams> | <joined_streams> })

<stream_retrieval> ::= { <natural_scan> | <indexed_retrieval> |
 <navigational_scan> }

<natural_scan> ::= <stream_alias> NATURAL

<indexed_retrieval> ::= <stream_alias> INDEX (<index_name>
 [, <index_name> ...])

<navigational_scan> ::= <stream_alias> ORDER <index_name>
 [INDEX (<index_name> [, <index_name> ...])]

<sorted_streams> ::= SORT (<stream_retrieval>)

<joined_streams> ::= JOIN (<stream_retrieval>, <stream_retrieval>
 [, <stream_retrieval> ...])
 | [SORT] MERGE (<sorted_streams>, <sorted_streams>)

Data Manipulation Language (DML)

66

Details

Natural scan means that all rows are fetched in their natural storage order. Thus, all pages must be read before
search criteria are validated.

Indexed retrieval uses an index range scan to find row ids that match the given search criteria. The found matches
are combined in a sparse bitmap which is sorted by page numbers, so every data page will be read only once.
After that the table pages are read and required rows are fetched from them.

Navigational scan uses an index to return rows in the given order, if such an operation is appropriate.-

• The index b-tree is walked from the leftmost node to the rightmost one.

• If any search criterion is used on a column specified in an ORDER BY clause, the navigation is limited to
some subtree path, depending on a predicate.

• If any search criterion is used on other columns which are indexed, then a range index scan is performed in
advance and every fetched key has its row id validated against the resulting bitmap. Then a data page is read
and the required row is fetched.

Note

Note that a navigational scan incurs random page I/O, as reads are not optimized.

A sort operation performs an external sort of the given stream retrieval.

A join can be performed either via the nested loops algorithm (JOIN plan) or via the sort merge algorithm
(MERGE plan).-

• An inner nested loop join may contain as many streams as are required to be joined. All of them are equivalent.

• An outer nested loops join always operates with two streams, so you'll see nested JOIN clauses in the case
of 3 or more outer streams joined.

A sort merge operates with two input streams which are sorted beforehand, then merged in a single run.

Examples

 SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS
 WHERE RDB$RELATION_NAME LIKE 'RDB$%'
 PLAN (RDB$RELATIONS NATURAL)
 ORDER BY RDB$RELATION_NAME

 SELECT R.RDB$RELATION_NAME, RF.RDB$FIELD_NAME
 FROM RDB$RELATIONS R
 JOIN RDB$RELATION_FIELDS RF
 ON R.RDB$RELATION_NAME = RF.RDB$RELATION_NAME
 PLAN MERGE (SORT (R NATURAL), SORT (RF NATURAL))

Notes

1. A PLAN clause may be used in all select expressions, including subqueries, derived tables and view defi-
nitions. It can be also used in UPDATE and DELETE statements, because they're implicitly based on select
expressions.

Data Manipulation Language (DML)

67

2. If a PLAN clause contains some invalid retrieval description, then either an error will be returned or this
bad clause will be silently ignored, depending on severity of the issue.

3. ORDER <navigational_index> INDEX (<filter_indices>) kind of plan is reported by the engine and can
be used in the user-supplied plans starting with FB 2.0.

Improvements in Sorting
A. Brinkman

Some useful improvements have been made to SQL sorting operations:

Order By or Group By <alias-name>

Column aliases are now allowed in both these clauses.

Examples:

1. ORDER BY

 SELECT RDB$RELATION_ID AS ID
 FROM RDB$RELATIONS
 ORDER BY ID

2. GROUP BY

 SELECT RDB$RELATION_NAME AS ID, COUNT(*)
 FROM RDB$RELATION_FIELDS
 GROUP BY ID

GROUP BY Arbitrary Expressions

A GROUP BY condition can now be any valid expression.

Example

 ...
 GROUP BY
 SUBSTRING(CAST((A * B) / 2 AS VARCHAR(15)) FROM 1 FOR 2)

Order * Sets by Implicit Degree Number

Order by degree (ordinal column position) now works on a select * list.

Example

 SELECT *
 FROM RDB$RELATIONS

Data Manipulation Language (DML)

68

 ORDER BY 9

Parameters and Ordinal Sorts--a “Gotcha”

According to grammar rules, since v.1.5, ORDER BY <value_expression> is allowed and <value_expression>
could be a variable or a parameter. It is tempting to assume that ORDER BY <degree_number> could thus be
validly represented as a replaceable input parameter, or an expression containing a parameter.

However, while the DSQL parser does not reject the parameterised ORDER BY clause expression if it resolves
to an integer, the optimizer requires an absolute, constant value in order to identify the position in the output
list of the ordering column or derived field. If a parameter is accepted by the parser, the output will undergo a
“dummy sort” and the returned set will be unsorted.

NEXT VALUE FOR Expression
D. Yemanov

Added SQL-99 compliant NEXT VALUE FOR <sequence_name> expression as a synonym for
GEN_ID(<generator-name>, 1), complementing the introduction of CREATE SEQUENCE syntax as the SQL
standard equivalent of CREATE GENERATOR.

Examples

1.

 SELECT GEN_ID(S_EMPLOYEE, 1) FROM RDB$DATABASE;

2.

 INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (NEXT VALUE FOR S_EMPLOYEE, 'John Smith');

Note

1. Currently, increment ("step") values not equal to 1 (one) can be used only by calling the GEN_ID function.
Future versions are expected to provide full support for SQL-99 sequence generators, which allows the
required increment values to be specified at the DDL level. Unless there is a vital need to use a step
value that is not 1, use of a NEXT VALUE FOR value expression instead of the GEN_ID function is
recommended.

2. GEN_ID(<name>, 0) allows you to retrieve the current sequence value, but it should never be used in
insert/update statements, as it produces a high risk of uniqueness violations in a concurrent environment.

RETURNING Clause for INSERT Statements
D. Yemanov

The RETURNING clause syntax has been implemented for the INSERT statement, enabling the return of a
result set from the INSERT statement. The set contains the column values actually stored. Most common usage
would be for retrieving the value of the primary key generated inside a BEFORE-trigger.

Data Manipulation Language (DML)

69

Available in DSQL and PSQL.

Syntax Pattern

 INSERT INTO ... VALUES (...) [RETURNING <column_list> [INTO <variable_list>]]

Example(s)

1.

 INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2)
 RETURNING F1, F2 INTO :V1, :V2;

2.

 INSERT INTO T2 (F1, F2)
 VALUES (1, 2)
 RETURNING ID INTO :PK;

Note

1. The INTO part (i.e. the variable list) is allowed in PSQL only (to assign local variables) and rejected in
DSQL.

2. In DSQL, values are being returned within the same protocol roundtrip as the INSERT itself is executed.

3. If the RETURNING clause is present, then the statement is described as
isc_info_sql_stmt_exec_procedure by the API (instead of isc_info_sql_stmt_insert), so the existing con-
nectivity drivers should support this feature automagically.

4. Any explicit record change (update or delete) performed by AFTER-triggers is ignored by the RETURN-
ING clause.

5. Cursor based inserts (INSERT INTO ... SELECT ... RETURNING ...) are not supported.

6. This clause can return table column values or arbitrary expressions.

Articles

SELECT Statement & Expression Syntax
Dmitry Yemanov

About the semantics

• A select statement is used to return data to the caller (PSQL module or the client program)

Data Manipulation Language (DML)

70

• Select expressions retrieve parts of data that construct columns that can be in either the final result set or in
any of the intermediate sets. Select expressions are also known as subqueries.

Syntax rules

 <select statement> ::=
 <select expression> [FOR UPDATE] [WITH LOCK]

 <select expression> ::=
 <query specification> [UNION [{ALL | DISTINCT}] <query specification>]

 <query specification> ::=
 SELECT [FIRST <value>] [SKIP <value>] <select list>
 FROM <table expression list>
 WHERE <search condition>
 GROUP BY <group value list>
 HAVING <group condition>
 PLAN <plan item list>
 ORDER BY <sort value list>
 ROWS <value> [TO <value>]

 <table expression> ::=
 <table name> | <joined table> | <derived table>

 <joined table> ::=
 {<cross join> | <qualified join>}

 <cross join> ::=
 <table expression> CROSS JOIN <table expression>

 <qualified join> ::=
 <table expression> [{INNER | {LEFT | RIGHT | FULL} [OUTER]}] JOIN <table expression>
 ON <join condition>

 <derived table> ::=
 '(' <select expression> ')'

Conclusions

• FOR UPDATE mode and row locking can only be performed for a final dataset, they cannot be applied to
a subquery

• Unions are allowed inside any subquery

• Clauses FIRST, SKIP, PLAN, ORDER BY, ROWS are allowed for any subquery

Notes

• Either FIRST/SKIP or ROWS is allowed, but a syntax error is thrown if you try to mix the syntaxes

• An INSERT statement accepts a select expression to define a set to be inserted into a table. Its SELECT part
supports all the features defined for select statments/expressions

• UPDATE and DELETE statements are always based on an implicit cursor iterating through its target table
and limited with the WHERE clause. You may also specify the final parts of the select expression syntax to
limit the number of affected rows or optimize the statement.

Clauses allowed at the end of UPDATE/DELETE statements are PLAN, ORDER BY and ROWS.

Data Manipulation Language (DML)

71

Data Type of an Aggregation Result
Arno Brinkman

When aggregations, CASE evaluations and UNIONs for output columns are performed over a mix of comparable
data types, the engine has to choose one data type for the result. The developer often has to prepare a variable
or buffer for such results and is mystified when a request returns a data type exception. The rules followed by
the engine in determining the data type for an output column under these conditions are explained here.

1. Let DTS be the set of data types over which we must determine the final result data type.

2. All of the data types in DTS shall be comparable.

3. In the case that

a. any of the data types in DTS is character string

i. If all data types in DTS are fixed-length character strings, then the result is also a fixed-length
character string; otherwise the result is a variable-length character string.

The resulting string length, in characters, is equal to the maximum of the lengths, in characters,
of the data types in DTS.

ii. The character set and collation used are taken from the data type of the first character string in
DTS.

b. all of the data types in DTS are exact numeric

the result data type is exact numeric with scale equal to the maximum of the scales of the data types
in DTS and precision equal to the maximum precision of all data types in DTS.

c. any data type in DTS is approximate numeric

each data type in DTS must be numeric, otherwise an error is thrown.

d. any data type in DTS is a date/time data type

every data type in DTS must be a date/time type having the same date/time type, otherwise an error
is thrown.

e. any data type in DTS is BLOB

each data type in DTS must be BLOB and all with the same sub-type.

72

Chapter 7

Procedural SQL (PSQL)
A handful of improvements was added to the collection of PSQL extensions that came with Firebird 2. The
highlights are new capabilities to use domains and collation sequences when declaring variables and arguments
in procedures and triggers.

Quick Links

• Domains in PSQL
• COLLATE in Stored Procedures
• WHERE CURRENT OF for Views
• ROW_COUNT Counts Rows Returned by SELECT
• Explicit Cursors
• Stored Procedure Arguments Can Take Defaults
• LEAVE <label> Flow Control Operator
• OLD Variables Now Read-only
• Stack Trace for PSQL Exceptions
• Call UDFs as Procedures

Domains in PSQL
Adriano dos Santos Fernandes

(V.2.1) It is now possible to use a domain when declaring the data types of arguments and variables in PSQL
modules. Depending on your requirements, you can declare the argument or variable using

• the domain identifier alone, in lieu of the native data type identifier, to have the variable inherit all of the
attributes of the domain; or

• the data type of the domain, without inheriting CHECK constraints and the DEFAULT value (if declared in
the domain), by including the TYPE OF keyword in the declaration (see the syntax below)

Syntax

data_type ::=
 <builtin_data_type>
 | <domain_name>
 | TYPE OF <domain_name>

Examples

CREATE DOMAIN DOM AS INTEGER;

CREATE PROCEDURE SP (
 I1 TYPE OF DOM,
 I2 DOM)

Procedural SQL (PSQL)

73

RETURNS (
 O1 TYPE OF DOM,
 O2 DOM)
AS
 DECLARE VARIABLE V1 TYPE OF DOM;
 DECLARE VARIABLE V2 DOM;

BEGIN
 ...
END

Note

A new field RDB$VALID_BLR was added in RDB$RELATIONS and RDB$TRIGGERS to indicate whether
the procedure/trigger is valid after an ALTER DOMAIN operation. The value of RDB$VALID_BLR is shown
in the ISQL commands SHOW PROCEDURE or SHOW TRIGGER.

COLLATE in Stored Procedures and Parameters
A. dos Santos Fernandes

(V.2.1) Collations can now be applied to PSQL variables, including stored procedure parameters.

WHERE CURRENT OF Now Allowed for Views

Feature request CORE-1213

(V.2.1) The cursor operator WHERE CURRENT OF can now step through a cursor set selected from a view
set, just as it does in a cursor set output from a SELECT on a table. For example:

...
FOR SELECT ...
 FROM MY_VIEW INTO ... AS CURSOR VIEW_CURSOR DO
BEGIN
 ...
 DELETE FROM MY_VIEW
 WHERE CURRENT OF VIEW_CURSOR;
 ...
END

Context Variable ROW_COUNT Enhanced
D. Yemanov

ROW_COUNT has been enhanced so that it can now return the number of rows returned by a SELECT state-
ment.

For example, it can be used to check whether a singleton SELECT INTO statement has performed an assignment:

 ..

http://tracker.firebirdsql.org/browse/CORE-1213

Procedural SQL (PSQL)

74

 BEGIN
 SELECT COL FROM TAB INTO :VAR;

 IF (ROW_COUNT = 0) THEN
 EXCEPTION NO_DATA_FOUND;
 END
 ..

See also its usage in the examples below for explicit PSQL cursors.

Explicit Cursors
D. Yemanov

It is now possible to declare and use multiple cursors in PSQL. Explicit cursors are available in a DSQL EXE-
CUTE BLOCK structure as well as in stored procedures and triggers.

Syntax pattern

 DECLARE [VARIABLE] <cursor_name> CURSOR FOR (<select_statement>);
 OPEN <cursor_name>;
 FETCH <cursor_name> INTO <var_name> [, <var_name> ...];
 CLOSE <cursor_name>;

Examples

1.

 DECLARE RNAME CHAR(31);
 DECLARE C CURSOR FOR (SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS);
 BEGIN
 OPEN C;
 WHILE (1 = 1) DO
 BEGIN
 FETCH C INTO :RNAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 SUSPEND;
 END
 CLOSE C;
 END

2.

 DECLARE RNAME CHAR(31);
 DECLARE FNAME CHAR(31);
 DECLARE C CURSOR FOR (SELECT RDB$FIELD_NAME
 FROM RDB$RELATION_FIELDS
 WHERE RDB$RELATION_NAME = :RNAME
 ORDER BY RDB$FIELD_POSITION);
 BEGIN
 FOR
 SELECT RDB$RELATION_NAME

Procedural SQL (PSQL)

75

 FROM RDB$RELATIONS
 INTO :RNAME
 DO
 BEGIN
 OPEN C;
 FETCH C INTO :FNAME;
 CLOSE C;
 SUSPEND;
 END
 END

Note

• Cursor declaration is allowed only in the declaration section of a PSQL block/procedure/trigger, as with any
regular local variable declaration.

• Cursor names are required to be unique in the given context. They must not conflict with the name of another
cursor that is "announced", via the AS CURSOR clause, by a FOR SELECT cursor. However, a cursor can
share its name with any other type of variable within the same context, since the operations available to
each are different.

• Positioned updates and deletes with cursors using the WHERE CURRENT OF clause are allowed.

• Attempts to fetch from or close a FOR SELECT cursor are prohibited.

• Attempts to open a cursor that is already open, or to fetch from or close a cursor that is already closed,
will fail.

• All cursors which were not explicitly closed will be closed automatically on exit from the current PSQL
block/procedure/trigger.

• The ROW_COUNT system variable can be used after each FETCH statement to check whether any row
was returned.

Defaults for Stored Procedure Arguments
V. Khorsun

Defaults can now be declared for stored procedure arguments.

The syntax is the same as a default value definition for a column or domain, except that you can use '=' in place
of 'DEFAULT' keyword.

Arguments with default values must be last in the argument list; that is, you cannot declare an argument that
has no default value after any arguments that have been declared with default values. The caller must supply the
values for all of the arguments preceding any that are to use their defaults.

For example, it is illegal to do something like this: supply arg1, arg2, miss arg3, set arg4...

Substitution of default values occurs at run-time. If you define a procedure with defaults (say P1), call it from
another procedure (say P2) and skip some final, defaulted arguments, then the default values for P1 will be
substituted by the engine at time execution P1 starts. This means that, if you change the default values for P1,
it is not necessary to recompile P2.

However, it is still necessary to disconnect all client connections, as discussed in the Borland InterBase 6 beta
"Data Definition Guide" (DataDef.pdf), in the section "Altering and dropping procedures in use".

Procedural SQL (PSQL)

76

Examples

 CONNECT ... ;
 SET TERM ^;
 CREATE PROCEDURE P1 (X INTEGER = 123)
 RETURNS (Y INTEGER)
 AS
 BEGIN
 Y = X;
 SUSPEND;
 END ^
 COMMIT ^
 SET TERM ;^

 SELECT * FROM P1;

 Y
 ============

 123

 EXECUTE PROCEDURE P1;

 Y
 ============
 123

 SET TERM ^;
 CREATE PROCEDURE P2
 RETURNS (Y INTEGER)
 AS
 BEGIN
 FOR SELECT Y FROM P1 INTO :Y
 DO SUSPEND;
 END ^
 COMMIT ^
 SET TERM ;^

 SELECT * FROM P2;

 Y
 ============

 123

 SET TERM ^;
 ALTER PROCEDURE P1 (X INTEGER = CURRENT_TRANSACTION)
 RETURNS (Y INTEGER)
 AS
 BEGIN
 Y = X;
 SUSPEND;
 END; ^
 COMMIT ^
 SET TERM ;^

 SELECT * FROM P1;

 Y
 ============

Procedural SQL (PSQL)

77

 5875

 SELECT * FROM P2;

 Y
 ============

 123

 COMMIT;

 CONNECT ... ;

 SELECT * FROM P2;

 Y
 ============

 5880

Note

The source and BLR for the argument defaults are stored in RDB$FIELDS.

LEAVE <label> Syntax Support
D. Yemanov

New LEAVE <label> syntax now allows PSQL loops to be marked with labels and terminated in Java style.
The purpose is to stop execution of the current block and unwind back to the specified label. After that execution
resumes at the statement following the terminated loop.

Syntax pattern

 <label_name>: <loop_statement>
 ...
 LEAVE [<label_name>]

where <loop_statement> is one of: WHILE, FOR SELECT, FOR EXECUTE STATEMENT.

Examples

1.

 FOR
 SELECT COALESCE(RDB$SYSTEM_FLAG, 0), RDB$RELATION_NAME
 FROM RDB$RELATIONS
 ORDER BY 1
 INTO :RTYPE, :RNAME
 DO
 BEGIN
 IF (RTYPE = 0) THEN
 SUSPEND;

Procedural SQL (PSQL)

78

 ELSE
 LEAVE; -- exits current loop
 END

2.

 CNT = 100;
 L1:
 WHILE (CNT >= 0) DO
 BEGIN
 IF (CNT < 50) THEN
 LEAVE L1; -- exists WHILE loop
 CNT = CNT - l;
 END

3.

 STMT1 = 'SELECT RDB$RELATION_NAME FROM RDB$RELATIONS';
 L1:
 FOR
 EXECUTE STATEMENT :STMT1 INTO :RNAME
 DO
 BEGIN
 STMT2 = 'SELECT RDB$FIELD_NAME FROM RDB$RELATION_FIELDS
 WHERE RDB$RELATION_NAME = ';
 L2:
 FOR
 EXECUTE STATEMENT :STMT2 || :RNAME INTO :FNAME
 DO
 BEGIN
 IF (RNAME = 'RDB$DATABASE') THEN
 LEAVE L1; -- exits the outer loop
 ELSE IF (RNAME = 'RDB$RELATIONS') THEN
 LEAVE L2; -- exits the inner loop
 ELSE
 SUSPEND;
 END
 END

Note

Note that LEAVE without an explicit label means interrupting the current (innermost) loop.

OLD Context Variables Now Read-only
D. Yemanov

The set of OLD context variables available in trigger modules is now read-only. An attempt to assign a value
to OLD.something will be rejected.

Note

NEW context variables are now read-only in AFTER-triggers as well.

Procedural SQL (PSQL)

79

PSQL Stack Trace
V. Khorsun

The API client can now extract a simple stack trace Error Status Vector when an exception occurs during PSQL
execution (stored procedures or triggers). A stack trace is represented by one string (2048 bytes max.) and
consists of all the stored procedure and trigger names, starting from the point where the exception occurred, out
to the outermost caller. If the actual trace is longer than 2Kb, it is truncated.

Additional items are appended to the status vector as follows:

 isc_stack_trace, isc_arg_string, <string length>, <string>

isc_stack_trace is a new error code with value of 335544842L.

Examples

Metadata creation

 CREATE TABLE ERR (
 ID INT NOT NULL PRIMARY KEY,
 NAME VARCHAR(16));

 CREATE EXCEPTION EX '!';
 SET TERM ^;

 CREATE OR ALTER PROCEDURE ERR_1 AS
 BEGIN
 EXCEPTION EX 'ID = 3';
 END ^

 CREATE OR ALTER TRIGGER ERR_BI FOR ERR
 BEFORE INSERT AS
 BEGIN
 IF (NEW.ID = 2)
 THEN EXCEPTION EX 'ID = 2';

 IF (NEW.ID = 3)
 THEN EXECUTE PROCEDURE ERR_1;

 IF (NEW.ID = 4)
 THEN NEW.ID = 1 / 0;
 END ^

 CREATE OR ALTER PROCEDURE ERR_2 AS
 BEGIN
 INSERT INTO ERR VALUES (3, '333');
 END ^

1. User exception from a trigger:

 SQL" INSERT INTO ERR VALUES (2, '2');
 Statement failed, SQLCODE = -836
 exception 3

Procedural SQL (PSQL)

80

 -ID = 2
 -At trigger 'ERR_BI'

2. User exception from a procedure called by a trigger:

 SQL" INSERT INTO ERR VALUES (3, '3');
 Statement failed, SQLCODE = -836
 exception 3
 -ID = 3
 -At procedure 'ERR_1'
 At trigger 'ERR_BI'

3. Run-time exception occurring in trigger (division by zero):

 SQL" INSERT INTO ERR VALUES (4, '4');
 Statement failed, SQLCODE = -802
 arithmetic exception, numeric overflow, or string truncation
 -At trigger 'ERR_BI'

4. User exception from procedure:

 SQL" EXECUTE PROCEDURE ERR_1;
 Statement failed, SQLCODE = -836
 exception 3
 -ID = 3
 -At procedure 'ERR_1'

5. User exception from a procedure with a deeper call stack:

 SQL" EXECUTE PROCEDURE ERR_2;
 Statement failed, SQLCODE = -836
 exception 3
 -ID = 3
 -At procedure 'ERR_1'
 At trigger 'ERR_BI'
 At procedure 'ERR_2'

Call a UDF as a Void Function (Procedure)
N. Samofatov

In PSQL, supported UDFs, e.g. RDB$SET_CONTEXT, can be called as though they were void functions (a.k.a
“procedures” in Object Pascal). For example:

 BEGIN
 ...
 RDB$SET_CONTEXT('USER_TRANSACTION', 'MY_VAR', '123');
 ...
 END

81

Chapter 8

New Reserved
Words and Changes

The following keywords have been added, or have changed status, since Firebird 1.5. Those marked with an
asterisk (*) are not present in the SQL standard.

Newly Reserved Words

 BIT_LENGTH
 BOTH
 CHAR_LENGTH
 CHARACTER_LENGTH
 CLOSE
 CROSS
 FETCH
 LEADING
 LOWER
 OCTET_LENGTH
 OPEN
 ROWS
 TRAILING
 TRIM

Changed from Non-reserved to Reserved

 USING

Keywords Added as Non-reserved

 BACKUP *
 BLOCK *
 COLLATION
 COMMENT *
 DIFFERENCE *
 IIF *
 NEXT
 SCALAR_ARRAY *
 SEQUENCE
 RESTART
 RETURNING *

New Reserved Words and Changes

82

Keywords No Longer Reserved

 ACTION
 RESTRICT
 WEEKDAY *
 CASCADE
 ROLE
 YEARDAY *
 FREE_IT *
 TYPE

No Longer Reserved as Keywords

 BASENAME *
 GROUP_COMMIT_WAIT *
 NUM_LOG_BUFS *
 CACHE *
 LOGFILE *
 RAW_PARTITIONS *
 CHECK_POINT_LEN *
 LOG_BUF_SIZE *

83

Chapter 9

Indexing & Optimizations

Optimizations in V.2.1

Optimization improvements in v.2.1 include:

(v.2.1) Economising on Indexed Reads for MIN() and MAX()
Indexed MIN/MAX aggregates would produce three indexed reads instead of the expected single read. So,
with an ASC index on the non-nullable COL, the query

 SELECT MIN(COL) FROM TAB

should be completely equivalent, to

 SELECT FIRST 1 COL FROM TAB
 ORDER BY 1 ASC

with both performing a single record read. However, formerly, the first query required three indexed reads
while the second one required just the expected single read. Now, they both resolve to a single read.

The same optimization applies to the MAX() function when mapped to a DESC index.

Improved PLAN Clause
D. Yemanov

(V.2.0.x) A PLAN clause optionally allows you to provide your own instructions to the engine and have it ignore
the plan supplied by the optimizer. Firebird 2 enhancements allow you to specify more possible paths for the
engine. For example:

 PLAN (A ORDER IDX1 INDEX (IDX2, IDX3))

For more details, please refer to the topic Query Plans Improvements in the DML chapter.

Optimizer Improvements

This section represents a collection of changes done in Firebird 2 to optimize many aspects of performance.

Indexing & Optimizations

84

For All Databases

The first group of changes affect all databases, including those not yet upgraded to ODS 11.x.

Some General Improvements
O. Loa, D. Yemanov

• Much faster algorithms to process the dirty pages tree

Firebird 2 offers a more efficient processing of the list of modified pages, a.k.a. the dirty pages tree. It affects
all kinds of batch data modifications performed in a single transaction and eliminates the known issues with
performance getting slower when using a buffer cache of >10K pages.

This change also improves the overall performance of data modifications.

• Increased maximum page cache size to 128K pages (2GB for 16K page size)

Faster Evaluation of IN() and OR
O. Loa

Constant IN predicate or multiple OR booleans are now evaluated faster.

Sparse bitmap operations were optimized to handle multiple OR booleans or an IN (<constant list>) predicate
more efficiently, improving performance of these operations.

Improved UNIQUE Retrieval
A. Brinkman

The optimizer will now use a more realistic cost value for unique retrieval.

More Optimization of NOT Conditions
D. Yemanov

NOT conditions are simplified and optimized via an index when possible.

Example

 (NOT NOT A = 0) -> (A = 0)
 (NOT A > 0) -> (A <= 0)

Distribute HAVING Conjunctions to the WHERE Clause

If a HAVING clause or any outer-level select refers to a field being grouped by, this conjunct is distributed
deeper in the execution path than the grouping, thus allowing an index scan to be used. In other words, it allows
the HAVING clause not only be treated as the WHERE clause in this case, but also be optimized the same way.

Indexing & Optimizations

85

Examples

 select rdb$relation_id, count(*)
 from rdb$relations
 group by rdb$relation_id
 having rdb$relation_id > 10

 select * from (
 select rdb$relation_id, count(*)
 from rdb$relations
 group by rdb$relation_id
) as grp (id, cnt)
 where grp.id > 10

In both cases, an index scan is performed instead of a full scan.

Distribute UNION Conjunctions to the Inner Streams

Distribute UNION conjunctions to the inner streams when possible.

Improved Handling of CROSS JOIN and Merge/SORT

Improved cross join and merge/sort handling

Better Choice of Join Order for Mixed Inner/Outer Joins

reasonable join order for intermixed inner and outer joins

Equality Comparison on Expressions

MERGE PLAN may now be generated for joins using equality comparsion on expressions

For ODS 11 Databases only

This group of optimizations affects databases that were created or restored under Firebird 2 or higher.

Segment-level Selectivities are Used

See Selectivity Maintenance per Segment.

Better Support for IS NULL and STARTING WITH

Previously, IS NULL and STARTING WITH predicates were optimized separately from others, thus causing
non-optimal plans in complex ANDed/ORed boolean expressions. From v2.0 and ODS11, these predicates are
optimized in a regular way and hence benefit from all possible optimization strategies.

Indexing & Optimizations

86

Matching of Both OR and AND Nodes to Indexes

Complex boolean expressions consisting of many AND/OR predicates are now entirely mapped to available
indices if at all possible. Previously, such complex expressions could be optimized badly.

Better JOIN Orders

Cost estimations have been improved in order to improve JOIN orders.

Indexed Order Enabled for Outer Joins

It is now possible for indexed order to be utilised for outer joins, i.e. navigational walk.

Enhancements to Indexing

252-byte index length limit is gone
A. Brinkman

New and reworked index code is very fast and tolerant of large numbers of duplicates. The old aggregate key
length limit of 252 bytes is removed. Now the limit depends on page size: the maximum size of the key in bytes
is 1/4 of the page size (512 on 2048, 1024 on 4096, etc.)

A 40-bit record number is included on “non leaf-level pages” and duplicates (key entries) are sorted by this
number.

Expression Indexes
O. Loa, D. Yemanov, A. Karyakin

Arbitrary expressions applied to values in a row in dynamic DDL can now be indexed, allowing indexed access
paths to be available for search predicates that are based on expressions.

Syntax Pattern

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index name>
 ON <table name>
 COMPUTED BY (<value expression>)

Examples

1.

Indexing & Optimizations

87

CREATE INDEX IDX1 ON T1
 COMPUTED BY (UPPER(COL1 COLLATE PXW_CYRL));
COMMIT;
/* */
SELECT * FROM T1
 WHERE UPPER(COL1 COLLATE PXW_CYRL) = 'ÔÛÂÀ'
-- PLAN (T1 INDEX (IDX1))

2.

CREATE INDEX IDX2 ON T2
 COMPUTED BY (EXTRACT(YEAR FROM COL2) || EXTRACT(MONTH FROM COL2));
COMMIT;
/* */
SELECT * FROM T2
 ORDER BY EXTRACT(YEAR FROM COL2) || EXTRACT(MONTH FROM COL2)
-- PLAN (T2 ORDER IDX2)

Note

1. The expression used in the predicate must match exactly the expression used in the index declaration, in
order to allow the engine to choose an indexed access path. The given index will not be available for any
retrieval or sorting operation if the expressions do not match.

2. Expression indices have exactly the same features and limitations as regular indices, except that, by def-
inition, they cannot be composite (multi-segment).

Changes to Null keys handling
V. Khorsun, A. Brinkman

• Null keys are now bypassed for uniqueness checks. (V. Khorsun)

If a new key is inserted into a unique index, the engine skips all NULL keys before starting to check for key
duplication. It means a performance benefit as, from v.1.5 on, NULLs have not been considered as duplicates.

• NULLs are ignored during the index scan, when it makes sense to ignore them. (A. Brinkman).

Prevously, NULL keys were always scanned for all predicates. Starting with v.2.0, NULL keys are usually
skipped before the scan begins, thus allowing faster index scans.

Note

The predicates IS NULL and IS NOT DISTINCT FROM still require scanning of NULL keys and they
disable the aforementioned optimization.

Improved Index Compression
A. Brinkman

A full reworking of the index compression algorithm has made a manifold improvement in the performance
of many queries.

Indexing & Optimizations

88

Selectivity Maintenance per Segment
D. Yemanov, A. Brinkman

Index selectivities are now stored on a per-segment basis. This means that, for a compound index on columns
(A, B, C), three selectivity values will be calculated, reflecting a full index match as well as all partial matches.
That is to say, the selectivity of the multi-segment index involves those of segment A alone (as it would be if it
were a single-segment index), segments A and B combined (as it would be if it were a double-segment index)
and the full three-segment match (A, B, C), i.e., all the ways a compound index can be used.

This opens more opportunities to the optimizer for clever access path decisions in cases involving partial index
matches.

The per-segment selectivity values are stored in the column RDB$STATISTICS of table RDB
$INDEX_SEGMENTS. The column of the same name in RDB$INDICES is kept for compatibility and still
represents the total index selectivity, that is used for a full index match.

89

Chapter 10

International Language
Support (INTL)

Adriano dos Santos Fernandes

This chapter describes the new international language support interface that was introduced with Firebird 2.
Since then, a number of additions and improvements have been added, including the ability to implement UNI-
CODE collations from external libraries generically. New DDL syntax has been introduced to assist with this
task, in the form of the CREATE COLLATION statement.

New INTL Interface for Non-ASCII Character Sets
A. dos Santos Fernandes

Originally described by N. Samofatov, Firebird 2's new interface for international character sets features many
enhancements that have been implemented by me.

Architecture

Firebird allows character sets and collations to be declared in any character field or variable declaration. The
default character set can also be specified at database create time, to cause every CHAR/VARCHAR declaration
that does not specifically include a CHARACTER SET clause to use this default.

At attachment time you normally specify the character set that the client is to use to read strings. If no "client" (or
"connection") character set is specified, character set NONE is assumed.

Two special character sets, NONE and OCTETS, can be used in declarations. However, OCTETS cannot be
used as a connection character set. The two sets are similar, except that the space character of NONE is ASCII
0x20, whereas the space character OCTETS is 0x00. NONE and OCTETS are “special” in the sense that they
follow different rules from those applicable to other character sets regarding conversions.

• With other character sets, conversion is performed as CHARSET1->UNICODE->CHARSET2.
• With NONE/OCTETS the bytes are just copied: NONE/OCTETS->CHARSET2 and CHARSET1->NONE/

OCTETS.

Enhancements

Enhancements that the new system brings include:

Well-formedness checks

Some character sets (especially multi-byte) do not accept just any string. Now, the engine verifies that strings
are well-formed when assigning from NONE/OCTETS and when strings sent by the client (the statement string
and parameters).

International Language Support (INTL)

90

Uppercasing

In Firebird 1.5.x, only the ASCII-equivalent characters are uppercased in any character set's default (binary)
collation order, which is the one that is used if no collation is specified.

For example,

 isql -q -ch dos850
 SQL> create database 'test.fdb';
 SQL> create table t (c char(1) character set dos850);
 SQL> insert into t values ('a');
 SQL> insert into t values ('e');
 SQL> insert into t values ('á');
 SQL> insert into t values ('é');
 SQL>
 SQL> select c, upper(c) from t;

 C UPPER
 ====== ======
 a A
 e E
 á á
 é é

In Firebird 2 the result is:

 C UPPER
 ====== ======
 a A
 e E
 á Á
 é É

Maximum String Length

In v.1.5.x the engine does not verify the logical length of multi-byte character set (MBCS) strings. Hence, a
UNICODE_FSS field takes three times as many characters as the declared field size, three being the maximum
length of one UNICODE_FSS character.

This has been retained for compatibility for legacy character sets. However, new character sets (UTF8, for
example) do not inherit this limitation.

sqlsubtype and Attachment Character Set

When the character set of a CHAR or VARCHAR column is anything but NONE or OCTETS and the attachment
character set is not NONE, the sqlsubtype member of an XSQLVAR pertaining to that column now contains the
attachment (connection) character set number instead of the column's character set.

International Language Support (INTL)

91

Enhancements for BLOBs

Several character set-related enhancements have been added for text BLOBs.

COLLATE clauses for BLOBs

A DML COLLATE clause is now allowed with BLOBs.

Example

 select blob_column from table
 where blob_column collate unicode = 'foo';

Full equality comparisons between BLOBs

Comparison can be performed on the entire content of a text BLOB.

Character set conversion for BLOBs

Conversion between character sets is now possible when assigning to a BLOB from a string or another BLOB

INTL Plug-ins

Character sets and collations are installed using a manifest file.

The manifest file should be put in the $rootdir/intl with a .conf extension. It is used to locate character sets and
collations in the libraries. If a character set/collation is declared more than once, it is not loaded and the error
is reported in the log.

The file /intl/ fbintl. conf is an example of a manifest file. The following snippet is an excerpt from
/intl/ fbintl. conf:

 <intl_module fbintl>
 filename $(this)/fbintl
 </intl_module>

 <charset ISO8859_1>
 intl_module fbintl
 collation ISO8859_1
 collation DA_DA
 collation DE_DE
 collation EN_UK
 collation EN_US
 collation ES_ES
 collation PT_BR
 collation PT_PT
 </charset>

 <charset WIN1250>

International Language Support (INTL)

92

 intl_module fbintl
 collation WIN1250
 collation PXW_CSY
 collation PXW_HUN
 collation PXW_HUNDC
 </charset>

Note

The symbol $(this) is used to indicate the same directory as the manifest file and the library extension should
be omitted.

New Character Sets/Collations

Two character sets introduced in Firebird 2 will be of particular interest if you have struggled with the short-
comings of UNICODE_FSS in past versions.

UTF8 character set

The UNICODE_FSS character set has a number of problems: it's an old version of UTF8 that accepts malformed
strings and does not enforce correct maximum string length. In FB 1.5.X UTF8 is an alias to UNICODE_FSS.

Now, UTF8 is a new character set, without the inherent problems of UNICODE_FSS.

UNICODE collations (for UTF8)

UCS_BASIC works identically to UTF8 with no collation specified (sorts in UNICODE code-point order). The
UNICODE collation sorts using UCA (Unicode Collation Algorithm).

Sort order sample:

 isql -q -ch dos850
 SQL> create database 'test.fdb';
 SQL> create table t (c char(1) character set utf8);
 SQL> insert into t values ('a');
 SQL> insert into t values ('A');
 SQL> insert into t values ('á');
 SQL> insert into t values ('b');
 SQL> insert into t values ('B');
 SQL> select * from t order by c collate ucs_basic;

 C
 ======
 A
 B
 a
 b
 á

 SQL> select * from t order by c collate unicode;

 C

International Language Support (INTL)

93

 ======
 a
 A
 á
 b
 B

Developments in V.2.1

The 2.1 release sees further capabilities implemented for

1. using ICU charsets through fbintl

2. UNICODE collation (charset_UNICODE) being available for all fbintl charsets

3. using collation attributes

4. CREATE/DROP COLLATION statements

5. SHOW COLLATION and collation extraction in ISQL

6. Verifying that text blobs are well-formed

7. Transliterating text blobs automatically

ICU Character Sets

All non-wide and ASCII-based character sets present in ICU can be used by Firebird 2.1. To reduce the size
of the distribution kit, we customize ICU to include only essential character sets and any for which there was
a specific feature request.

If the character set you need is not included, you can replace the ICU libraries with another complete module,
found at our site or already installed in your operating system.

Registering an ICU Character Set Module

To use an alternative character set module, you need to register it in two places:

1. in the server's language configuration file, intl/ fbintl. conf

2. in each database that is going to use it

Registering a Character Set on the Server

Using a text editor, register the module in intl/ fbintl. conf, as follows.-

<charset NAME>
 intl_module fbintl
 collation NAME [REAL-NAME]
</charset>

International Language Support (INTL)

94

Registering a Character Set in a Database

To register the module in a database, you have two options:

• Use the CREATE COLLATION statement, OR—

• Run the procedure sp_ register_ character_ set, the source for which can be found in misc/ intl.
 sql beneath your Firebird 2.1 root

The CREATE COLLATION Statement

Syntax for CREATE COLLATION

CREATE COLLATION <name>
 FOR <charset>
 [FROM <base> | FROM EXTERNAL ('<name>')]
 [NO PAD | PAD SPACE]
 [CASE SENSITIVE | CASE INSENSITIVE]
 [ACCENT SENSITIVE | ACCENT INSENSITIVE]
 ['<specific-attributes>']

Note

Specific attributes should be separated by semicolon and are case sensitive.

Examples

/* 1 */
CREATE COLLATION UNICODE_ENUS_CI
 FOR UTF8
 FROM UNICODE
 CASE INSENSITIVE
 'LOCALE=en_US';
/* 2 */
CREATE COLLATION NEW_COLLATION
 FOR WIN1252
 PAD SPACE;

/* NEW_COLLATION should be declared in .conf file
 in $root/intl directory */

Using the Stored Procedure

A Sample

Here is the sample declaration in fbintl. conf:

<charset GB>
 intl_module fbintl
 collation GB GB18030
</charset>

International Language Support (INTL)

95

The stored procedure takes two arguments: a string that is the character set's identifier as declared in the config-
uration file and a smallint that is the maximum number of bytes a single character can occupy in the encoding.
For our example:

execute procedure sp_register_character_set ('GB', 4);

The UNICODE Collations

The UNICODE collations (case sensitive and case insensitive) can be applied to any character set that is present
in fbintl. They are already registered in fbintl. conf, but you need to register them in the databases, with
the desired associations and attributes.

Naming Conventions

The naming convention you should use is charset_ collation. For example,

create collation win1252_unicode
 for win1252;

create collation win1252_unicode_ci
 for win1252
 from win1252_unicode
 case insensitive;

Note

The character set name should be as in fbintl.conf (i.e. ISO8859_1 instead of ISO88591, for example).

Specific Attributes for Collations

Note

Some attributes may not work with some collations, even though they do not report an error.

DISABLE-COMPRESSIONS
Disable compressions (aka contractions) changing the order of a group of characters.

Valid for collations of narrow character sets.

Format: DISABLE-COMPRESSIONS={0 | 1}

Example

DISABLE-COMPRESSIONS=1

DISABLE-EXPANSIONS
Disable expansions changing the order of a character to sort as a group of characters.

Valid for collations of narrow character sets.

International Language Support (INTL)

96

Format: DISABLE-EXPANSIONS={0 | 1}

Example

DISABLE-EXPANSIONS=1

ICU-VERSION
Specify what version of ICU library will be used. Valid values are the ones defined in the config file (intl/
fbintl.conf) in entry intl_module/icu_versions.

Valid for UNICODE and UNICODE_CI.

Format: ICU-VERSION={default | major.minor}

Example

ICU-VERSION=3.0

LOCALE
Specify the collation locale.

Valid for UNICODE and UNICODE_CI. Requires complete version of ICU libraries.

Format: LOCALE=xx_XX

Example

LOCALE=en_US

MULTI-LEVEL
Uses more than one level for ordering purposes.

Valid for collations of narrow character sets.

Format: MULTI-LEVEL={0 | 1}

Example

MULTI-LEVEL=1

SPECIALS-FIRST
Order special characters (spaces, symbols, etc) before alphanumeric characters.

Valid for collations of narrow character sets.

Format: SPECIALS-FIRST={0 | 1}

Example

SPECIALS-FIRST=1

Collation Changes in V.2.1

Spanish

International Language Support (INTL)

97

ES_ES (as well as the new ES_ES_CI_AI) collation automatically uses attributes DIS-
ABLE-COMPRESSIONS=1;SPECIALS-FIRST=1.

Note

The attributes are stored at database creation time, so the changes do not apply to databases with ODS
< 11.1.

The ES_ES_CI_AI collation was standardised to current usage.

UTF-8
Case-insensitive collation for UTF-8. See feature request CORE-972

Metadata Text Conversion

Firebird versions 2.0.x had two problems related to character sets and metadata extraction:

1. When creating or altering objects, text associated with metadata was not transliterated from the client char-
acter set to the system (UNICODE_FSS) character set of these BLOB columns. Instead, raw bytes were
stored there.

The types of text affected were PSQL sources, descriptions, text associated with constraints and defaults,
and so on.

Note

Even in the current version (2.1 Beta 1) the problem can still occur if CREATE or ALTER operations
are performed with the connection character set as NONE or UNICODE_FSS and you are using non-
UNICODE_FSS data.

2. In reads from text BLOBs, transliteration from the BLOB character set to the client character set was not
being performed.

Repairing Your Metadata Text

If your metadata text was created with non-ASCII encoding, you need to repair your database in order to read
the metadata correctly after upgrading it to v.2.1.

Important

The procedure involves multiple passes through the database, using scripts. It is strongly recommended that
you disconnect and reconnect before each pass.

The database should already have been converted to ODS11.1 by way of a gbak backup and restore.

Before doing anything, make a copy of the database.

Create the procedures in the database

http://tracker.firebirdsql.org/browse/CORE-972

International Language Support (INTL)

98

[1] isql /path/to/your/database.fdb
[2] SQL> input 'misc/upgrade/metadata_charset_create.sql';

Check your database

[1] isql /path/to/your/database.fdb
[2] SQL> select * from rdb$check_metadata;

The rdb$check_metadata procedure will return all objects that are touched by it.

• If no exception is raised, your metadata is OK and you can go to the section “Remove the upgrade procedures”.

• Otherwise, the first bad object is the last one listed before the exception.

Fixing the metadata

To fix the metadata, you need to know in what character set the objects were created. The upgrade script will
work correctly only if all your metadata was created using the same character set.

[1] isql /path/to/your/database.fdb
[2] SQL> input 'misc/upgrade/metadata_charset_create.sql';
[3] SQL> select * from rdb$fix_metadata('WIN1252'); -- replace WIN1252 by your charset
[4] SQL> commit;

The rdb$fix_metadata procedure will return the same data as rdb$check_metadata, but it will change the meta-
data texts.

Important

It should be run once!

After this, you can remove the upgrade procedures.

Remove the upgrade procedures

[1] isql /path/to/your/database.fdb
[2] SQL> input 'misc/upgrade/metadata_charset_drop.sql';

Supported Character Sets

See Appendix B at the end of these notes, for a full listing of the supported character sets.

99

Chapter 11

Administrative Features
Firebird is gradually adding new features to assist in the administration of databases. Firebird 2.1 sees the in-
troduction of a new set of system tables through which administrators can monitor transactions and statements
that are active in a database. These facilities employ a new v.2.1 DDL feature, Global Temporary Tables to
provide snapshots.

Monitoring Tables
Dmitry Yemanov

Firebird 2.1 introduces the ability to monitor server-side activity happening inside a particular database. The
engine offers a set of so-called “virtual” tables that provides the user with a snapshot of the current activity
within the given database.

The word “virtual” means that the table data is not materialised until explicitly asked for. However, the metadata
of the virtual table is stable and can be retrieved from the schema.

Note

Virtual monitoring tables exist only in ODS 11.1 (and higher) databases, so a migration via backup/restore is
required in order to use this feature.

The Concept

The key term of the monitoring feature is an activity snapshot. It represents the current state of the database,
comprising a variety of information about the database itself, active attachments and users, transactions, prepared
and running statements, and more.

A snapshot is created the first time any of the monitoring tables is being selected from in the given transaction
and it is preserved until the transaction ends, in order that multiple-table queries (e.g., master-detail ones) will
always return a consistent view of the data.

In other words, the monitoring tables always behave like a snapshot table stability (“consistency”) transaction,
even if the host transaction has been started with a lower isolation level.

To refresh the snapshot, the current transaction should be finished and the monitoring tables should be queried
in a new transaction context.

Scope and Security

• Access to the monitoring tables is available in both DSQL and PSQL.

• Complete database monitoring is available to SYSDBA and the database owner.

• Regular users are restricted to the information about their own attachments only—other attachments are
invisible to them.

Administrative Features

100

Metadata

MON$DATABASE (connected database)

 - MON$DATABASE_NAME (database pathname or alias)
 - MON$PAGE_SIZE (page size)
 - MON$ODS_MAJOR (major ODS version)
 - MON$ODS_MINOR (minor ODS version)
 - MON$OLDEST_TRANSACTION (OIT number)
 - MON$OLDEST_ACTIVE (OAT number)
 - MON$OLDEST_SNAPSHOT (OST number)
 - MON$NEXT_TRANSACTION (next transaction number)
 - MON$PAGE_BUFFERS (number of pages allocated in the cache)
 - MON$SQL_DIALECT (SQL dialect of the database)
 - MON$SHUTDOWN_MODE (current shutdown mode)
 0: online
 1: multi-user shutdown
 2: single-user shutdown
 3: full shutdown
 - MON$SWEEP_INTERVAL (sweep interval)
 - MON$READ_ONLY (read-only flag)
 - MON$FORCED_WRITES (sync writes flag)
 - MON$RESERVE_SPACE (reserve space flag)
 - MON$CREATION_DATE (creation date/time)
 - MON$PAGES (number of pages allocated on disk)
 - MON$BACKUP_STATE (current physical backup state)
 0: normal
 1: stalled
 2: merge
 - MON$STAT_ID (statistics ID)

MON$ATTACHMENTS (connected attachments)

 - MON$ATTACHMENT_ID (attachment ID)
 - MON$SERVER_PID (server process ID)
 - MON$STATE (attachment state)
 0: idle
 1: active
 - MON$ATTACHMENT_NAME (connection string)
 - MON$USER (user name)
 - MON$ROLE (role name)
 - MON$REMOTE_PROTOCOL (remote protocol name)
 - MON$REMOTE_ADDRESS (remote address)
 - MON$REMOTE_PID (remote client process ID)
 - MON$REMOTE_PROCESS (remote client process pathname)
 - MON$CHARACTER_SET_ID (attachment character set)
 - MON$TIMESTAMP (connection date/time)
 - MON$GARBAGE_COLLECTION (garbage collection flag)
 - MON$STAT_ID (statistics ID)

Administrative Features

101

• columns MON$REMOTE_PID and MON$REMOTE_PROCESS contains non-NULL values only if the
client library is version 2.1 or higher

• column MON$REMOTE_PROCESS can contain a non-pathname value if an application has specified
a custom process name via DPB

MON$TRANSACTIONS (started transactions)

 - MON$TRANSACTION_ID (transaction ID)
 - MON$ATTACHMENT_ID (attachment ID)
 - MON$STATE (transaction state)
 0: idle
 1: active
 - MON$TIMESTAMP (transaction start date/time)
 - MON$TOP_TRANSACTION (top transaction)
 - MON$OLDEST_TRANSACTION (local OIT number)
 - MON$OLDEST_ACTIVE (local OAT number)
 - MON$ISOLATION_MODE (isolation mode)
 0: consistency
 1: concurrency
 2: read committed record version
 3: read committed no record version
 - MON$LOCK_TIMEOUT (lock timeout)
 -1: infinite wait
 0: no wait
 N: timeout N
 - MON$READ_ONLY (read-only flag)
 - MON$AUTO_COMMIT (auto-commit flag)
 - MON$AUTO_UNDO (auto-undo flag)
 - MON$STAT_ID (statistics ID)

MON$STATEMENTS (prepared statements)

 - MON$STATEMENT_ID (statement ID)
 - MON$ATTACHMENT_ID (attachment ID)
 - MON$TRANSACTION_ID (transaction ID)
 - MON$STATE (statement state)
 0: idle
 1: active
 - MON$TIMESTAMP (statement start date/time)
 - MON$SQL_TEXT (statement text, if appropriate)
 - MON$STAT_ID (statistics ID)

• column MON$SQL_TEXT contains NULL for GDML statements

• columns MON$TRANSACTION_ID and MON$TIMESTAMP contain valid values for active state-
ments only

MON$CALL_STACK (call stack of active PSQL requests)

Administrative Features

102

 - MON$CALL_ID (call ID)
 - MON$STATEMENT_ID (top-level DSQL statement ID)
 - MON$CALLER_ID (caller request ID)
 - MON$OBJECT_NAME (PSQL object name)
 - MON$OBJECT_TYPE (PSQL object type)
 - MON$TIMESTAMP (request start date/time)
 - MON$SOURCE_LINE (SQL source line number)
 - MON$SOURCE_COLUMN (SQL source column number)
 - MON$STAT_ID (statistics ID)

• column MON$STATEMENT_ID groups call stacks by the top-level DSQL statement that initiated the
call chain. This ID represents an active statement record in the table MON$STATEMENTS.

• columns MON$SOURCE_LINE and MON$SOURCE_COLUMN contain line/column information re-
lated to the PSQL statement currently being executed

MON$IO_STATS (I/O statistics)

 - MON$STAT_ID (statistics ID)
 - MON$STAT_GROUP (statistics group)
 0: database
 1: attachment
 2: transaction
 3: statement
 4: call
 - MON$PAGE_READS (number of page reads)
 - MON$PAGE_WRITES (number of page writes)
 - MON$PAGE_FETCHES (number of page fetches)
 - MON$PAGE_MARKS (number of page marks)

MON$RECORD_STATS (record-level statistics)

 - MON$STAT_ID (statistics ID)
 - MON$STAT_GROUP (statistics group)
 0: database
 1: attachment
 2: transaction
 3: statement
 4: call
 - MON$RECORD_SEQ_READS (number of records read sequentially)
 - MON$RECORD_IDX_READS (number of records read via an index)
 - MON$RECORD_INSERTS (number of inserted records)
 - MON$RECORD_UPDATES (number of updated records)
 - MON$RECORD_DELETES (number of deleted records)
 - MON$RECORD_BACKOUTS (number of backed out records)
 - MON$RECORD_PURGES (number of purged records)
 - MON$RECORD_EXPUNGES (number of expunged records)

Administrative Features

103

Note

Textual descriptions of all “state” and “mode” values can be found in the system table RDB$TYPES.

Usage

Creation of a snapshot is usually quite a fast operation, but some delay could be expected under high load
(especially in the Classic Server).

A valid database connection is required in order to retrieve the monitoring data. The monitoring tables return
information about the attached database only. If multiple databases are being accessed on the server, each of
them has to be connected to and monitored separately.

The system variables CURRENT_ CONNECTION and CURRENT_ TRANSACTION could be used to select data
about the caller's current connection and transaction respectively. These variables correspond to the ID columns
of the appropriate monitoring tables.

Examples

1. Retrieve IDs of all CS processes loading CPU at the moment

SELECT MON$SERVER_PID
 FROM MON$ATTACHMENTS
 WHERE MON$ATTACHMENT_ID <> CURRENT_CONNECTION
 AND MON$STATE = 1

2. Retrieve information about client applications

SELECT MON$USER, MON$REMOTE_ADDRESS,
 MON$REMOTE_PID,
 MON$TIMESTAMP
 FROM MON$ATTACHMENTS
 WHERE MON$ATTACHMENT_ID <> CURRENT_CONNECTION

3. Get isolation level of the current transaction

SELECT MON$ISOLATION_MODE
 FROM MON$TRANSACTIONS
 WHERE MON$TRANSACTION_ID = CURRENT_TRANSACTION

4. Get statements that are currently active

SELECT ATT.MON$USER,
 ATT.MON$REMOTE_ADDRESS,
 STMT.MON$SQL_TEXT,
 STMT.MON$TIMESTAMP
 FROM MON$ATTACHMENTS ATT
 JOIN MON$STATEMENTS STMT

Administrative Features

104

 ON ATT.MON$ATTACHMENT_ID = STMT.MON$ATTACHMENT_ID
 WHERE ATT.MON$ATTACHMENT_ID <> CURRENT_CONNECTION
 AND STMT.MON$STATE = 1

5. Retrieve call stacks for all connections

WITH RECURSIVE HEAD AS
 (
 SELECT CALL.MON$STATEMENT_ID,
 CALL.MON$CALL_ID,
 CALL.MON$OBJECT_NAME,
 CALL.MON$OBJECT_TYPE
 FROM MON$CALL_STACK CALL
 WHERE CALL.MON$CALLER_ID IS NULL
 UNION ALL
 SELECT CALL.MON$STATEMENT_ID,
 CALL.MON$CALL_ID,
 CALL.MON$OBJECT_NAME,
 CALL.MON$OBJECT_TYPE
 FROM MON$CALL_STACK CALL
 JOIN HEAD
 ON CALL.MON$CALLER_ID = HEAD.MON$CALL_ID
)
 SELECT MON$ATTACHMENT_ID,
 MON$OBJECT_NAME,
 MON$OBJECT_TYPE
 FROM HEAD
 JOIN MON$STATEMENTS STMT
 ON STMT.MON$STATEMENT_ID = HEAD.MON$STATEMENT_ID
 WHERE STMT.MON$ATTACHMENT_ID <> CURRENT_CONNECTION

Cancel a Running Query

Runaway and long-running queries can now be cancelled from a separate connection.

There is no API function call directed at this feature. It will be up to the SysAdmin (SYSDBA or Owner) to
make use of the data available in the monitoring tables and devise an appropriate mechanism for reining in the
rogue statements.

Example

As a very rough example, the following statement will kill all statements currently running in the database, other
than any that belong to the separate connection that the SysAdmin is using himself:

delete from mon$statements
 where mon$attachment_id <> current_connection

More Context Information

More context information about the server and database ('SYSTEM') is available via SELECT calls to the RDB
$GET_CONTEXT function, including the engine version.

Administrative Features

105

Example

SELECT RDB$GET_CONTEXT('SYSTEM', 'ENGINE_VERSION')
 FROM RDB$DATABASE

For detailed information about using these context calls, refer to the v.2.0.1 release notes.

106

Chapter 12

Security
In this chapter are details of the changes to Firebird security that came with the release of Firebird 2 and its
successors. Further changes and enhancements introduced in V.2.1 are highlighted.

Summary of Changes

Improving security has had a lot of focus in Firebird 2.0 development. The following is a summary of the major
changes.

New security database

The new security database is renamed as security2.fdb. Inside, the user authentication table, where user
names and passwords are stored, is now called RDB$USERS. There is no longer a table named “users” but a new
view over RDB$USERS that is named “USERS”. Through this view, users can change their passwords.

For details of the new database, see New Security Database in the section about authentication later in this
chapter.

For instructions on updating previous security databases, refer to the section Dealing with the New Security
Database at the end of this chapter.

Using Windows Security to Authenticate Users

(V.2.1) From Firebird 2.1 onward, Windows “Trusted User” security can be applied for authenticating Firebird
users on a Windows host. The Trusted User's security context is passed to the Firebird server instead of the
Firebird user name and password and, if it succeeds, it is used to determine the Firebird security user name.

For details see the section below, Windows Trusted User Security.

Better password encryption
A. Peshkov

Password encryption/decryption now uses a more secure password hash calculation algorithm.

Users can modify their own passwords
A. Peshkov

The SYSDBA remains the keeper of the security database. However, users can now modify their own passwords.

Security

107

Non-server access to security database is rejected
A. Peshkov

gsec now uses the Services API. The server will refuse any access to security2.fdb except through the Services
Manager.

Active protection from brute-force attack
A. Peshkov

Attempts to get access to the server using brute-force techniques on accounts and passwords are now detected
and locked out.

• Login with password is required from any remote client

• Clients making too many wrong login attempts are blocked from further attempts for a period

Support for brute-force attack protection has been included in both the attachment functions of the Firebird API
and the Services API. For more details, see Protection from Brute-force Hacking

Vulnerabilities have been closed
A. Peshkov, C. Valderrama

Several known vulnerabilities in the API have been closed.

Caution

It must be noted that the restoration of the server redirection ("multi-hop") capability to Firebird 2 poten-
tially throws up a new vulnerability. For that reason, it is controlled by a parameter (Redirection) in fire-
bird. conf, which you should not enable unless you really understand its implications.

These days, the ability to redirect requests to other servers is dangerous. Suppose you have one careful-
ly protected firebird server, access to which is possible from the Internet. In a situation where this serv-
er has unrestricted access to your internal LAN, it will work as a gateway for incoming requests like
firebird.your.domain.com:internal_server:/private/database.fdb .

Knowing the name or IP address of some internal server on your LAN is enough for an intruder: he does note
even need login access to the external server. Such a gateway easily overrides a firewall that is protecting your
LAN from outside attack.

Details of the Security Changes in Firebird 2

Security focus was directed at some recognised weaknesses in Firebird's security from malicious attacks:

• the lack of brute-force resistant passwords encryption in the security database

• the ability for any remote user with a valid account to open the security database and read hashes from it
(especially interesting in combination with the first point)

• the inability for users to change their own passwords

Security

108

• the lack of protection against remote brute-forcing of passwords on the server directly

Authentication

Firebird authentication checks a server-wide security database in order to decide whether a database or server
connection request is authorised. The security database stores the user names and passwords of all authorised
login identities.

Firebird 1.5 Authentication

In Firebird 1.5 the DES algorithm is used twice to hash the password: first by the client, then by the server,
before comparing it with the hash stored in security database. However, this sequence becomes completely
broken when the SYSDBA changes a password. The client performs the hash calculation twice and stores the
resulting hash directly in the security database. Therefore, hash management is completely client-dependent (or,
actually, client-defined).

Firebird 2: Server-side Hashing

To be able to use stronger hashes, another approach was called for. The hash to be stored on the server should
always be calculated on the server side. Such a schema already exists in Firebird -- in the Services API. This led
to the decision to use the Services API for any client activity related to user management. Now, gsec and the
isc_user_add(modify, delete) API functions all use services to access the security database. (Embedded access
to Classic server on POSIX is the exception --see below).

It became quite easy to make any changes to the way passwords are hashed - it is always performed by the
server. It is no longer gsec's problem to calculate the hash for the security database: it simply asks services to
do the work!

It is worth noting that the new gsec works successfully with older Firebird versions, as long as the server's
architecture supports services.

The SHA-1 Hashing Algorithm

This method leads to the situation where

1. a hash valid for user A is invalid for user B

2. when a user changes his password -- even to exactly the same string as before -- the data stored in RDB
$USERS.RDB$PASSWD is new.

Although this situation does not increase resistance to a brute-force attempt to crack the password, it does make
"visual" analysis of a stolen password database much harder.

The New Security Database

The structure of security database was changed. In general, now it contains a patch by Ivan Prenosil, with some
minor differences, enabling any user to change his/her own password, .

• In firebird 1.5 the table USERS has to be readable by PUBLIC, an engine requirement without which the
password validation process would fail. Ivan's patch solution used a view, with the condition "WHERE USER

Security

109

= ''". That worked due to another bug in the engine that left the SQL variable USER empty, not 'authenticator',
as it might seem from engine's code.

Once that bug was fixed, it was certainly possible to add the condition "USER = 'authenticator'". For the short
term, that was OK, because the username is always converted to upper case.

• A better solution was found, that avoids making user authentication depend on an SQL trick. The result is
that the non-SYSDBA user can see only his own login in any user-management tool (gsec, or any graphical
interface that use the Services API). SYSDBA continues to have full access to manage users' accounts.

New security database structure

The Firebird 2 security database is named security2.fdb. For user authentication it has a new table named
RDB$USERS that stores the new hashed passwords. A view over this table replaces the old USERS table and
enables users to change their own passwords.

The DDL for the new structures can be found in Appendix C.

gsec in Firebird 2

Special measures were thus taken to make remote connection to the security database completely impossible.
Don't be surprised if some old program fails on attempting direct access: this is by design. Users information may
now be accessed only through the Services API and the equivalent internal access to services now implemented
in the isc_user_* API functions.

Protection from Brute-force Hacking

Current high-speed CPUs and fast WAN connections make it possible to try to brute-force Firebird server users'
passwords. This is especially dangerous for Superserver which, since Firebird 1.5, performs user authentication
very fast. Classic is slower, since it has to create new process for each connection, attach to the security database
within that connection and compile a request to the table RDB$USERS before validating login and password.
Superserver caches the connection and request, thus enabling a much faster user validation.

Given the 8-byte maximum length of the traditional Firebird password, the brute-force hacker had a reasonable
chance to break into the Firebird installation.

The v.2.0 Superserver has active protection to make a brute-force attack more difficult. After a few failed at-
tempts to log in, the user and IP address are locked for a few seconds, denying any attempt to log in with that
particular user name OR from that particular IP address for a brief period.

No setup or configuration is required for this feature. It is active automatically as soon as the Firebird 2.0
SuperServer starts up.

Using Windows Security to Authenticate Users
Alex Peshkov

(V.2.1) From Firebird 2.1 onward, Windows “Trusted User” security can be applied for authenticating Firebird
users on a Windows host. The Trusted User's security context is passed to the Firebird server and, if it succeeds,
it is used to determine the Firebird security user name.

Security

110

Simply omitting the user and password parameters from the DPB/SPB will automatically cause Windows Trust-
ed User authentication to be applied, in almost all cases. See the Environment section, below, for exceptions.

Illustration

Suppose you have logged in to the Windows server SRV as user 'John'. If you connect to server SRV with isql,
without specifying a Firebird user name and password:

isql srv:employee

and do:

SQL> select CURRENT_USER from rdb$database;

you will get something like:

USER
==
SRV\John

SQL Privileges

Windows users can be granted rights to access database objects and roles in the same way as regular Firebird
users, emulating the capability that has been always been available users of Unix and Linux hosted Firebird
databases.

Administrators

If a member of the built-in Domain Admins group connects to Firebird using trusted authentication, he/she will
be connected as SYSDBA.

Configuration Parameter “Authentication”

The new parameter Authentication has been added to firebird.conf for configuring the authentication
method on Windows. Possible values are.-

Authentication = Native
Provides full compatibility with previous Firebird versions, avoiding trusted authentication.

Authentication = Trusted
The Security database is ignored and only Windows authentication is used. In some respects, on Windows
this is more secure than Native, in the sense that it is no less and no more secure than the security of the
host operating system.

Authentication = Mixed
This is the default setting.

To retain the legacy behaviour, when the ISC_ USER and ISC_ PASSWORD variables are set in the environ-
ment, they are picked and used instead of trusted authentication.

Security

111

Note

Trusted authentication can be coerced to override the environment variables if they are set—refer to the
notes below.

Forcing Trusted Authentication

For the situation where trusted authentication is needed and there is a likelihood that ISC_ USER and ISC_
PASSWORD are set, there is a new DPB parameter that you can add to the DPB—isc_ dpb_ trusted_ auth.

Most of the Firebird command-line utilities support parameter by means of the switch -tru[sted] (the ab-
breviated form is available, according to the usual rules for abbreviating switches).

Note

The qli and nbackup utilities do not follow the pattern: they use single-letter switches that are somewhat arcane.
The switch of interest for qli is -K). For nbackup, watch this space. The facility to force trusted authentication
is yet to be implemented for it.

Example

C:\Pr~\bin>isql srv:db -- log in using trusted authentication
C:\Pr~\bin>set ISC_USER=user1
C:\Pr~\bin>set ISC_PASSWORD=12345
C:\Pr~\bin>isql srv:db -- log in as 'user1' from environment
C:\Pr~\bin>isql -trust srv:db -- log in using trusted authentication

Important

Windows rules for full domain user names allow names longer than the maximum 31 characters allowed by
Firebird for user names. The 31-character limit is enforced and, from V.2.1, logins passing longer names are
disabled. This will remain the situation until the mapping of OS objects to database objects is implemented
in a later Firebird version.

Classic Server on POSIX

For reasons both technical and historical, a Classic server on POSIX with embedded clients is especially vul-
nerable to security exposure. Users having embedded access to databases MUST be given at least read access
to the security database.

This is the main reason that made implementing enhanced password hashes an absolute requirement. A malicious
user with user-level access to Firebird could easily steal a copy of the security database, take it home and quietly
brute-force the old DES hashes! Afterwards, he could change data in critical databases stored on that server.
Firebird 2 is much less vulnerable to this kind of compromise.

But the embedded POSIX server had one more problem with security: its implementation of the Services API
calls the command-line gsec, as normal users do. Therefore, an embedded user-maintenance utility must have
full access to security database.

Security

112

The main reason to restrict direct access to the security database was to protect it from access by old versions
of client software. Fortuitously, it also minimizes the exposure of the embedded Classic on POSIX at the same
time, since it is quite unlikely that the combination of an old client and the new server would be present on
the production box.

For Any Platform

Caution

The level of Firebird security is still not satisfactory in one serious respect, so please read this section carefully
before opening port 3050 to the Internet.

An important security problem with Firebird still remains unresolved: the transmission of poorly encrypted
passwords "in clear" across the network. It is not possible to resolve this problem without breaking old clients.

To put it another way, a user who has set his/her password using a new secure method would be unable to use
an older client to attach to the server. Taking this into account with plans to upgrade some aspects of the API in
the next version, the decision was made not to change the password transmission method in Firebird 2.0.

The immediate problem can be solved easily by using any IP-tunneling software (such as ZeBeDee) to move
data to and from a Firebird server, for both 1.5 and 2.0. It remains the recommended way to access your remote
Firebird server across the Internet.

Other Security Improvements

isc_service_query() wrongly revealed the full database file spec

Feature request CORE-1091

(V.2.1) When the server is configured "DatabaseAccess = None", isc_ service_ query() would return the
full database file path and name. It has been corrected to return the database alias—one more argument in favour
of making the use of database aliases standard practice!

Any user could view the server log through the Services API

Feature request CORE-1148

This was a minor security vulnerability. Regular users are now blocked from retrieving the server log using the
Services API. Requests are explicitly checked to ensure that the authenticated user is SYSDBA.

Dealing with the New Security Database
A. Peshkov

If you try to put a pre-Firebird 2 security database -- security.fdb or a renamed isc4.gdb -- into Firebird's new
home directory and then try to connect to the server, you will get the message "Cannot attach to password

http://tracker.firebirdsql.org/browse/CORE-1091
http://tracker.firebirdsql.org/browse/CORE-1148

Security

113

database". It is not a bug: it is by design. A security database from an earlier Firebird version cannot be used
directly in Firebird 2.0 or higher.

The newly structured security database is named security2.fdb.

In order to be able to use an old security database, it is necessary to run the upgrade script
security_database.sql, that is in the ../upgrade sub-directory of your Firebird server installation.

Note

A copy of the script appears in Appendix C.

Doing the Security Database Upgrade

To do the upgrade, follow these steps:

1. Put your old security database in some place known to you, but not in Firebird's new home directory. Keep
a copy available at all times!

2. Start Firebird 2, using its new, native security2.fdb.

3. Convert your old security database to ODS11 (i.e. backup and restore it using Firebird 2.0). Without this
step, running the security_database.sql script will fail!

4. Connect the restored security database as SYSDBA and run the script.

5. Stop the Firebird service.

6. Copy the upgraded database to the Firebird 2 home directory as security2.fdb.

7. Restart Firebird.

Now you should be able to connect to the Firebird 2 server using your old logins and passwords.

Nullability of RDB$PASSWD

In pre-2.0 versions of Firebird it was possible to have a user with NULL password. From v.2.0 onward, the
RDB$PASSWD field in the security database is constrained as NOT NULL.

However, to avoid exceptions during the upgrade process, the field is created as nullable by the upgrade script.
If you are really sure you have no empty passwords in the security database, you may modify the script yourself.
For example, you may edit the line:

 RDB$PASSWD RDB$PASSWD,

to be

 RDB$PASSWD RDB$PASSWD NOT NULL,

Security

114

Caution with LegacyHash

As long as you configure LegacyHash = 1 in firebird.conf, Firebird's security does not work completely.
To set this right, it is necessary to do as follows:

1. Change the SYSDBA password

2. Have the users change their passwords (in 2.0 each user can change his or her own password).

3. Set LegacyHash back to default value of 0, or comment it out.

4. Stop and restart Firebird for the configuration change to take effect.

115

Chapter 13

Command-line Utilities

General Enhancements

Utilities Support for Database Triggers

(V. 2.1) A new parameter was added to gbak, nbackup and isql to suppress Database Triggers from running. It
is available only to the database owner and SYSDBA:

 gbak -nodbtriggers
 isql -nodbtriggers
 nbackup -T

Firebird Services

New Command-line Utility fbsvcmgr
Alex Peshkov

(V.2.1) The new utility fbsvcmgr provides a command-line interface to the Services API, enabling access to any
service that is implemented in Firebird.

Although there are numerous database administration tools around that surface the Services API through graph-
ical interfaces, the new tool addresses the problem for admins needing to access remote Unix servers in broad
networks through a text-only connection. Previously, meeting such a requirement needed a programmer.

Using fbsvcmgr

fbsvcmgr does not emulate the switches implemented in the traditional “g*” utilities. Rather, it is just a front-end
through which the Services API functions and parameters can pass. Users therefore need to be familiar with the
Services API as it stands currently. The API header file—ibase.h, in the ../include directory of your Firebird
installation— should be regarded as the primary source of information about what is available, backed up by
the InterBase 6.0 beta API Guide.

Parameters

Specify the Services Manager
The first required parameter for a command line call is the Services Manager you want to connect to:

• For a local connection use the simple symbol service_ mgr

Command-line Utilities

116

• To attach to a remote host, use the format hostname: service_ mgr

Specify subsequent service parameter blocks (SPBs)
Subsequent SPBs, with values if required, follow. Any SPB can be optionally prefixed with a single '-'
symbol. For the long command lines that are typical for fbsvcmgr, use of the '-' improves the readability
of the command line. Compare, for example, the following (each a single command line despite the line
breaks printed here):

fbsvcmgr service_mgr user sysdba password masterke
 action_db_stats dbname employee sts_hdr_pages

and

fbsvcmgr service_mgr -user sysdba -password masterke
 -action_db_stats -dbname employee -sts_hdr_pages

SPB Syntax

The SPB syntax that fbsvcmgr understands closely matches with what you would encounter in the ibase.h
include file or the InterBase 6.0 API documentation, except that a slightly abbreviated form is used to reduce
typing and shorten the command lines a little. Here's how it works.

All SPB parameters have one of two forms: (1) isc_ spb_ VALUE or (2) isc_ VALUE 1 _ svc_ VALUE2. For
fbsvcmgr you just need to pick out the VALUE, VALUE 1 or VALUE2 part[s] when you supply your parameter.

Accordingly, for (1) you would type simply VALUE, while for (2) you would type VALUE1_VALUE2. For
example:

isc_spb_dbname => dbname
isc_action_svc_backup => action_backup
isc_spb_sec_username => sec_username
isc_info_svc_get_env_lock => info_get_env_lock

and so on.

Note

An exception is isc_ spb_ user_ name: it can be specified as either user_ name or simply user.

It is not realistic to attempt to describe all of the SPB parameters in release notes. In the InterBase 6.0 beta doc-
umentation it takes about 40 pages! The next section highlights some known differences between the operation
of fbsvcmgr and what you might otherwise infer from the old beta documentation.

fbsvcmgr Syntax Specifics

“Do's and Don'ts”
With fbsvcmgr you can perform a single action—and get its results if applicable—or you can use it to retrieve
multiple information items from the Services Manager. You cannot do both in a single command.

For example,

Command-line Utilities

117

fbsvcmgr service_mgr -user sysdba -password masterke
 -action_display_user

will list all current users on the local firebird server:

SYSDBA Sql Server Administrator 0 0
QA_USER1 0 0
QA_USER2 0 0
QA_USER3 0 0
QA_USER4 0 0
QA_USER5 0 0
GUEST 0 0
SHUT1 0 0
SHUT2 0 0
QATEST 0 0

...and...

fbsvcmgr service_mgr -user sysdba -password masterke
 -info_server_version -info_implementation

will report both the server version and its implementation:

Server version: LI-T2.1.0.15740 Firebird 2.1 Alpha 1
Server implementation: Firebird/linux AMD64

But an attempt to mix all of this in single command line:

fbsvcmgr service_mgr -user sysdba -password masterke
 -action_display_user -info_server_version -info_implementation

raises an error:

Unknown switch “-info_server_version”

Undocumented Items
The function isc_ spb_ rpr_ list_ limbo_ trans was omitted from the IB6 beta documentation. It is
supported in fbsvcmgr.

Support for New Services API Items in v.2.1
Two new items that were added to the Services API in Firebird 2.1 are supported by fbsvcmgr:

• isc_spb_trusted_auth (type it as trusted_ auth) applies only to Windows. It forces Firebird to
use Windows trusted authentication.

•

Command-line Utilities

118

isc_spb_dbname gives the ability to set a database name parameter (type as dbname) in all service
actions related to accessing the security database from a remote client, equivalent to supplying the -
database switch to the gsec utility.

Note

For gsec the -database switch is mostly used to specify a remote server you want to administer. In
fbsvcmgr, the name of the server is already given in the first parameter (via the service_ mgr symbol)
so the [isc_ spb_]dbname parameter is mostly unnecessary.

Documentation Bugs
The format described for some parameters in the InterBase 6 beta documentation are buggy. When in trouble,
treat ibase.h as the primary source for the correct form.

Unsupported functions
• Everything to do with licensing was removed from the original InterBase 6 open source code and is

therefore not supported either in Firebird or by fbsvcmgr.

• The old Config file view/modification functions have been unsupported since Firebird 1.5 and are not
implemented by fbsvcmgr.

Backup Service Misbehaviour Fixed
A. Peshkov

Feature request CORE-1232

(V.2.1) Some misbehaviours that could occur when the Services Manager was doing backup/restore operations
and some parameter items were missing or in the wrong sequence. The problem still affects lower versions,
including v.2.0.x, so care should be taken to specify all required switches and supply the database name and
backup file spec in the correct order when using the -se[vice_mgr] switch.

Disable Non-SYSDBA Access to Privileged Services
A. Peshkov

Feature request CORE-787

Non-SYSDBA access to parts of the Services API that return information about users and database paths has
been disabled. A non-privileged user can retrieve information about itself, however.

Backup Tools

Firebird 2 brings plenty of enhancements to backing up databases: a new utility for running on-line incremental
backups and some improvements to gbak to avoid some of the traps that sometimes befall end-users.

New On-line Incremental Backup
N. Samofatov

Fast, on-line, page-level incremental backup facilities have been implemented.

http://tracker.firebirdsql.org/browse/CORE-1232
http://tracker.firebirdsql.org/browse/CORE-787

Command-line Utilities

119

The backup engine comprises two parts:

• NBak, the engine support module

• NBackup, the tool that does the actual backups

Nbak

The functional responsibilities of NBAK are:

1. to redirect writes to difference files when asked (ALTER DATABASE BEGIN BACKUP statement)

2. to produce a GUID for the database snapshot and write it into the database header before the ALTER
DATABASE BEGIN BACKUP statement returns

3. to merge differences into the database when asked (ALTER DATABASE END BACKUP statement)

4. to mark pages written by the engine with the current SCN [page scan] counter value for the database

5. to increment SCN on each change of backup state

The backup state cycle is:

nbak_state_normal -> nbak_state_stalled -> nbak_state_merge -> nbak_state_normal

• In normal state writes go directly to the main database files.

• In stalled state writes go to the difference file only and the main files are read-only.

• In merge state new pages are not allocated from difference files. Writes go to the main database files. Reads
of mapped pages compare both page versions and return the version which is fresher, because we don't know
if it is merged or not.

Note

This merge state logic has one quirky part. Both Microsoft and Linux define the contents of file growth as
“undefined” i.e., garbage, and both zero-initialize them.

This is why we don't read mapped pages beyond the original end of the main database file and keep them
current in difference file until the end of a merge. This is almost half of NBak fetch and write logic, tested
by using modified PIO on existing files containing garbage.

NBackup

The functional responsibilities of NBackup are

1. to provide a convenient way to issue ALTER DATABASE BEGIN/END BACKUP

2. to fix up the database after filesystem copy (physically change nbak_state_diff to
nbak_state_normal in the database header)

3. to create and restore incremental backups.

Command-line Utilities

120

Incremental backups are multi-level. That means if you do a Level 2 backup every day and a Level 3 backup
every hour, each Level 3 backup contains all pages changed from the beginning of the day till the hour
when the Level 3 backup is made.

Backing Up

Creating incremental backups has the following algorithm:

1. Issue ALTER DATABASE BEGIN BACKUP to redirect writes to the difference file

2. Look up the SCN and GUID of the most recent backup at the previous level

3. Stream database pages having SCN larger than was found at step 2 to the backup file.

4. Write the GUID of the previous-level backup to the header, to enable the consistency of the backup chain
to be checked during restore.

5. Issue ALTER DATABASE END BACKUP

6. Add a record of this backup operation to RDB$BACKUP_HISTORY. Record current level, SCN, snapshot
GUID and some miscellaneous stuff for user consumption.

Restoring

Restore is simple: we reconstruct the physical database image for the chain of backup files, checking that
the backup_guid of each file matches prev_guid of the next one, then fix it up (change its state in header to
nbak_state_normal).

Usage

 nbackup <options>

Valid Options

 -L <database> Lock database for filesystem copy
 -N <database> Unlock previously locked database
 -F <database> Fixup database after filesystem copy
 -B <level> <database> [<filename>] Create incremental backup
 -R <database> [<file0> [<file1>...]] Restore incremental backup
 -U <user> User name
 -P <password> Password

Note

1. <database> may specify a database alias

2. incremental backup of multi-file databases is not supported yet

3. "stdout" may be used as a value of <filename> for the -B option

Command-line Utilities

121

User Manual
P. Vinkenoog

A user manual for NBak/NBackup has been prepared. It can be downloaded from the documentation area at the
Firebird website: www. firebirdsql. org/ pdfmanual/ - the file name is Firebird-nbackup.pdf.

gbak Backup/Porting/Restore Utility

A number of enhancements have been added to gbak.

Changed Behaviours, New Switches
V. Khorsun

The new gbak switch

 -RECREATE_DATABASE [OVERWRITE]

is a separate switch designed to make harder for the unsuspecting to overwrite a database accidentally, as could
occur easily with the shortened form of the old switch:

 -R[EPLACE_DATABASE]

In summary:

• gbak -R (or gbak -r) now applies to the new -R[ECREATE_DATABASE] switch and will never overwrite
an existing database if the O[VERWRITE] argument is absent

• The short form of the old gbak -R[EPLACE_DATABASE] is now -REP[LACE_DATABASE]. This switch
does not accept the O[VERWRITE] argument.

• The -REP[LACE_DATABASE] switch should be considered as deprecated, i.e. it will become unavailable
in some future Firebird release.

This change means that, if you have any legacy batch or cron scripts that rely on “gbak -r” or “gbak -R” without
modification, then the operation will except if the database exists.

If you want to retain the ability of your script to overwrite your database unconditionally, you will need to
modify the command to use either the new switch with the OVERWRITE argument or the new short form for
the old -REPLACE_DATABASE switch.

gbak Made More Version-friendly
C. Valderrama

(V.2.1) In its latest evolution, gbak can be used to restore a database on any version of Firebird.

http://www.firebirdsql.org/pdfmanual/

Command-line Utilities

122

Hide User Name & Password in Shell
A. Peshkov

Feature request CORE-867

(V.2.1) gbak now changes param0 to prevent the user name and password from being displayed in ps axf.

gbak -V and the “Counter” Parameter

During Firebird 1 development, an optional numeric <counter> argument was added to the -V[erbose] switch
of gbak for both backup and restore. It was intended to allow you to specify a number and get a running count of
rows processed as the row counter passed each interval of that number of rows. It caused undesirable side-effects
and was removed before Firebird 1.0 was ever released. So, although it never happened, it was documented as
“implemented” in the release notes and other places.

ISQL Query Utility

Work on ISQL has involved a lot of bug-fixing and the introduction of a few new, useful features.

One trick to note is that CHAR and VARCHAR types defined in character set OCTETS (alias BINARY) now
display in hex format. Currently, this feature cannot be toggled off.

New Switches

The following command-line switches were added:

-b[ail] "Bail out"
D. Ivanov, C. Valderrama

Command line switch -b to instruct isql to bail out on error when used in non-interactive mode, returning an
error code to the operating system.

When using scripts as input in the command line, it may be totally unappropriate to let isql continue executing
a batch of commands after an error has happened. Therefore, the "-b[ail]" option will cause script execution to
stop at the first error it detects. No further statements in the input script will be executed and isql will return
an error code to the operating system.

• Most cases have been covered, but if you find some error that is not recognized by isql, you should inform
the project, as this is a feature in progress.

• Currently there is no differentiation by error code---any non-zero return code should be interpreted as failure.
Depending on other options (like -o, -m and -m2) , isql will show the error message on screen or will send
it to a file.

Some Features

• Even if isql is executing nested scripts, it will cease all execution and will return to the operating system
when it detects an error. Nested scripts happen when a script A is used as isql input but in turn A contains

http://tracker.firebirdsql.org/browse/CORE-867

Command-line Utilities

123

an INPUT command to load script B an so on. Isql doesn't check for direct or indirect recursion, thus if the
programmer makes a mistake and script A loads itself or loads script B that in turn loads script A again, isql
will run until it exhaust memory or an error is returned from the database, at whose point -bail if activated
will stop all activity.

• DML errors will be caught when being prepared or executed, depending on the type of error.

• In many cases, isql will return the line number of a DML statement that fails during execution of a script.
(More about error line numbers ...)

• DDL errors will be caught when being prepared or executed by default, since isql uses AUTODDL ON by
default. However, if AUTO DLL is OFF, the server only complains when the script does an explicit COMMIT
and this may involve several SQL statements.

• The feature can be enabled/disabled interactively or from a script by means of the command

 SET BAIL [ON | OFF]

As is the case with other SET commands, simply using SET BAIL will toggle the state between activated
and deactivated. Using SET will display the state of the switch among many others.

• Even if BAIL is activated, it doesn't mean it will change isql behavior. An additional requirement should
be met: the session should be non-interactive. A non-interactive session happens when the user calls isql in
batch mode, giving it a script as input.

Example

 isql -b -i my_fb.sql -o results.log -m -m2

Tip

However, if the user loads isql interactively and later executes a script with the input command, this is
considered an interactive session even though isql knows it is executing a script.

Example

 isql
 Use CONNECT or CREATE DATABASE to specify a database
 SQL> set bail;
 SQL> input my_fb.sql;
 SQL> ^Z

Whatever contents the script has, it will be executed completely, errors and all, even if the BAIL option is
enabled.

-m2 to Output Stats and Plans
C. Valderrama

This is a command-line option -M2 to send the statistics and plans to the same output file as the other output
(via the -o[utput] switch).

Command-line Utilities

124

When the user specifies that the output should be sent to a file, two possibilities have existed for years: either

• at the command line, the switch -o followed by a file name is used

• the command OUTput followed by a file name is used, either in a batch session or in the interactive isql shell.
(In either case, simply passing the command OUTput is enough to have the output returned to the console).
However, although error messages are shown in the console, they are not output to the file.

The -m command line switch was added, to meld (mix) the error messages with the normal output to wherever
the output was being redirected.

This left still another case: statistics about operations (SET STATs command) and SQL plans as the server
returns them. SET PLAN and SET PLANONLY commands have been treated as diagnostic messages and, as
such, were always sent to the console.

What the -m2 command line switch does is to ensure that stats and plans information go to the same file the
output has been redirected to.

Note

Neither -m nor -m2 has an interactive counterpart through a SET command. They are for use only as com-
mand-line isql options.

-r2 to Pass a Case-Sensitive Role Name
C. Valderrama

The sole objective of this parameter is to specify a case-sensitive role name.

• The default switch for this parameter is -r. Roles provided in the command line are uppercased

• With -r2, the role is passed to the engine exactly as typed in the command line.

New Commands and Enhancements

The following commands have been added or enhanced.

Ctrl-C to cancel query output

M. Kubecek
A. dos Santos Fernandes

Feature request CORE-704

(V. 2.1) Output from a SELECT in an interactive isql session can now be stopped using Ctrl-C. Note, this merely
stops fetching rows from the buffer, it does not cancel the query.

Extension of isql SHOW SYSTEM command
A. dos Santos Fernandes

Feature request CORE-978

http://tracker.firebirdsql.org/browse/CORE-704
http://tracker.firebirdsql.org/browse/CORE-978

Command-line Utilities

125

(V. 2.1) The SHOW <object_type> command is meant to show user objects of that type. The SHOW SYSTEM
commmand is meant to show system objects but, until now, it only showed system tables. Now it lists the
predefined system UDFs incorporated into FB 2.

It may be enhanced to list system views if we create some of them in the future.

SHOW COLLATIONS command
A. dos Santos Fernandes

(V. 2.1) Lists all the character set/collation pairs declared in the database.

SET HEAD[ing] toggle
C. Valderrama

Some people consider it useful to be able to do a SELECT inside isql and have the output sent to a file, for
additional processing later, especially if the number of columns makes isql display impracticable. However, isql
by default prints column headers and. in this scenario, they are a nuisance.

Therefore, printing the column headers -- previously a fixed feature -- can now be enabled/disabled interactively
or from a script by means of the

 SET HEADing [ON | OFF]

command in the isql shell. As is the case with other SET commands, simply using SET HEAD will toggle the
state between activated and deactivated.

Note

There is no command line option to toggle headings off.

Using SET will display the state of SET HEAD, along with other switches that can be toggled on/off in the
isql shell.

SET SQLDA_DISPLAY ON/OFF
A. dos Santos Fernandes

This SQLDA_DISPLAY command shows the input SQLDA parameters of INSERTs, UPDATEs and
DELETEs. It was previously available only in DEBUG builds and has now been promoted to the public builds. It
shows the information for raw SQLVARs. Each SQLVAR represents a field in the XSQLDA, the main structure
used in the FB API to talk to clients transferring data into and out of the server.

Note

The state of this option is not included in the output when you type SET; in isql to see the current settings
of most options.

SET TRANSACTION Enhanced
C. Valderrama

The SET TRANSACTION statement has been enhanced so that, now, all TPB options are supported:

Command-line Utilities

126

• NO AUTO UNDO

• IGNORE LIMBO

• LOCK TIMEOUT <number>

Example

 SET TRANSACTION WAIT SNAPSHOT NO AUTO UNDO LOCK TIMEOUT 10

See also the document doc/sql.extensions/README.set_transaction.txt.

SHOW DATABASE now Returns ODS Version Number
C. Valderrama

ODS (On-Disk Structure) version is now returned in the SHOW DATABASE command (C. Valderrama)

Ability to show the line number where an error happened in a script
C. Valderrama

In previous versions, the only reasonable way to know where a script had caused an error was using the switch
-e for echoing commands, -o to send the output to a file and -m to merge the error output to the same file. This
way, you could observe the commands isql executed and the errors if they exist. The script continued executing
to the end. The server only gives a line number related to the single command (statement) that it's executing, for
some DSQL failures. For other errors, you only know the statement caused problems.

With the addition of -b for bail as described in (1), the user is given the power to tell isql to stop executing
scripts when an error happens, but you still need to echo the commands to the output file to discover which
statement caused the failure.

Now, the ability to signal the script-related line number of a failure enables the user to go to the script directly
and find the offending statement. When the server provides line and column information, you will be told the
exact line of DML in the script that caused the problem. When the server only indicates a failure, you will be
told the starting line of the statement that caused the failure, related to the whole script.

This feature works even if there are nested scripts, namely, if script SA includes script SB and SB causes a
failure, the line number is related to SB. When SB is read completely, isql continues executing SA and then
isql continues counting lines related to SA, since each file gets a separate line counter. A script SA includes SB
when SA uses the INPUT command to load SB.

Lines are counted according to what the underlying IO layer considers separate lines. For ports using EDITLINE,
a line is what readline() provides in a single call. The line length limit of 32767 bytes remains unchanged.

Enhanced Command-line Help
M. Kubecek

When unknown parameters are used, isql now shows all of the command-line parameters and their explanations
instead of just a simple list of allowed switches.

opt/firebird/bin] isql -?

Command-line Utilities

127

Unknown switch: ?
usage: isql [options] [<database>]
 -a(all) extract metadata incl. legacy non-SQL tables
 -b(ail) bail on errors (set bail on)
 -c(ache) <num> number of cache buffers
 -ch(arset) <charset> connection charset (set names)
 -d(atabase) <database> database name to put in script creation
 -e(cho) echo commands (set echo on)
 -ex(tract) extract metadata
 -i(nput) <file> input file (set input)
 -m(erge) merge standard error
 -m2 merge diagnostic
 -n(oautocommit) no autocommit DDL (set autoddl off)
 -now(arnings) do not show warnings
 -o(utput) <file> output file (set output)
 -pag(elength) <size> page length
 -p(assword) <password> connection password
 -q(uiet) do not show the message "Use CONNECT..."
 -r(ole) <role> role name
 -r2 <role> role (uses quoted identifier)
 -sqldialect <dialect> SQL dialect (set sql dialect)
 -t(erminator) <term> command terminator (set term)
 -u(ser) <user> user name
 -x extract metadata
 -z show program and server version

gsec Authentication Manager

Changes to the gsec utility include:

gsec return code
C. Valderrama

gsec now returns an error code when used as a non-interactive utility. Zero indicates success; any other code
indicates failure.

gfix Server Utility

Changes to the gfix utility include:

New Shutdown States (Modes)
N. Samofatov, D. Yemanov

The options for gfix -shut[down] have been extended to include two extra states or modes to govern the
shutdown.

New Syntax Pattern

 gfix <command> [<state>] [<options>]

Command-line Utilities

128

 <command> ::= {-shut | -online}
 <state> ::= {normal | multi | single | full}
 <options> ::= {-force <timeout> | -tran | -attach}

- “normal” state = online database

- “multi” state = multi-user shutdown mode (the legacy one, unlimited attachments of SYSDBA/owner are
allowed)

- “single” state = single-user shutdown (only one attachment is allowed, used by the restore process)

- “full” state = full/exclusive shutdown (no attachments are allowed)

Note

“Multi” is the default state for -shut, “normal” is the default state for -online.

The modes can be switched sequentially:

normal <-> multi <-> single <-> full

Examples

 gfix -shut single -force 0
 gfix -shut full -force 0
 gfix -online single
 gfix -online

You cannot use -shut to bring a database one level “more online” and you cannot use -online to make a
database more protected (an error will be thrown).

These are prohibited:

 gfix -shut single -force 0
 gfix -shut multi -force 0

 gfix -online
 gfix -online full

 gfix -shut -force 0
 gfix -online single

Builds and Installs

Parameter for Instance name added to instsvc.exe
D. Yemanov

Feature request CORE-673

http://tracker.firebirdsql.org/browse/CORE-673

Command-line Utilities

129

(V.2.1) instsvc. exe now supports multi-instance installations.

Revised Win32 Installer Docs
P. Reeves

(V.2.1) The documentation for command-line setup on Windows has been revised. See doc/ install_ win-
dows_ manually. txt.

Help on command line switches

Feature request CORE-548

(V.2.1) On-line help is now available on the switches for command-line setup on Windows.

Gentoo/FreeBSD detection during install
A. Peshkov

Feature request CORE-1047

Gentoo or FreeBSD is now detected during configuration, making it more likely that the binary install will work
“out of the box” on these platforms.

http://tracker.firebirdsql.org/browse/CORE-548
http://tracker.firebirdsql.org/browse/CORE-1047

130

Chapter 14

External Functions (UDFs)

Ability to Signal SQL NULL via a Null Pointer
C. Valderrama

Previous to Firebird 2, UDF authors only could guess that their UDFs might return a null, but they had no way
to ascertain it. This led to several problems with UDFs. It would often be assumed that a null string would be
passed as an empty string, a null numeric would be equivalent to zero and a null date would mean the base date
used by the engine.

For a numeric value, the author could not always assume null if the UDF was compiled for an environment
where it was known that null was not normally recognized.

Several UDFs, including the ib_udf library distributed with Firebird, assumed that an empty string was more
likely to signal a null parameter than a string of length zero. The trick may work with CHAR type, since the
minimum declared CHAR length is one and would contain a blank character normally: hence, binary zero in
the first position would have the effect of signalling NULL.

However, but it is not applicable to VARCHAR or CSTRING, where a length of zero is valid.

The other solution was to rely on raw descriptors, but this imposes a lot more things to check than they would
want to tackle. The biggest problem is that the engine won't obey the declared type for a parameter; it will simply
send whatever data it has for that parameter, so the UDF is left to decide whether to reject the result or to try
to convert the parameter to the expected data type.

Since UDFs have no formal mechanism to signal errors, the returned value would have to be used as an indicator.

The basic problem was to keep the simplicity of the typical declarations (no descriptors) while at the same time
being able to signal null.

The engine normally passed UDF parameters by reference. In practical terms, that means passing a pointer to the
data to tell the UDF that we have SQL NULL. However, we could not impose the risk of crashing an unknown
number of different, existing public and private UDFs that do not expect NULL. The syntax had to be enhanced
to enable NULL handling to be requested explicitly.

The solution, therefore, is to restrict a request for SQL NULL signaling to UDFs that are known to be capable
of dealing with the new scenario. To avoid adding more keywords, the NULL keyword is appended to the UDF
parameter type and no other change is required.

Example

 declare external function sample
 int null
 returns int by value...;

If you are already using functions from ib_udf and want to take advantage of null signaling (and null
recognition) in some functions, you should connect to your desired database, run the script ../misc/up-
grade/ib_udf_upgrade.sql that is in the Firebird directory, and commit afterwards.

External Functions (UDFs)

131

Caution

It is recommended to do this when no other users are connected to the database.

The code in the listed functions in that script has been modified to recognize null only when NULL is signaled
by the engine. Therefore, starting with FB v2, rtrim(), ltrim() and several other string functions no longer
assume that an empty string means a NULL string.

The functions won't crash if you don't upgrade: they will simply be unable to detect NULL.

If you have never used ib_udf in your database and want to do so, you should connect to the database, run the
script ../udf/ib_udf2.sql, preferably when no other users are connected, and commit afterwards.

Note

• Note the "2" at the end of the name.

• The original script for FB v1.5 is still available in the same directory.

UDF library diagnostic messages improved
A. Peshkov

Diagnostics regarding a missing/unusable UDF module have previously made it hard to tell whether a module
was missing or access to it was being denied due to the UDFAccess setting in firebird.conf. Now we have
separate, understandable messages for each case.

UDFs Added and Changed

UDFs added or enhanced in Firebird 2.0's supplied libraries are:

IB_UDF_rand() vs IB_UDF_srand()
F. Schlottmann-Goedde

In previous versions, the external function rand() sets the random number generator's starting point based on the
current time and then generates the pseudo-random value.

 srand((unsigned) time(NULL));
 return ((float) rand() / (float) RAND_MAX);

The problem with this algorithm is that it will return the same value for two calls done within a second.

To work around this issue, rand() was changed in Firebird 2.0 so that the starting point is not set explicitly. This
ensures that different values will always be returned.

In order to keep the legacy behaviour available in case somebody needs it, srand() has been introduced. It does
exactly the same as the old rand() did.

External Functions (UDFs)

132

IB_UDF_lower

The function IB_UDF_lower() in the IB_UDF library might conflict with the new internal function lower(),
if you try to declare it in a database using the ib_udf.sql script from a previous Firebird version.

 /* ib_udf.sql declaration that now causes conflict */
 DECLARE EXTERNAL FUNCTION lower
 CSTRING(255)
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lower' MODULE_NAME 'ib_udf';

The problem will be resolved in the latest version of the new ib_udf2.sql script, where the old UDF is declared
using a quoted identifier.

 /* New declaration in ib_udf2.sql */
 DECLARE EXTERNAL FUNCTION "LOWER"
 CSTRING(255) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lower' MODULE_NAME 'ib_udf';

Tip

It is preferable to use the internal function LOWER() than to call the UDF.

General UDF Changes

Build Changes
C. Valderrama Contributors

The FBUDF library no longer depends on [lib]fbclient to be built.

133

Chapter 15

New Configuration
Parameters and Changes

RelaxedAliasChecking
V. Khorsun

(V.2.1) RelaxedAliasChecking is a new configuration parameter added to permit a slight relaxation of the
Firebird 2.0.x restrictions on mixing relation aliases and table names in a query. For example, with Re-
laxedAliasChecking set to true (=1) in firebird.conf, the following query will succeed in Firebird 2.1, whereas
it would fail in v.2.0.x, or in v.2.1 with the parameter set to its default of 0:

SELECT ATABLE.FIELD1, B.FIELD2
 FROM ATABLE A JOIN BTABLE B
 ON A.ID = BTABLE.ID

Caution

Understand that this is a temporary facility whose purpose is to provide some headspace for migrating systems
using legacy code that exploited the tolerance of InterBase and older Firebird server versions to non-standard
SQL usage.

• Don't enable this parameter if you have no “offending” code in your applications or PSQL modules. It is
not intended as an invitation to write sloppy code!

• Regard it as a time-bomb. It will be permanently removed from a future release.

MaxFileSystemCache
V. Khorsun

(V.2.1) Sets a threshold determining whether Firebird will allow the page cache to be duplicated to the filesystem
cache or not. If this parameter is set to any (integer) value greater than zero, its effect depends on the current
default size of the page cache: if the default page cache (in pages) is less than the value of MaxFileSystemCache
(in pages) then filesystem caching is enabled, otherwise it is disabled.

Note

This applies both when the page cache buffer size is set implicitly by the DefaultDBCachePages setting or
explicitly as a database header attribute.

Thus,

• To disable filesystem caching always, set MaxFileSystemCache to zero

New Configuration Parameters and Changes

134

• To enable filesystem caching always, set MaxFileSystemCache an integer value that is sufficiently large
to exceed the size of the database page cache. Remember that the effect of this value will be affected by
subsequent changes to the page cache size.

Important

The default setting for MaxFileSystemCache is 65536 pages, i.e. filesystem caching is enabled.

DatabaseGrowthIncrement
V. Khorsun

(V.2.1) For better control of disk space preallocation, the new parameter DatabaseGrowthIncrement has been
added to firebird. conf. It represents the upper limit for the size, in bytes, of the chunk of disk that will be
requested for preallocation as pages for writes from the cache. Default: 134,217,728 bytes (128 MB).

For background information, please refer to the topic Enlarge Disk Allocation Chunks in the chapter “Global
Improvements in Firebird 2.1”.

When the engine needs to initialize more disk space, it allocates a block that is 1/16th of the space already allocat-
ed, but not less than 128 KB and not greater than the DatabaseGrowthIncrement value. The DatabaseGrowthIn-
crement value can be raised to increase the maximum size of newly-allocated blocks to more than the default
128 MB. Set it to zero to disable preallocation.

Note

• The lower limit of the block size is purposely hard-coded at 128 MB and cannot be reconfigured.

• Space is not preallocated for database shadow files.

• Preallocation is disabled for a database that has the “No reserve” option set.

ExternalFileAccess
A. Peshkov

Modified in Firebird 2, to allow the first path cited in ExternalFilesAccess to be used as the default when a new
external file is created.

LegacyHash
A. Peshkov

This parameter enables you to configure Firebird 2 to reject an old DES hash always in an upgraded security
database. If you don't use the security database upgrade procedure, this parameter does not affect Firebird op-
eration. A DES hash cannot arrive in the new security2.fdb.

Refer to the Security DB Upgrade Security section for instructions on upgrading your existing Firebird 1.5
security.fdb (or a renamed isc4.gdb) to the new security database layout.

New Configuration Parameters and Changes

135

The default value is 1 (true).

Redirection
A. Peshkov

Parameter for controlling redirection of remote requests. It controls the multi-hop capability that was broken in
InterBase 6 and is restored in Firebird 2.

About Multi-hop

When you attach to some database using multiple hosts in the connection string, only the last host in this list is
the one that opens the database. The other hosts act as intermediate gateways on port gds_db. Previously, when
working, this feature was available unconditionally. Now, it can be configured.

Remote redirection is turned off by default.

Caution

If you are considering enabling multi-hop capability, please study the Warning text in the chapter on Security
and in the documentation for this parameter in the firebird.conf file.

GCPolicy
V. Khorsun

Garbage collection policy. It is now possible to choose the policy for garbage collection on SuperServer.
The possible settings are cooperative, background and combined, as explained in the notes for GPolicy in
firebird.conf.

Not applicable to Classic, which supports only cooperative garbage collection.

OldColumnNaming
P. Reeves

The parameter OldColumnNaming has been ported forward from Firebird 1.5.3. This parameter allows users to
revert to pre-V1.5 column naming behaviour in SELECT expressions. The installation default is 0 (disabled).
If it is enabled, the engine will not attempt to supply run-time identifiers, e.g. CONCATENATION for derived
fields where the developer has neglected to provide identifiers.

Important

This setting affects all databases on the server and will potentially produce exceptions or unpredicted results
where mixed applications are implemented.

New Configuration Parameters and Changes

136

UsePriorityScheduler
A. Peshkov

Setting this parameter to zero now disables switching of thread priorities completely. It affects only the Win32
SuperServer.

TCPNoNagle has changed
K. Kuznetzov

The default value for TcpNoNagle is now TCP_NODELAY.

Removed or Deprecated Parameters

CreateInternalWindow
D. Yemanov

The option CreateInternalWindow is no longer required to run multiple server instances and it has been removed.

DeadThreadsCollection is no longer used
A. Peshkov

The DeadThreadsCollection parameter is no longer used at all. Dead threads are now efficiently released "on
the fly", making configuration unnecessary. Firebird 2.0 silently ignores this parameter.

137

Chapter 16

Firebird 2 Project Teams

Table 16.1. Firebird Development Teams

Developer Country Major Tasks

Dmitry Yemanov Russian
Federation

Full-time database engineer/implementor, core team leader

Alex Peshkov Russian
Federation

Security features coordinator; buildmaster; porting authority

Claudio Valderrama Chile Code scrutineer; bug-finder and fixer; ISQL enhancements;
UDF fixer, designer and implementor

Vladislav Khorsun Ukraine DB engineer, SQL feature designer/implementor

Arno Brinkman The Nether-
lands

Indexing and Optimizer enhancements; new DSQL features

Adriano dos San-
tos Fernandes

Brazil New international character-set handling; text and text
BLOB enhancements; new DSQL features; code scrutineer-
ing

Nickolay Samofatov Russian
Federa-

tion/Canada

Designed and implemented new inline NBackup; code-fixer
and DB engineer during part of V.2.0 development

Paul Beach France Release Manager; HP-UX builds; MacOS Builds; Solaris
Builds

Pavel Cisar Czech Re-
public

QA tools designer/coordinator

Philippe Makowski France QA tester

Paul Reeves France Win32 installers and builds

Sean Leyne Canada Bugtracker organizer

Dimitrios Ioannides Greece New Jira bugtracker implementor

Ann Harrison U.S.A. Frequent technical advisor

Jim Starkey U.S.A. Frequent architectural advisor; occasional bug-fixer

Roman Rokytskyy Germany Jaybird implementor and co-coordinator

Ryan Baldwin U.K. Jaybird Type 2 driver developer

Evgeny Putilin Russian
Federation

Java stored procedures implementation

Carlos Guzman Alvarez Spain Developer and coordinator of .NET providers for Firebird

Firebird 2 Project Teams

138

Developer Country Major Tasks

Vladimir Tsvigun Ukraine Developer and coordinator of ODBC/JDBC driver for Fire-
bird

David Rushby U.K. Developer and coordinator KInterbase Python interface for
Firebird

Konstantin Kuznetsov Russian
Federation

Solaris Intel builds

Paul Vinkenoog The Nether-
lands

Coordinator, Firebird documentation project; documentation
writer and tools developer/implementor

Norman Dunbar U.K. Documentation writer

Pavel Menshchikov Russian
Federation

Documentation translator

Tomneko Hayashi Japan Documentation translator

Umberto (Mimmo) Masotti Italy Documentation translator

Olivier Mascia Belgium IBPP C++ interface developer; re-implementor of Win32 in-
stallation services

Oleg Loa Russian
Federation

Contributor

Grzegorz Prokopski Hungary Debian builds

Erik Kunze Germany SINIX-Z port; raw device enablement

Helen Borrie Australia Release notes editor; Chief of Thought Police

139

Appendix A: New Built-in Functions
(Firebird 2.1)

Function Format Description

ABS ABS(<number>) Returns the absolute value of a number.

 select abs(amount) from transactions;

ACOS ACOS(<number>) Returns the arc cosine of a number. Argument to
ACOS must be in the range -1 to 1. Returns a value
in the range 0 to PI.

 select acos(x) from y;

ASCII_CHAR ASCII_CHAR(<number>) Returns the ASCII character with the specified
code. The argument to ASCII_CHAR must be in the
range 0 to 255. The result is returned in character set
NONE.

 select ascii_char(x) from y;

ASCII_VAL ASCII_VAL(<string>) Returns the ASCII code of the first character of the
specified string.

1. Returns 0 if the string is empty

2. Throws an error if the first character is mul-
ti-byte

 select ascii_val(x) from y;

ASIN ASIN(<number>) Returns the arc sine of a number. The argument to
ASIN must be in the range -1 to 1. It returns a result
in the range -PI/2 to PI/2.

 select asin(x) from y;

ATAN ATAN(<number>) Returns the arc tangent of a number. Returns a value
in the range -PI/2 to PI/2.

 select atan(x) from y;

ATAN2 ATAN2(<number>, <number>) Returns the arc tangent of the first number / the sec-
ond number. Returns a value in the range -PI to PI.

New Built-in Functions

140

Function Format Description

 select atan2(x, y) from z;

BIN_AND BIN_AND(<number>
[, <number> ...])

Returns the result of a binary AND operation per-
formed on all arguments.

 select bin_and(flags, 1) from x;

BIN_OR BIN_OR(<number>
[, <number> ...])

Returns the result of a binary OR operation per-
formed on all arguments.

 select bin_or(flags1, flags2) from x;

BIN_SHL BIN_SHL(<number>,
<number>)

Returns the result of a binary shift left operation per-
formed on the arguments (first << second).

 select bin_shl(flags1, 1) from x;

BIN_SHR BIN_SHR(<number>,
<number>)

Returns the result of a binary shift right operation
performed on the arguments (first >> second).

 select bin_shr(flags1, 1) from x;

BIN_XOR BIN_XOR(<number>
[, <number> ...])

Returns the result of a binary XOR operation per-
formed on all arguments.

 select bin_xor(flags1, flags2) from x;

BIT_LENGTH BIT_LENGTH(<string>
| <string_expr>)

Returns the length of a string in bits.

 select
 rdb$relation_name,
 bit_length(rdb$relation_name),
 bit_length(trim(rdb$relation_name))
 from rdb$relations;

CEIL |
CEILING

{ CEIL | CEILING }(<number>) Returns a value representing the smallest integer that
is greater than or equal to the input argument.

 1) select ceil(val) from x;
 2) select ceil(2.1), ceil(-2.1) from rdb$database; -- returns 3, -2

CHAR_LENGTH CHAR_LENGTH(<string>
| <string_expr>)

Returns the number of characters in a string or ex-
pression result.

New Built-in Functions

141

Function Format Description

 select
 rdb$relation_name,
 char_length(rdb$relation_name),
 char_length(trim(rdb$relation_name))
 from rdb$relations;

COS COS(<number>) Returns the cosine of a number. The angle is speci-
fied in radians and returns a value in the range -1 to
1.

 select cos(x) from y;

COSH COSH(<number>) Returns the hyperbolic cosine of a number.

 select cosh(x) from y;

COT COT(<number>) Returns 1 / tan(argument).

 select cot(x) from y;

DATEADD See below Returns a date/time/timestamp value increased (or
decreased, when negative) by the specified amount
of time.

Format:

DATEADD(<number> <timestamp_part> TO <date_time>)
DATEADD(<timestamp_part>, <number>, <date_time>)
timestamp_part ::= { YEAR | MONTH | DAY | HOUR |
 MINUTE | SECOND | MILLISECOND }

1. YEAR, MONTH and DAY cannot be used with time values.
2. HOUR, MINUTE, SECOND and MILLISECOND cannot be used with date
 values.
3. All timestamp_part values can be used with timestamp values.

Example

select dateadd(day, -1, current_date) as yesterday
 from rdb$database;

 /* or (expanded syntax) */
select dateadd(-1 day for current_date) as yesterday
 from rdb$database;

New Built-in Functions

142

Function Format Description

DATEDIFF See below Returns an exact numeric value representing the in-
terval of time from the first date/time/timestamp val-
ue to the second one.

Format:

DATEDIFF(<timestamp_part> FROM <date_time> TO <date_time>)
DATEDIFF(<timestamp_part>, <date_time>, <date_time>)
timestamp_part ::= { YEAR | MONTH | DAY | WEEKDAY |
 HOUR | MINUTE | SECOND | MILLISECOND }

1. Returns a positive value if the second value is greater than
 the first one, negative when the first one is greater, or zero
 when they are equal.
2. Comparison of date with time values is invalid.
3. YEAR, MONTH, DAY and WEEKDAY cannot be used with time values.
4. HOUR, MINUTE, SECOND and MILLISECOND cannot be used with date values.
5. All timestamp_part values can be used with timestamp values.

Example

 select datediff(HOUR, ('TOMORROW' -10), current_date)
 as datediffresult
 from rdb$database;

DECODE See below DECODE is a shortcut for a CASE ... WHEN ...
ELSE expression.

Format:

DECODE(<expression>, <search>, <result>
 [, <search>, <result> ...] [, <default>]

Example

 select decode(state, 0, 'deleted', 1, 'active', 'unknown') from things;

EXP EXP(<number>) Returns the exponential e to the argument.

 select exp(x) from y;

FLOOR FLOOR(<number>) Returns a value representing the largest integer that
is less than or equal to the input argument.

 1) select floor(val) from x;

New Built-in Functions

143

Function Format Description

 2) select floor(2.1), floor(-2.1)
 from rdb$database; -- returns 2, -3

GEN_UUID GEN_UUID() -- no arguments Returns a universal unique number.

 insert into records (id) value (gen_uuid());

HASH HASH(<string>) Returns a HASH of a string.

 select hash(x) from y;

LEFT LEFT(<string>, <number>) Returns the substring of a specified length that ap-
pears at the start of a left-to-right string.

 select left(name, char_length(name) - 10)
 from people
 where name like '% FERNANDES';

1. The first position in a string is 1, not 0.
2. If the <number> argument evaluates to a non-integer, banker's rounding is applied.

LN LN(<number>) Returns the natural logarithm of a number.

 select ln(x) from y;

LOG LOG(<number>, <number>) LOG(x, y) returns the logarithm base x of y.

 select log(x, 10) from y;

LOG10 LOG10(<number>) Returns the logarithm base ten of a number.

 select log10(x) from y;

LOWER LOWER(<string>) (v.2.0.x) Returns the input argument converted to all
lower-case characters.

isql -q -ch dos850

SQL> create database 'test.fdb';
SQL> create table t (c char(1) character set dos850);
SQL> insert into t values ('A');
SQL> insert into t values ('E');
SQL> insert into t values ('Á');;
SQL> insert into t values ('É');
SQL> select c, lower(c) from t;

New Built-in Functions

144

Function Format Description

C LOWER
====== ======
A a
E e
Á á
É é

LPAD LPAD(<string>, <num-
ber> [, <string>])

LPAD(string1, length, string2) prepends string2 to
the beginning of string1 until the length of the result
string becomes equal to length.

1. If the second string is omitted the default value is one space.
2. If the result string would exceed the length, the second string is truncated.

Example

 select lpad(x, 10) from y;

MAXVALUE MAXVALUE(<value>
[, <value> ...])

Returns the maximum value of a list of values.

 select maxvalue(v1, v2, 10) from x;

MINVALUE MINVALUE(<value>
[, <value> ...)

Returns the minimun value of a list of values.

 select minvalue(v1, v2, 10) from x;

MOD MOD(<number>, <number>) Modulo: MOD(X, Y) returns the remainder part of
the division of X by Y.

 select mod(x, 10) from y;

OCTET_LENGTH OCTET_LENGTH(<string>
| <string_expr>)

Returns the length of a string or expression result in
bytes.

 select
 rdb$relation_name,
 octet_length(rdb$relation_name),
 octet_length(trim(rdb$relation_name))
 from rdb$relations;

OVERLAY See below Returns string1 replacing the substring FROM start
FOR length by string2.

Format:

New Built-in Functions

145

Function Format Description

OVERLAY(<string1> PLACING <string2> FROM <start> [FOR <length>])

The OVERLAY function is equivalent to:

 SUBSTRING(<string1>, 1 FOR <start> - 1) || <string2> ||
 SUBSTRING(<string1>, <start> + <length>)

1. The first position in a string is 1, not 0.
2. If the <start> and/or <length > argument evaluates to a non-integer, banker's rounding is applied.

If <length> is not specified, CHAR_LENGTH(<string2>) is implied.

PI PI() -- no arguments Returns the PI constant (3.1459...).

 val = PI();

POSITION See below Returns the start position of the first string inside the
second string, relative to the beginning of the outer
string. In the second form, an offset position may be
supplied so that the function returns a result relative
to that position in the outer string.

 POSITION(<string> IN <string>)
 POSITION(<string>, <string> [, <offset-position>])

 select rdb$relation_name
 from rdb$relations
 where position('RDB$' IN rdb$relation_name) = 1;

POWER POWER(<number>, <number>) POWER(X, Y) returns X to the power of Y.

 select power(x, 10) from y;

RAND RAND() -- no argument Returns a random number between 0 and 1.

 select * from x order by rand();

REPLACE REPLACE(<stringtosearch>,
<findstring>, <replstring>)

Replaces all occurrences of <findstring> in <string-
tosearch> with <replstring>.

New Built-in Functions

146

Function Format Description

 select replace(x, ' ', ',') from y;

REVERSE REVERSE(<value>) Returns a string in reverse order. Useful function
for creating an expression index that indexes strings
from right to left.

 create index people_email on people
 computed by (reverse(email));
 select * from people
 where reverse(email) starting with reverse('.br');

RIGHT RIGHT(<string>, <number>) Returns the substring, of the specified length, from
the right-hand end of a string.

 select right(rdb$relation_name, char_length(rdb$relation_name) - 4)
 from rdb$relations
 where rdb$relation_name like 'RDB$%';

ROUND ROUND(<number>,
[<number>])

Returns a number rounded to the specified scale.

Example

 select round(salary * 1.1, 0) from people;

If the scale (second parameter) is negative or is omitted, the integer part of the
value is rounded. E.g., ROUND(123.456, -1) returns 120.000.

RPAD RPAD(<string1>,
<length> [, <string2>])

Appends <string2> to the end of <string1> until the
length of the result string becomes equal to <length>.

Example

 select rpad(x, 10) from y;

1. If the second string is omitted the default value is one space.
2. If the result string would exceed the length, the final application of
 <string2> will be truncated.

SIGN SIGN(<number>) Returns 1, 0, or -1 depending on whether the input
value is positive, zero or negative, respectively.

 select sign(x) from y;

New Built-in Functions

147

Function Format Description

SIN SIN(<number>) Returns the sine of an input number that is expressed
in radians.

 select sin(x) from y;

SINH SINH(<number>) Returns the hyperbolic sine of a number.

 select sinh(x) from y;

SQRT SQRT(<number>) Returns the square root of a number.

 select sqrt(x) from y;

TAN TAN(<number>) Returns the tangent of an input number that is ex-
pressed in radians.

 select tan(x) from y;

TANH TANH(<number>) Returns the hyperbolic tangent of a number.

 select tanh(x) from y;

TRIM See below (V.2.0.x) Trims characters (default: blanks) from the
left and/or right of a string.

TRIM <left paren> [[<trim specification>] [<trim character>]
 FROM] <value expression> <right paren>

 <trim specification> ::= LEADING | TRAILING | BOTH

 <trim character> ::= <value expression>

Rules

1. If <trim
specifica-

tion> is not
specified,
BOTH is
assumed.

2. If <trim
character>
is not spec-

New Built-in Functions

148

Function Format Description

ified, ' ' is
assumed.

3. If <trim
specifi-
cation>
and/or

<trim char-
acter> is
specified,

FROM
should be
specified.

4. If <trim
specifi-
cation>

and <trim
charac-

ter> is not
specified,

FROM
should
not be

specified.

Example A)

 select
 rdb$relation_name,
 trim(leading 'RDB$' from rdb$relation_name)
 from rdb$relations
 where rdb$relation_name starting with 'RDB$';

Example B)

 select
 trim(rdb$relation_name) || ' is a system table'
 from rdb$relations
 where rdb$system_flag = 1;

TRUNC TRUNC(<number>
[, <number>])

Returns the integral part (up to the specified scale) of
a number.

 1) select trunc(x) from y;
 2) select trunc(-2.8), trunc(2.8)
 from rdb$database; -- returns -2, 2
 3) select trunc(987.65, 1), trunc(987.65, -1)
 from rdb$database; -- returns 987.60, 980.00

149

Appendix B: International Character Sets
A. dos Santos Fernandes & Others

New Character Sets and Collations Implemented

The following new character set and/or collation implementations have been added in Firebird 2 releases:

Character Set Collation Description Implemented By

ISO8859_1 ES_ES_CI_AI Spanish language case- and accent-insen-
sitive collation for ISO8859_1 character
set.

A. dos Santos Fer-
nandes

" PT_BR Brazil Portuguese collation for
ISO8859_1 character set.

A. dos Santos Fer-
nandes, P. H. Al-
banez

ISO8859_2 ISO_PLK Polish collation for ISO8859_2 character
set.

J. Glowacki, A. dos
Santos Fernandes

KOI8-R KOI8-R Russian language character set and dictio-
nary collation.

O. Loa, A.
Karyakin

KOI8-U KOI8-U Ukrainian language character set and dic-
tionary collation.

O. Loa, A.
Karyakin

WIN1250 BS_BA Bosnian language collation for WIN1250
character set.

F. Hasovic

" WIN_CZ_AI Czech language case-insensitive collation
for WIN1250 character set

I. Prenosil, A. dos
Santos Fernandes

" WIN_CZ_CI_AI Czech language case- and accent-insensi-
tive collation for WIN1250 character set

I. Prenosil, A. dos
Santos Fernandes

WIN1252 WIN_PTBR Brazil Portuguese collation for WIN1252
character set.

A. dos Santos Fer-
nandes, P. H. Al-
banez

WIN1257 WIN1257_LV Latvian dictionary collation. O. Loa, A.
Karyakin

" WIN1257_LT Lithuanian dictionary collation. O. Loa, A.
Karyakin

" WIN1257_EE Estonian dictionary collation. O. Loa, A.
Karyakin

WIN1258 (n/a) Vietnamese language subset of charset
WIN1258.

Nguyen The
Phuong, A. dos
Santos Fernandes

UTF8 UCS_BASIC Unicode 4.0 support with UTF8 character
set and UCS_BASIC collation.

A. dos Santos Fer-
nandes

International Character Sets

150

Character Set Collation Description Implemented By

" UNICODE Unicode 4.0 support with UTF8 character
set and UNICODE collation.

A. dos Santos Fer-
nandes

(Unspecified) FR_FR_CI_AI (V.2.1) French language case-insensitive
and accent-insensitive collation.

A. dos Santos Fer-
nandes

CP943C (n/a) (V.2.1) Japanese character set. A. dos Santos Fer-
nandes

Narrow Character Sets

CYRL,
DOS437, DOS737, DOS775, DOS850, DOS852, DOS857, DOS858, DOS860,
DOS861, DOS862, DOS863, DOS864, DOS865, DOS866, DOS869,
ISO8859_1, ISO8859_13, ISO8859_2, ISO8859_3, ISO8859_4,
ISO8859_5, ISO8859_6, ISO8859_7, ISO8859_8, ISO8859_9,
KOI8R, KOI8U,
NEXT,
TIS620,
WIN1250, WIN1251, WIN1252, WIN1253, WIN1254, WIN1255, WIN1256,
WIN1257 and WIN1258.

ICU Character Sets

UTF-8 ibm-1208 ibm-1209 ibm-5304 ibm-5305 windows-65001 cp1208
UTF-16 ISO-10646-UCS-2 unicode csUnicode ucs-2
UTF-16BE x-utf-16be ibm-1200 ibm-1201 ibm-5297 ibm-13488
 ibm-17584 windows-1201 cp1200 cp1201 UTF16_BigEndian
UTF-16LE x-utf-16le ibm-1202 ibm-13490 ibm-17586
 UTF16_LittleEndian windows-1200
UTF-32 ISO-10646-UCS-4 csUCS4 ucs-4
UTF-32BE UTF32_BigEndian ibm-1232 ibm-1233
UTF-32LE UTF32_LittleEndian ibm-1234
UTF16_PlatformEndian
UTF16_OppositeEndian
UTF32_PlatformEndian
UTF32_OppositeEndian
UTF-7 windows-65000
IMAP-mailbox-name
SCSU
BOCU-1 csBOCU-1
CESU-8
ISO-8859-1 ibm-819 IBM819 cp819 latin1 8859_1 csISOLatin1
 iso-ir-100 ISO_8859-1:1987 l1 819
US-ASCII ASCII ANSI_X3.4-1968 ANSI_X3.4-1986 ISO_646.irv:1991
 iso_646.irv:1983 ISO646-US us csASCII iso-ir-6 cp367 ascii7
 646 windows-20127
ISO_2022,locale=ja,version=0 ISO-2022-JP csISO2022JP
ISO_2022,locale=ja,version=1 ISO-2022-JP-1 JIS JIS_Encoding
ISO_2022,locale=ja,version=2 ISO-2022-JP-2 csISO2022JP2

International Character Sets

151

ISO_2022,locale=ja,version=3 JIS7 csJISEncoding
ISO_2022,locale=ja,version=4 JIS8
ISO_2022,locale=ko,version=0 ISO-2022-KR csISO2022KR
ISO_2022,locale=ko,version=1 ibm-25546
ISO_2022,locale=zh,version=0 ISO-2022-CN
ISO_2022,locale=zh,version=1 ISO-2022-CN-EXT
HZ HZ-GB-2312
ISCII,version=0 x-iscii-de windows-57002 iscii-dev
ISCII,version=1 x-iscii-be windows-57003 iscii-bng windows-57006
 x-iscii-as
ISCII,version=2 x-iscii-pa windows-57011 iscii-gur
ISCII,version=3 x-iscii-gu windows-57010 iscii-guj
ISCII,version=4 x-iscii-or windows-57007 iscii-ori
ISCII,version=5 x-iscii-ta windows-57004 iscii-tml
ISCII,version=6 x-iscii-te windows-57005 iscii-tlg
ISCII,version=7 x-iscii-ka windows-57008 iscii-knd
ISCII,version=8 x-iscii-ma windows-57009 iscii-mlm
gb18030 ibm-1392 windows-54936
LMBCS-1 lmbcs
LMBCS-2
LMBCS-3
LMBCS-4
LMBCS-5
LMBCS-6
LMBCS-8
LMBCS-11
LMBCS-16
LMBCS-17
LMBCS-18
LMBCS-19
ibm-367_P100-1995 ibm-367 IBM367
ibm-912_P100-1995 ibm-912 iso-8859-2 ISO_8859-2:1987 latin2
 csISOLatin2 iso-ir-101 l2 8859_2 cp912 912 windows-28592
ibm-913_P100-2000 ibm-913 iso-8859-3 ISO_8859-3:1988 latin3
 csISOLatin3 iso-ir-109 l3 8859_3 cp913 913 windows-28593
ibm-914_P100-1995 ibm-914 iso-8859-4 latin4 csISOLatin4
 iso-ir-110 ISO_8859-4:1988 l4 8859_4 cp914 914 windows-28594
ibm-915_P100-1995 ibm-915 iso-8859-5 cyrillic csISOLatinCyrillic
 iso-ir-144 ISO_8859-5:1988 8859_5 cp915 915 windows-28595
ibm-1089_P100-1995 ibm-1089 iso-8859-6 arabic csISOLatinArabic
 iso-ir-127 ISO_8859-6:1987 ECMA-114 ASMO-708 8859_6 cp1089
 1089 windows-28596 ISO-8859-6-I ISO-8859-6-E
ibm-813_P100-1995 ibm-813 iso-8859-7 greek greek8 ELOT_928
 ECMA-118 csISOLatinGreek iso-ir-126 ISO_8859-7:1987 8859_7
 cp813 813 windows-28597
ibm-916_P100-1995 ibm-916 iso-8859-8 hebrew csISOLatinHebrew
 iso-ir-138 ISO_8859-8:1988 ISO-8859-8-I ISO-8859-8-E 8859_8
 cp916 916 windows-28598
ibm-920_P100-1995 ibm-920 iso-8859-9 latin5 csISOLatin5
 iso-ir-148 ISO_8859-9:1989 l5 8859_9 cp920 920 windows-28599
 ECMA-128
ibm-921_P100-1995 ibm-921 iso-8859-13 8859_13 cp921 921
ibm-923_P100-1998 ibm-923 iso-8859-15 Latin-9 l9 8859_15 latin0
 csisolatin0 csisolatin9 iso8859_15_fdis cp923 923 windows-28605
ibm-942_P12A-1999 ibm-942 ibm-932 cp932 shift_jis78 sjis78
 ibm-942_VSUB_VPUA ibm-932_VSUB_VPUA
ibm-943_P15A-2003 ibm-943 Shift_JIS MS_Kanji csShiftJIS
 windows-31j csWindows31J x-sjis x-ms-cp932 cp932 windows-932
 cp943c IBM-943C ms932 pck sjis ibm-943_VSUB_VPUA
ibm-943_P130-1999 ibm-943 Shift_JIS cp943 943 ibm-943_VASCII_VSUB_VPUA
ibm-33722_P12A-1999 ibm-33722 ibm-5050 EUC-JP

International Character Sets

152

 Extended_UNIX_Code_Packed_Format_for_Japanese
 csEUCPkdFmtJapanese X-EUC-JP eucjis windows-51932
 ibm-33722_VPUA IBM-eucJP
ibm-33722_P120-1999 ibm-33722 ibm-5050 cp33722 33722
 ibm-33722_VASCII_VPUA
ibm-954_P101-2000 ibm-954 EUC-JP
ibm-1373_P100-2002 ibm-1373 windows-950
windows-950-2000 Big5 csBig5 windows-950 x-big5
ibm-950_P110-1999 ibm-950 cp950 950
macos-2566-10.2 Big5-HKSCS big5hk HKSCS-BIG5
ibm-1375_P100-2003 ibm-1375 Big5-HKSCS
ibm-1386_P100-2002 ibm-1386 cp1386 windows-936 ibm-1386_VSUB_VPUA
windows-936-2000 GBK CP936 MS936 windows-936
ibm-1383_P110-1999 ibm-1383 GB2312 csGB2312 EUC-CN ibm-eucCN
 hp15CN cp1383 1383 ibm-1383_VPUA
ibm-5478_P100-1995 ibm-5478 GB_2312-80 chinese iso-ir-58
 csISO58GB231280 gb2312-1980 GB2312.1980-0
ibm-964_P110-1999 ibm-964 EUC-TW ibm-eucTW cns11643 cp964 964
 ibm-964_VPUA
ibm-949_P110-1999 ibm-949 cp949 949 ibm-949_VASCII_VSUB_VPUA
ibm-949_P11A-1999 ibm-949 cp949c ibm-949_VSUB_VPUA
ibm-970_P110-1995 ibm-970 EUC-KR KS_C_5601-1987 windows-51949
 csEUCKR ibm-eucKR KSC_5601 5601 ibm-970_VPUA
ibm-971_P100-1995 ibm-971 ibm-971_VPUA
ibm-1363_P11B-1998 ibm-1363 KS_C_5601-1987 KS_C_5601-1989 KSC_5601
 csKSC56011987 korean iso-ir-149 5601 cp1363 ksc windows-949
 ibm-1363_VSUB_VPUA
ibm-1363_P110-1997 ibm-1363 ibm-1363_VASCII_VSUB_VPUA
windows-949-2000 windows-949 KS_C_5601-1987 KS_C_5601-1989
 KSC_5601 csKSC56011987 korean iso-ir-149 ms949
ibm-1162_P100-1999 ibm-1162
ibm-874_P100-1995 ibm-874 ibm-9066 cp874 TIS-620 tis620.2533
 eucTH cp9066
windows-874-2000 TIS-620 windows-874 MS874
ibm-437_P100-1995 ibm-437 IBM437 cp437 437 csPC8CodePage437
 windows-437
ibm-850_P100-1995 ibm-850 IBM850 cp850 850 csPC850Multilingual
 windows-850
ibm-851_P100-1995 ibm-851 IBM851 cp851 851 csPC851
ibm-852_P100-1995 ibm-852 IBM852 cp852 852 csPCp852 windows-852
ibm-855_P100-1995 ibm-855 IBM855 cp855 855 csIBM855 csPCp855
ibm-856_P100-1995 ibm-856 cp856 856
ibm-857_P100-1995 ibm-857 IBM857 cp857 857 csIBM857 windows-857
ibm-858_P100-1997 ibm-858 IBM00858 CCSID00858 CP00858
 PC-Multilingual-850+euro cp858
ibm-860_P100-1995 ibm-860 IBM860 cp860 860 csIBM860
ibm-861_P100-1995 ibm-861 IBM861 cp861 861 cp-is csIBM861
 windows-861
ibm-862_P100-1995 ibm-862 IBM862 cp862 862 csPC862LatinHebrew
 DOS-862 windows-862
ibm-863_P100-1995 ibm-863 IBM863 cp863 863 csIBM863
ibm-864_X110-1999 ibm-864 IBM864 cp864 csIBM864
ibm-865_P100-1995 ibm-865 IBM865 cp865 865 csIBM865
ibm-866_P100-1995 ibm-866 IBM866 cp866 866 csIBM866 windows-866
ibm-867_P100-1998 ibm-867 cp867
ibm-868_P100-1995 ibm-868 IBM868 CP868 868 csIBM868 cp-ar
ibm-869_P100-1995 ibm-869 IBM869 cp869 869 cp-gr csIBM869
 windows-869
ibm-878_P100-1996 ibm-878 KOI8-R koi8 csKOI8R cp878
ibm-901_P100-1999 ibm-901
ibm-902_P100-1999 ibm-902

International Character Sets

153

ibm-922_P100-1999 ibm-922 cp922 922
ibm-4909_P100-1999 ibm-4909
ibm-5346_P100-1998 ibm-5346 windows-1250 cp1250
ibm-5347_P100-1998 ibm-5347 windows-1251 cp1251
ibm-5348_P100-1997 ibm-5348 windows-1252 cp1252
ibm-5349_P100-1998 ibm-5349 windows-1253 cp1253
ibm-5350_P100-1998 ibm-5350 windows-1254 cp1254
ibm-9447_P100-2002 ibm-9447 windows-1255 cp1255
windows-1256-2000 windows-1256 cp1256
ibm-9449_P100-2002 ibm-9449 windows-1257 cp1257
ibm-5354_P100-1998 ibm-5354 windows-1258 cp1258
ibm-1250_P100-1995 ibm-1250 windows-1250
ibm-1251_P100-1995 ibm-1251 windows-1251
ibm-1252_P100-2000 ibm-1252 windows-1252
ibm-1253_P100-1995 ibm-1253 windows-1253
ibm-1254_P100-1995 ibm-1254 windows-1254
ibm-1255_P100-1995 ibm-1255
ibm-5351_P100-1998 ibm-5351 windows-1255
ibm-1256_P110-1997 ibm-1256
ibm-5352_P100-1998 ibm-5352 windows-1256
ibm-1257_P100-1995 ibm-1257
ibm-5353_P100-1998 ibm-5353 windows-1257
ibm-1258_P100-1997 ibm-1258 windows-1258
macos-0_2-10.2 macintosh mac csMacintosh windows-10000
macos-6-10.2 x-mac-greek windows-10006 macgr
macos-7_3-10.2 x-mac-cyrillic windows-10007 maccy
macos-29-10.2 x-mac-centraleurroman windows-10029 x-mac-ce macce
macos-35-10.2 x-mac-turkish windows-10081 mactr
ibm-1051_P100-1995 ibm-1051 hp-roman8 roman8 r8 csHPRoman8
ibm-1276_P100-1995 ibm-1276 Adobe-Standard-Encoding
 csAdobeStandardEncoding
ibm-1277_P100-1995 ibm-1277 Adobe-Latin1-Encoding
ibm-1006_P100-1995 ibm-1006 cp1006 1006
ibm-1098_P100-1995 ibm-1098 cp1098 1098
ibm-1124_P100-1996 ibm-1124 cp1124 1124
ibm-1125_P100-1997 ibm-1125 cp1125
ibm-1129_P100-1997 ibm-1129
ibm-1131_P100-1997 ibm-1131 cp1131
ibm-1133_P100-1997 ibm-1133
ibm-1381_P110-1999 ibm-1381 cp1381 1381
ibm-37_P100-1995 ibm-37 IBM037 ibm-037 ebcdic-cp-us ebcdic-cp-ca
 ebcdic-cp-wt ebcdic-cp-nl csIBM037 cp037 037 cpibm37 cp37
ibm-273_P100-1995 ibm-273 IBM273 CP273 csIBM273 ebcdic-de cpibm273
 273
ibm-277_P100-1995 ibm-277 IBM277 cp277 EBCDIC-CP-DK EBCDIC-CP-NO
 csIBM277 ebcdic-dk cpibm277 277
ibm-278_P100-1995 ibm-278 IBM278 cp278 ebcdic-cp-fi ebcdic-cp-se
 csIBM278 ebcdic-sv cpibm278 278
ibm-280_P100-1995 ibm-280 IBM280 CP280 ebcdic-cp-it csIBM280
 cpibm280 280
ibm-284_P100-1995 ibm-284 IBM284 CP284 ebcdic-cp-es csIBM284
 cpibm284 284
ibm-285_P100-1995 ibm-285 IBM285 CP285 ebcdic-cp-gb csIBM285
 ebcdic-gb cpibm285 285
ibm-290_P100-1995 ibm-290 IBM290 cp290 EBCDIC-JP-kana csIBM290
ibm-297_P100-1995 ibm-297 IBM297 cp297 ebcdic-cp-fr csIBM297
 cpibm297 297
ibm-420_X120-1999 ibm-420 IBM420 cp420 ebcdic-cp-ar1 csIBM420 420
ibm-424_P100-1995 ibm-424 IBM424 cp424 ebcdic-cp-he csIBM424 424
ibm-500_P100-1995 ibm-500 IBM500 CP500 ebcdic-cp-be csIBM500
 ebcdic-cp-ch cpibm500 500

International Character Sets

154

ibm-803_P100-1999 ibm-803 cp803
ibm-838_P100-1995 ibm-838 IBM-Thai csIBMThai cp838 838 ibm-9030
ibm-870_P100-1995 ibm-870 IBM870 CP870 ebcdic-cp-roece
 ebcdic-cp-yu csIBM870
ibm-871_P100-1995 ibm-871 IBM871 ebcdic-cp-is csIBM871 CP871
 ebcdic-is cpibm871 871
ibm-875_P100-1995 ibm-875 IBM875 cp875 875
ibm-918_P100-1995 ibm-918 IBM918 CP918 ebcdic-cp-ar2 csIBM918
ibm-930_P120-1999 ibm-930 ibm-5026 cp930 cpibm930 930
ibm-933_P110-1995 ibm-933 cp933 cpibm933 933
ibm-935_P110-1999 ibm-935 cp935 cpibm935 935
ibm-937_P110-1999 ibm-937 cp937 cpibm937 937
ibm-939_P120-1999 ibm-939 ibm-931 ibm-5035 cp939 939
ibm-1025_P100-1995 ibm-1025 cp1025 1025
ibm-1026_P100-1995 ibm-1026 IBM1026 CP1026 csIBM1026 1026
ibm-1047_P100-1995 ibm-1047 IBM1047 cpibm1047
ibm-1097_P100-1995 ibm-1097 cp1097 1097
ibm-1112_P100-1995 ibm-1112 cp1112 1112
ibm-1122_P100-1999 ibm-1122 cp1122 1122
ibm-1123_P100-1995 ibm-1123 cp1123 1123 cpibm1123
ibm-1130_P100-1997 ibm-1130
ibm-1132_P100-1998 ibm-1132
ibm-1140_P100-1997 ibm-1140 IBM01140 CCSID01140 CP01140 cp1140
 cpibm1140 ebcdic-us-37+euro
ibm-1141_P100-1997 ibm-1141 IBM01141 CCSID01141 CP01141 cp1141
 cpibm1141 ebcdic-de-273+euro
ibm-1142_P100-1997 ibm-1142 IBM01142 CCSID01142 CP01142 cp1142
 cpibm1142 ebcdic-dk-277+euro ebcdic-no-277+euro
ibm-1143_P100-1997 ibm-1143 IBM01143 CCSID01143 CP01143 cp1143
 cpibm1143 ebcdic-fi-278+euro ebcdic-se-278+euro
ibm-1144_P100-1997 ibm-1144 IBM01144 CCSID01144 CP01144 cp1144
 cpibm1144 ebcdic-it-280+euro
ibm-1145_P100-1997 ibm-1145 IBM01145 CCSID01145 CP01145 cp1145
 cpibm1145 ebcdic-es-284+euro
ibm-1146_P100-1997 ibm-1146 IBM01146 CCSID01146 CP01146 cp1146
 cpibm1146 ebcdic-gb-285+euro
ibm-1147_P100-1997 ibm-1147 IBM01147 CCSID01147 CP01147 cp1147
 cpibm1147 ebcdic-fr-297+euro
ibm-1148_P100-1997 ibm-1148 IBM01148 CCSID01148 CP01148 cp1148
 cpibm1148 ebcdic-international-500+euro
ibm-1149_P100-1997 ibm-1149 IBM01149 CCSID01149 CP01149 cp1149
 cpibm1149 ebcdic-is-871+euro
ibm-1153_P100-1999 ibm-1153 cpibm1153
ibm-1154_P100-1999 ibm-1154 cpibm1154
ibm-1155_P100-1999 ibm-1155 cpibm1155
ibm-1156_P100-1999 ibm-1156 cpibm1156
ibm-1157_P100-1999 ibm-1157 cpibm1157
ibm-1158_P100-1999 ibm-1158 cpibm1158
ibm-1160_P100-1999 ibm-1160 cpibm1160
ibm-1164_P100-1999 ibm-1164 cpibm1164
ibm-1364_P110-1997 ibm-1364 cp1364
ibm-1371_P100-1999 ibm-1371 cpibm1371
ibm-1388_P103-2001 ibm-1388 ibm-9580
ibm-1390_P110-2003 ibm-1390 cpibm1390
ibm-1399_P110-2003 ibm-1399
ibm-16684_P110-2003 ibm-16684
ibm-4899_P100-1998 ibm-4899 cpibm4899
ibm-4971_P100-1999 ibm-4971 cpibm4971
ibm-12712_P100-1998 ibm-12712 cpibm12712 ebcdic-he
ibm-16804_X110-1999 ibm-16804 cpibm16804 ebcdic-ar
ibm-1137_P100-1999 ibm-1137

International Character Sets

155

ibm-5123_P100-1999 ibm-5123
ibm-8482_P100-1999 ibm-8482
ibm-37_P100-1995,swaplfnl ibm-37-s390 ibm037-s390
ibm-1047_P100-1995,swaplfnl ibm-1047-s390
ibm-1140_P100-1997,swaplfnl ibm-1140-s390
ibm-1142_P100-1997,swaplfnl ibm-1142-s390
ibm-1143_P100-1997,swaplfnl ibm-1143-s390
ibm-1144_P100-1997,swaplfnl ibm-1144-s390
ibm-1145_P100-1997,swaplfnl ibm-1145-s390
ibm-1146_P100-1997,swaplfnl ibm-1146-s390
ibm-1147_P100-1997,swaplfnl ibm-1147-s390
ibm-1148_P100-1997,swaplfnl ibm-1148-s390
ibm-1149_P100-1997,swaplfnl ibm-1149-s390
ibm-1153_P100-1999,swaplfnl ibm-1153-s390
ibm-12712_P100-1998,swaplfnl ibm-12712-s390
ibm-16804_X110-1999,swaplfnl ibm-16804-s390
ebcdic-xml-us

156

Appendix C: Security Database Upgrade
for Firebird 2
A. Peshkov

Security Upgrade Script

/* Script security_database.sql
 *
 * The contents of this file are subject to the Initial
 * Developer's Public License Version 1.0 (the "License");
 * you may not use this file except in compliance with the
 * License. You may obtain a copy of the License at
 * http://www.ibphoenix.com/main.nfs?a=ibphoenix&page=ibp_idpl.
 *
 * Software distributed under the License is distributed AS IS,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied.
 * See the License for the specific language governing rights
 * and limitations under the License.
 *
 * The Original Code was created by Alex Peshkov on 16-Nov-2004
 * for the Firebird Open Source RDBMS project.
 *
 * Copyright (c) 2004 Alex Peshkov
 * and all contributors signed below.
 *
 * All Rights Reserved.
 * Contributor(s): ______________________________________.
 *
 */

-- 1. temporary table to alter domains correctly.
CREATE TABLE UTMP (
 USER_NAME VARCHAR(128) CHARACTER SET ASCII,
 SYS_USER_NAME VARCHAR(128) CHARACTER SET ASCII,
 GROUP_NAME VARCHAR(128) CHARACTER SET ASCII,
 UID INTEGER,
 GID INTEGER,
 PASSWD VARCHAR(64) CHARACTER SET BINARY,
 PRIVILEGE INTEGER,
 COMMENT BLOB SUB_TYPE TEXT SEGMENT SIZE 80
 CHARACTER SET UNICODE_FSS,
 FIRST_NAME VARCHAR(32) CHARACTER SET UNICODE_FSS
 DEFAULT _UNICODE_FSS '',
 MIDDLE_NAME VARCHAR(32) CHARACTER SET UNICODE_FSS
 DEFAULT _UNICODE_FSS '',
 LAST_NAME VARCHAR(32) CHARACTER SET UNICODE_FSS
 DEFAULT _UNICODE_FSS ''
);
COMMIT;

-- 2. save users data
INSERT INTO UTMP(USER_NAME, SYS_USER_NAME, GROUP_NAME,
 UID, GID, PRIVILEGE, COMMENT, FIRST_NAME, MIDDLE_NAME,
 LAST_NAME, PASSWD)
SELECT USER_NAME, SYS_USER_NAME, GROUP_NAME,

Security Database Upgrade for Firebird 2

157

 UID, GID, PRIVILEGE, COMMENT, FIRST_NAME, MIDDLE_NAME,
 LAST_NAME, PASSWD
 FROM USERS;
COMMIT;

-- 3. drop old tables and domains
DROP TABLE USERS;
DROP TABLE HOST_INFO;
COMMIT;

DROP DOMAIN COMMENT;
DROP DOMAIN NAME_PART;
DROP DOMAIN GID;
DROP DOMAIN HOST_KEY;
DROP DOMAIN HOST_NAME;
DROP DOMAIN PASSWD;
DROP DOMAIN UID;
DROP DOMAIN USER_NAME;
DROP DOMAIN PRIVILEGE;
COMMIT;

-- 4. create new objects in database
CREATE DOMAIN RDB$COMMENT AS BLOB SUB_TYPE TEXT SEGMENT SIZE 80
 CHARACTER SET UNICODE_FSS;
CREATE DOMAIN RDB$NAME_PART AS VARCHAR(32)
 CHARACTER SET UNICODE_FSS DEFAULT _UNICODE_FSS '';
CREATE DOMAIN RDB$GID AS INTEGER;
CREATE DOMAIN RDB$PASSWD AS VARCHAR(64) CHARACTER SET BINARY;
CREATE DOMAIN RDB$UID AS INTEGER;
CREATE DOMAIN RDB$USER_NAME AS VARCHAR(128)
CHARACTER SET UNICODE_FSS;
CREATE DOMAIN RDB$USER_PRIVILEGE AS INTEGER;
COMMIT;

CREATE TABLE RDB$USERS (
 RDB$USER_NAME RDB$USER_NAME NOT NULL PRIMARY KEY,
 /* local system user name
 for setuid for file permissions */
 RDB$SYS_USER_NAME RDB$USER_NAME,
 RDB$GROUP_NAME RDB$USER_NAME,
 RDB$UID RDB$UID,
 RDB$GID RDB$GID,
 RDB$PASSWD RDB$PASSWD, /* SEE NOTE BELOW */

 /* Privilege level of user -
 mark a user as having DBA privilege */
 RDB$PRIVILEGE RDB$USER_PRIVILEGE,

 RDB$COMMENT RDB$COMMENT,
 RDB$FIRST_NAME RDB$NAME_PART,
 RDB$MIDDLE_NAME RDB$NAME_PART,
 RDB$LAST_NAME RDB$NAME_PART);
COMMIT;

CREATE VIEW USERS (USER_NAME, SYS_USER_NAME, GROUP_NAME,
 UID, GID, PASSWD, PRIVILEGE, COMMENT, FIRST_NAME,
 MIDDLE_NAME, LAST_NAME, FULL_NAME) AS

 SELECT RDB$USER_NAME, RDB$SYS_USER_NAME, RDB$GROUP_NAME,
 RDBUID, RDBGID, RDB$PASSWD, RDB$PRIVILEGE, RDB$COMMENT,

Security Database Upgrade for Firebird 2

158

 RDB$FIRST_NAME, RDB$MIDDLE_NAME, RDB$LAST_NAME,
 RDB$first_name || _UNICODE_FSS ' ' || RDB$middle_name
 || _UNICODE_FSS ' ' || RDB$last_name
 FROM RDB$USERS
 WHERE CURRENT_USER = 'SYSDBA'
 OR CURRENT_USER = RDB$USERS.RDB$USER_NAME;
COMMIT;

GRANT ALL ON RDB$USERS to VIEW USERS;
GRANT SELECT ON USERS to PUBLIC;
GRANT UPDATE(PASSWD, GROUP_NAME, UID, GID, FIRST_NAME,
 MIDDLE_NAME, LAST_NAME)
 ON USERS TO PUBLIC;
COMMIT;

-- 5. move data from temporary table and drop it
INSERT INTO RDB$USERS(RDB$USER_NAME, RDB$SYS_USER_NAME,
 RDB$GROUP_NAME, RDB$UID, RDBGID, RDBPRIVILEGE, RDB$COMMENT,
 RDB$FIRST_NAME, RDB$MIDDLE_NAME, RDB$LAST_NAME, RDB$PASSWD)
SELECT USER_NAME, SYS_USER_NAME, GROUP_NAME, UID, GID,
 PRIVILEGE, COMMENT, FIRST_NAME, MIDDLE_NAME, LAST_NAME,
 PASSWD
 FROM UTMP;
COMMIT;

DROP TABLE UTMP;
COMMIT;

Note

This field should be constrained as NOT NULL. For information about this, see Nullability of RDB$PASSWD
in the Security chapter.

	Firebird 2.1 Release Notes
	Table of Contents
	General Notes
	Bug Reporting
	Documentation

	New in Firebird 2
	New Features Implemented
	On-Disk Structure
	Database Triggers
	SQL and Objects
	Global Temporary Tables
	Common Table Expressions, Recursive DSQL Queries
	RETURNING Clause
	UPDATE OR INSERT Statements for MERGE Functionality
	LIST() function
	Lots of New Built-in Functions
	“Short” BLOBs Can Masquerade as Long VARCHARs

	Procedural SQL
	Domains for Defining PSQL Variables and Arguments
	COLLATE in Stored Procedures and Parameters
	Enhancement to PSQL error stack trace

	Security
	Windows Security to Authenticate Users

	International Language Support
	The CREATE COLLATION Command
	Unicode Collations Anywhere

	Platform Support
	Ports to Windows 2003 64-bit

	Administrative
	Database Monitoring via SQL
	More Context Information

	Remote Interface
	Derived Tables
	PSQL Now Supports Named Cursors
	Reimplemented Protocols on Windows
	Local Protocol--XNET
	Benefits of the XNET Protocol over IPServer
	Performance
	Disadvantages

	Change to WNET (“NetBEUI”) Protocol

	Reworking of Garbage Collection
	Porting of the Services API to Classic is Complete
	Lock Timeout for WAIT Transactions
	New Implementation of String Search Operators
	Reworking of Updatable Views
	Additional Database Shutdown Modes Introduced
	UDFs Improved re NULL Handling
	Signalling SQL NULL

	Run-time Checking for Concatenation Overflow
	Changes to Synchronisation Logic
	Support for 64-bit Platforms
	Record Enumeration Limits Increased
	Debugging Improvements
	Improved Reporting from Bugchecks
	Updated Internal Structure Reporting
	New Debug Logging Facilities
	Diagnostic Enhancement

	Improved Connection Handling on POSIX Superserver
	PSQL Invariant Tracking Reworked
	ROLLBACK RETAIN Syntax Support
	No More Registry Search on Win32 Servers
	More Optimizer Improvements

	Changes to the Firebird API and ODS
	API (Application Programming Interface)
	Cleanup of ibase.h
	Lock Timeout for WAIT Transactions
	isc_dsql_sql_info() Now Includes Relation Aliases
	Enhancement to isc_blob_lookup_desc()
	API Identifies Client Version
	Additions to the isc_database_info() Structure
	isc_info_active_tran_count
	isc_info_creation_date

	Additions to the isc_transaction_info() Structure
	isc_info_tra_oldest_interesting
	isc_info_tra_oldest_active
	isc_info_tra_oldest_snapshot
	isc_info_tra_isolation
	isc_info_tra_access
	isc_info_tra_lock_timeout

	Improved Services API
	Parameter isc_spb_trusted_auth
	Parameter isc_spb_dbname
	Task Execution Optimized

	New Function for Delivering Error Text
	Accommodation of New Shutdown <state>
 Parameters

	ODS (On-Disk Structure) Changes
	New ODS Number
	Size limit for exception messages increased
	New Description Field for Generators
	New Description Field for SQL Roles
	“ODS Type” Recognition
	Smarter DSQL Error Reporting
	New Column in RDB$Index_Segments

	Global Improvements in Firebird 2.1
	Forced Writes on Linux Now Works!
	Forensics
	Instant Fix for an Older Firebird

	Databases on Raw Devices
	Moving a Database to a Raw Device
	Special Issues for nbak/nbackup
	
	Examples of nbackup Usage with a Raw Device

	Further Advice about Raw Devices

	Remote Interface Improvements
	API Changes
	XSQLVAR

	Optimization
	Optimization for Multiple Index Scans
	Optimize sparse bitmap operations

	Configuration and Tuning
	Increased Lock Manager Limits & Defaults
	Page sizes of 1K and 2K Deprecated
	Enlarge Disk Allocation Chunks
	The Solution
	DatabaseGrowthIncrement Configuration Parameter

	Bypass Filesystem Caching on Superserver

	Other Global Improvements
	Garbage Collector Rationalisation
	Immediate Release of External Files
	Synchronization of DSQL metadata cache objects in
 Classic server
	BLOB Improvements
	Type Flag for Stored Procedures
	Help for Getting Core Dumps on Linux

	Data Definition Language (DDL)
	Quick Links
	Database Triggers
	Utilities Support for Database Triggers

	Global Temporary Tables
	Syntax and Rules for GTTs
	Implementation Notes

	Views Enhancements
	Use Column Aliases in CREATE VIEW

	SQL2003 compliance for CREATE TRIGGER
	SQL2003 Compliant Alternative for Computed Fields
	CREATE SEQUENCE
	REVOKE ADMIN OPTION
	SET/DROP DEFAULT Clauses for ALTER TABLE
	Syntaxes for Changing Exceptions
	RECREATE EXCEPTION
	CREATE OR ALTER EXCEPTION

	ALTER EXTERNAL FUNCTION
	COMMENT Statement
	Extensions to CREATE VIEW Specification
	RECREATE TRIGGER Statement Implemented
	Usage Enhancements
	Creating Foreign Key Constraints No Longer Requires
 Exclusive Access
	Changed Logic for View Updates
	Descriptive Identifiers for BLOB Subtypes

	Data Manipulation Language (DML)
	Quick Links
	Common Table Expressions
	Benefits of CTEs
	Recursion Limit
	Syntax and Rules for CTEs
	Rules for Non-Recursive CTEs
	Rules for Recursive CTEs

	The LIST Function
	The RETURNING Clause
	Rules for Using a RETURNING Clause

	UPDATE OR INSERT Statement
	Usage Notes

	New JOIN Types
	Syntax and Rules
	Named columns join
	Natural join

	CROSS JOIN

	INSERT with Defaults
	BLOB Subtype 1 Compatibility with VarChar
	Full Equality Comparisons Between BLOBs
	RDB$DB_KEY Returns NULL in Outer Joins
	Sorting on BLOB and ARRAY Columns is Now Disallowed
	Built-in Functions
	New Built-in Functions
	Enhancements to Functions

	Functions Enhanced in V.2.0.x
	IIF() Expression
	Improvement in CAST() Behaviour
	Expression Arguments for SUBSTRING()

	DSQL Parsing of Table Names is Stricter
	EXECUTE BLOCK Statement
	Derived Tables
	ROLLBACK RETAIN Syntax
	ROWS Syntax
	Enhancements to UNION Handling
	UNION DISTINCT Keyword Implementation
	Improved Type Coercion in UNIONs
	UNIONs Allowed in ANY/ALL/IN Subqueries

	Enhancements to NULL Logic
	New [NOT] DISTINCT Test Treats Two NULL Operands as
 Equal
	NULL Comparison Rule Relaxed
	NULLs Ordering Changed to Comply with Standard

	Subqueries and INSERT Statements Can Now Accept UNION
 Sets
	New Extensions to UPDATE and DELETE Syntaxes
	Extended Context Variables
	Sub-second Values Enabled for Time and DateTime
 Variables
	CURRENT_TIMESTAMP, 'NOW' Now Return Milliseconds
	Seconds Precision Enabled for CURRENT_TIME and
 CURRENT_TIMESTAMP

	New System Functions to Retrieve Context Variables
	Pre-defined Namespaces
	USER_SESSION
	USER_TRANSACTION
	SYSTEM

	Notes

	Improvements in Handling User-specified Query Plans
	Improvements in Sorting
	Order By or Group By <alias-name>
	GROUP BY Arbitrary Expressions
	Order * Sets by Implicit Degree Number
	Parameters and Ordinal Sorts--a “Gotcha”

	NEXT VALUE FOR Expression
	RETURNING Clause for INSERT Statements

	Articles
	SELECT Statement & Expression Syntax
	Data Type of an Aggregation Result

	Procedural SQL (PSQL)
	Quick Links
	Domains in PSQL
	COLLATE in Stored Procedures and Parameters
	WHERE CURRENT OF Now Allowed for Views
	Context Variable ROW_COUNT Enhanced
	Explicit Cursors
	Defaults for Stored Procedure Arguments
	LEAVE <label> Syntax Support
	OLD Context Variables Now Read-only
	PSQL Stack Trace
	Call a UDF as a Void Function (Procedure)

	New Reserved Words and Changes
	Newly Reserved Words
	Changed from Non-reserved to Reserved
	Keywords Added as Non-reserved
	Keywords No Longer Reserved
	No Longer Reserved as Keywords

	Indexing & Optimizations
	Optimizations in V.2.1
	Improved PLAN Clause
	Optimizer Improvements
	For All Databases
	Some General Improvements
	Faster Evaluation of IN() and OR
	Improved UNIQUE Retrieval
	More Optimization of NOT Conditions
	Distribute HAVING Conjunctions to the WHERE Clause
	Distribute UNION Conjunctions to the Inner Streams
	Improved Handling of CROSS JOIN and Merge/SORT
	Better Choice of Join Order for Mixed Inner/Outer
 Joins
	Equality Comparison on Expressions

	For ODS 11 Databases only
	Segment-level Selectivities are Used
	Better Support for IS NULL and STARTING WITH
	Matching of Both OR and AND Nodes to Indexes
	Better JOIN Orders
	Indexed Order Enabled for Outer Joins

	Enhancements to Indexing
	252-byte index length limit is gone
	Expression Indexes
	Changes to Null keys handling
	Improved Index Compression
	Selectivity Maintenance per Segment

	International Language Support (INTL)
	New INTL Interface for Non-ASCII Character Sets
	Architecture
	Enhancements
	Well-formedness checks
	Uppercasing
	Maximum String Length
	sqlsubtype and Attachment Character Set
	Enhancements for BLOBs
	COLLATE clauses for BLOBs
	Full equality comparisons between BLOBs
	Character set conversion for BLOBs

	INTL Plug-ins
	New Character Sets/Collations
	UTF8 character set
	UNICODE collations (for UTF8)

	Developments in V.2.1
	ICU Character Sets
	Registering an ICU Character Set Module
	Registering a Character Set on the Server
	Registering a Character Set in a Database
	The CREATE COLLATION Statement
	Using the Stored Procedure

	The UNICODE Collations
	Specific Attributes for Collations
	Collation Changes in V.2.1

	Metadata Text Conversion
	Repairing Your Metadata Text
	Create the procedures in the database
	Check your database
	Fixing the metadata
	Remove the upgrade procedures

	Supported Character Sets

	Administrative Features
	Monitoring Tables
	The Concept
	Scope and Security
	Metadata
	Usage
	Cancel a Running Query

	More Context Information

	Security
	Summary of Changes
	New security database
	Using Windows Security to Authenticate Users
	Better password encryption
	Users can modify their own passwords
	Non-server access to security database is rejected
	Active protection from brute-force attack
	Vulnerabilities have been closed

	Details of the Security Changes in Firebird 2
	Authentication
	Firebird 1.5 Authentication
	Firebird 2: Server-side Hashing
	The SHA-1 Hashing Algorithm

	The New Security Database
	New security database structure

	gsec in Firebird 2
	Protection from Brute-force Hacking

	Using Windows Security to Authenticate Users
	SQL Privileges
	Administrators
	Configuration Parameter “Authentication”
	Forcing Trusted Authentication

	Classic Server on POSIX
	For Any Platform
	Other Security Improvements
	isc_service_query() wrongly revealed the full
 database file spec
	Any user could view the server log through the
 Services API

	Dealing with the New Security Database
	Doing the Security Database Upgrade
	Nullability of RDB$PASSWD
	Caution with LegacyHash

	Command-line Utilities
	General Enhancements
	Utilities Support for Database Triggers

	Firebird Services
	New Command-line Utility fbsvcmgr
	Using fbsvcmgr
	Parameters
	SPB Syntax
	fbsvcmgr Syntax Specifics

	Backup Service Misbehaviour Fixed
	Disable Non-SYSDBA Access to Privileged Services

	Backup Tools
	New On-line Incremental Backup
	Nbak
	NBackup
	Backing Up
	Restoring
	Usage
	Valid Options

	User Manual

	gbak Backup/Porting/Restore Utility
	Changed Behaviours, New Switches
	gbak Made More Version-friendly
	Hide User Name & Password in Shell
	gbak -V and the “Counter” Parameter

	ISQL Query Utility
	New Switches
	-b[ail] "Bail out"
	Some Features

	-m2 to Output Stats and Plans
	-r2 to Pass a Case-Sensitive Role Name

	New Commands and Enhancements
	Ctrl-C to cancel query output
	Extension of isql SHOW SYSTEM command
	SHOW COLLATIONS command
	SET HEAD[ing] toggle
	SET SQLDA_DISPLAY ON/OFF
	SET TRANSACTION Enhanced
	SHOW DATABASE now Returns ODS Version Number
	Ability to show the line number where an error
 happened in a script
	Enhanced Command-line Help

	gsec Authentication Manager
	gsec return code

	gfix Server Utility
	New Shutdown States (Modes)

	Builds and Installs
	Parameter for Instance name added to instsvc.exe
	Revised Win32 Installer Docs
	Help on command line switches

	Gentoo/FreeBSD detection during install

	External Functions (UDFs)
	Ability to Signal SQL NULL via a Null Pointer
	UDF library diagnostic messages improved
	UDFs Added and Changed
	IB_UDF_rand() vs IB_UDF_srand()
	IB_UDF_lower

	General UDF Changes
	Build Changes

	New Configuration Parameters and Changes
	RelaxedAliasChecking
	MaxFileSystemCache
	DatabaseGrowthIncrement
	ExternalFileAccess
	LegacyHash
	Redirection
	About Multi-hop

	GCPolicy
	OldColumnNaming
	UsePriorityScheduler
	TCPNoNagle has changed
	Removed or Deprecated Parameters
	CreateInternalWindow
	DeadThreadsCollection is no longer used

	Firebird 2 Project Teams
	A. New Built-in Functions
	B. International Character Sets
	New Character Sets and Collations Implemented
	Narrow Character Sets
	ICU Character Sets

	C. Security Database Upgrade for Firebird 2
	Security Upgrade Script

