
THE MOST EXPERT
for InterBase® and Firebird TM

The IBExpert Book:
Database Tools for Developers

Author: Holger Klemt
Co-Author: Debra Miles

Copyright © Holger Klemt and HK-Software

The IBExpert Book: Database Tools for Developers
Copyright © Holger Klemt and HK–Software

ISBN:

First edition: May 2005

Printed and bound in the Federal Republic of Germany for HK–Software, Gerhard–Stalling–
Strasse 47a, 26135 Oldenburg, Germany.

www.h–k.de

Author: Holger Klemt
Co–author: Debra J. Miles
Production Manager: Manuel Morbitzer
Cover Design: Bastian Morbitzer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of HK–Software.

This book is sold subject to the condition that it shall not, by way of trade, or otherwise, be
lent, re–sold, hired out, or otherwise circulated without the publisher’s prior consent in any
form of binding or cover other than that in which it is published and without a similar condi-
tion including this condition being imposed on the subsequent purchaser.

Trademarked names may appear in this book. Rather that use a trademark symbol with
every occurrence of a trademarked name, we use the names only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor the publisher shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

All information and source code in this book is also available online at
http://www.ibexpert.info/documentation/.

Dear Reader,

You develop SQL databases, professionally or as a hobby, and need an efficient and powerful
tool. With IBExpert you have made the right choice. It enables you in just a short space of
time to become acquainted with, and achieve a command of the open source database, Fire-
bird, as well as its commercial relative, Borland InterBase. There are powerful and yet easy–
to–learn editors for all vital functions. Development of database objects, database models,
stored procedure and trigger programming, performance tuning – all this and much more
can be executed simply and quickly using IBExpert.

The Firebird server is an extremely powerful open source database system, which in spite of
its very simple installation and administration, offers all essential functions otherwise found
only in commercial database systems such as Oracle or Informix. However, following installa-
tion the Firebird user has but a few command–line tools at his disposal, there is no powerful
GUI tool for data definition and administration included in the kit. This, along with the very
limited documentation, is the first hurdle that Firebird users need to overcome.

This is where IBExpert comes to the rescue, whether in the form of the free of charge, func-
tionally limited Personal Edition, the gratis Educational Version or the commercial Full Ver-
sion including all modules, which is also available as a 45 day Test Version. These resources
enable the user to acquire the technical proficiency required for professional applications.

This publication is written for database developers and database administrators, as both will
profit from this reference book in their daily work with the Firebird server. All relevant mod-
ules are presented in detail and the sundry options (not always immediately obvious) and
background information provide both beginners and experts alike with a wealth of informa-
tion that can only otherwise be laboriously compiled from diverse information sources.

This book would not have been possible without the combined efforts of the HK–Software
team. I would like to take this opportunity to thank you all for your support (sorted alpha-
betically by Christian name):

Alexander Khvastunov – The Main Architect and Programming Expert
Andrea Armbruster – The Commercial and Office Expert
Andrea Schmidt – The Translation Expert
Bastian Morbitzer – The Design Expert
Debra J. Miles – The Translation and Documentation Expert
Manuel Morbitzer – The Web and Programming Expert
Raphael Baier – The Future Generation Expert
Uwe Klemt – The Server and Network Expert

Furthermore I would like to thank all those at the Firebird Foundation who are actively en-
gaged in the continued development of the Firebird server. The Firebird Project can be sup-
ported in many ways: subscription membership, active programming or personal contribu-
tions to the newsgroups and other media. This also helps the Firebird Project attain the level
of awareness and recognition that it deserves.

Following the success of open source operating systems, particularly in the area of server in-
stallations, the database market segment is now also on the brink of such a breakthrough.
Firebird is here certainly one of the most powerful platforms, and IBExpert the ideal com-
plement for discerning database developers and administrators.

Holger Klemt

Oldenburg, Germany
May 2005

Gerhard Stalling Strasse 47a
26135 Oldenburg
Germany

tel: +49 441 9 50 78 22
fax: +49 441 9 50 78 65
info@m2-it.de
www.m2-it.de

Database Media Management
at the highest level

PHPtree is an outstanding freeware
multi-media tool.

Use it to publish internet pages,
intranet solutions, catalogs,
knowledge bases, documentation
or books, such as this one
about IBExpert.

Publish, for example, web shops
from existing ERP applications such
as AvERP. All from a secure
Firebird™ or other database.

M² IT can help you realize such
projects, customizing the system to
meet your requirements and
integrating all existing data.

Find out more about us at
www.m2-it.de and about
PHPtree at www.phptree.de.

Features:

• Complete role administration

• Detailed rights administration
for user groups and users,
hereditary rights, additive
and subtractive rights

• User-friendly and intuitive
environment (customizable)

• Data can be easily moved
per drag and drop

• Platform independent

• Digital workflows

• Plugins can be easily integra-
ted (net structures, editorial
and advertisement produc-
tion, CMS and cross-media
modules document
generation)

• Direct database access
from browser

• automatisms for rapid
structuring of documents

• and much more...

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

Contents

1 Getting Started 11
1.1 The First Steps.. 11

1.1.1 Download and Install Firebird ... 11
1.1.2 Download and Install InterBase® ... 32
1.1.3 Download and Install IBExpert ... 35
1.1.4 Registering a database (using the EMPLOYEE example) 37
1.1.5 Working with a database ... 40

1.2 What is IBExpert?.. 41
1.3 IBExpert License ... 44

1.3.1 IBExpert Personal Edition .. 45
1.4 How to register IBExpert .. 46
1.5 IBExpert Screen .. 46

1.5.1 IBExpert Splash Screen ... 47
1.5.2 (1) Title Bar ... 48
1.5.3 (2) Menu ... 48
1.5.4 (3) Toolbars... 49
1.5.5 (4) DB Explorer .. 64
1.5.6 (5) SQL Assistant ... 72
1.5.7 (6) Windows Bar... 74
1.5.8 (7) Status Bar .. 75
1.5.9 Exit... 75

2 Database 77
2.1 Database Design ... 78

2.1.1 Database Normalization... 78
2.2 Inside InterBase/Firebird.. 80

2.2.1 Space management in InterBase .. 80
2.3 Database Registration Info ... 84
2.4 Register Database ... 85

2.4.1 General ... 86
2.4.2 Additional .. 88
2.4.3 Log Files.. 91
2.4.4 Backup/Restore .. 94
2.4.5 Default paths ... 97
2.4.6 Explorer Filters ... 98
2.4.7 Scripts .. 99

2.5 Unregister Database .. 100
2.6 Connect to an existing Database ... 100

2.6.1 Accessing a Firebird embedded database with Win1252 (or
other character set) .. 101

2.6.2 Database login ... 102
2.6.3 Remote database connect using an alias.................................... 102

2.7 Reconnect to Database .. 104
2.8 Disconnect from a Database ... 104
2.9 Create Database ... 105

2.9.1 Charset / Default Character Set.. 107
2.9.2 Page Size .. 108
2.9.3 Structure of a data page.. 110
2.9.4 SQL Dialect.. 114

2.10 Drop Database/Delete Database.. 114

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

2.11 Recreate Database .. 115
2.12 Recompute selectivity of all indices .. 115
2.13 Recompile all Stored Procedures and Triggers ... 116
2.14 Database Security ... 116
2.15 Database Corruption .. 116

2.15.1 How to corrupt a database ... 117
2.15.2 Recovering corrupt databases .. 118

3 Database Objects 131
3.1 Domain .. 132

3.1.1 Domain Integrity .. 133
3.1.2 New Domain / Domain Editor ... 133
3.1.3 Alter Domain.. 136
3.1.4 Drop Domain/Delete Domain.. 136
3.1.5 Duplicate Domain ... 137

3.2 Table ... 138
3.2.1 Keys ... 139
3.2.2 Data ... 146
3.2.3 Data Set .. 146
3.2.4 Column ... 147
3.2.5 Row .. 148
3.2.6 Constraints .. 149
3.2.7 Check Constraint .. 151
3.2.8 Index/Indices... 152
3.2.9 New Table.. 158
3.2.10 Table Editor ... 161
3.2.11 Alter Table ... 180
3.2.12 Create SIUD Procedures .. 181
3.2.13 Drop Table/Delete Table .. 181

3.3 Field .. 182
3.3.1 Adding New Field (Insert Field) using the Field Editor 182
3.3.2 Charset / Character Set ... 185
3.3.3 Data Type.. 189
3.3.4 Array .. 201
3.3.5 Boolean ... 202
3.3.6 Autoincrement.. 203
3.3.7 Not Null ... 203
3.3.8 Null... 203
3.3.9 Alter Field .. 205
3.3.10 Drop Field/Delete Field .. 206

3.4 View .. 206
3.4.1 New View / View Editor ... 208
3.4.2 Alter View.. 218
3.4.3 Drop View/Delete View .. 218

3.5 Stored Procedure... 218
3.5.1 New Procedure ... 221
3.5.2 Stored Procedure Editor... 225
3.5.3 Executing Stored Procedures.. 230
3.5.4 Procedure using Substring() function (Susbstr Procedure)............ 232
3.5.5 Debug Procedure or Trigger (IBExpert Debugger) 236
3.5.6 Alter Procedure... 240
3.5.7 Drop Procedure/Delete Procedure ... 241

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

3.6 Trigger... 241
3.6.1 Trigger Types... 243
3.6.2 New Trigger ... 244
3.6.3 Trigger Editor... 247
3.6.4 Alter Trigger .. 250
3.6.5 Drop Trigger/Delete Trigger ... 252

3.7 Generator... 252
3.7.1 New Generator ... 253
3.7.2 Generator Editor... 256
3.7.3 Alter Generator .. 257
3.7.4 Drop Generator/Delete Generator ... 258

3.8 Exception ... 258
3.8.1 New Exception/Exception Editor ... 259
3.8.2 Raising an Exception ... 261
3.8.3 Alter Exception... 262
3.8.4 Drop Exception/Delete Exception .. 262

3.9 User–Defined Function (UDF) .. 263
3.9.1 Drop External Function/Drop UDF ... 264
3.9.2 RFunc ... 265
3.9.3 FreeUDFLib .. 266
3.9.4 FreeAdhocUDF.. 267

3.10 Blob Filter... 269
3.10.1 Declaring a blob filter .. 269
3.10.2 Calling a blob filter.. 269

3.11 Role... 269
3.11.1 New Role ... 270
3.11.2 Alter Role .. 271
3.11.3 Drop Role/Delete Role ... 271

3.12 System Objects... 271
3.13 Text Editor / SQL Code Editor ... 272

4 IBExpert Edit Menu 275
4.1 Load from File / Save to File ... 275
4.2 Cut / Copy / Paste / Select All ... 275
4.3 Find / Search Again / Replace ... 275
4.4 Incremental Search ... 277
4.5 Print Preview .. 277
4.6 Print .. 279
4.7 Page Setup ... 279
4.8 Convert Identifiers/Keywords.. 279

5 IBExpert Grid Menu 281
5.1 Apply Best Fit ... 281
5.2 Save Grid Data as ... 281
5.3 Copy Current Record to Clipboard/Copy All to Clipboard 281

6 IBExpert View Menu 283

7 IBExpert Options Menu 285
7.1 Environment Options ... 285

7.1.1 Preferences.. 285
7.1.2 Confirmations... 289

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

7.1.3 Tools... 290
7.1.4 Font .. 294
7.1.5 Transactions .. 295
7.1.6 Grid .. 296
7.1.7 Additional Help ... 301
7.1.8 Additional Tools .. 301
7.1.9 Disabled Names.. 302
7.1.10 Associations ... 302
7.1.11 IBExpert Direct... 302
7.1.12 IBExpert Bug Track ... 303
7.1.13 IBExpert User Database... 304

7.2 Editor Options ... 305
7.2.1 General ... 305
7.2.2 Display .. 307
7.2.3 Color... 307
7.2.4 Code Insight .. 308

7.3 Visual Options ... 310
7.3.1 Bars and Pop–up Menus .. 310
7.3.2 Lists and Trees ... 311
7.3.3 Edit Controls .. 312
7.3.4 Page Controls... 312
7.3.5 Splitters .. 313

7.4 Keyboard Templates .. 314
7.5 General Templates... 315
7.6 Object Editor Options ... 317

7.6.1 Domains Editor Options ... 317
7.6.2 Tables Editor Options .. 318
7.6.3 Views Editor Options ... 319
7.6.4 Procedures Editor Options.. 319
7.6.5 Triggers Editor Options.. 320

8 IBExpert Tools Menu 321
8.1 SQL Editor .. 321

8.1.1 Query.. 322
8.1.2 SQL Structured Query Language... 323
8.1.3 SQL Editor Menu... 323
8.1.4 (1) Edit ... 326
8.1.5 (2) Results... 330
8.1.6 (3) Statements History.. 336
8.1.7 (4) Plan Analyzer .. 338
8.1.8 (5) Performance Analysis... 338
8.1.9 (6) Logs .. 348
8.1.10 Optimizing an SQL statement ... 349
8.1.11 Special features.. 349

8.2 New SQL Editor ... 351
8.3 Query Builder.. 351
8.4 Data Analysis .. 355

8.4.1 Data Analysis Cube Manager .. 359
8.4.2 Data Analysis Calculated Measures Manager............................... 360

8.5 Script Executive .. 361
8.5.1 Executing multiple scripts from a single script 364
8.5.2 Create multiple CSV files from a script....................................... 364

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

8.5.3 Script Language Extensions ... 364
8.6 SQL Monitor.. 384

8.6.1 SQL Monitor Options ... 385
8.7 Dependencies Viewer ... 385
8.8 SP/Triggers/Views Analyzer .. 387
8.9 Database Comparer ... 390
8.10 Table Data Comparer ... 392
8.11 Log Manager... 394
8.12 Search in Metadata.. 397
8.13 Extract Metadata ... 398

8.13.1 Metadata ... 404
8.13.2 Select Objects Tree... 406
8.13.3 How does IBExpert extract objects descriptions? 407
8.13.4 How does IBExpert extract blobs?... 407
8.13.5 Obtain current generator values ... 408

8.14 Print Metadata .. 408
8.15 Generate HTML Documentation ... 410

8.15.1 CSS – Cascaded Style Sheets... 415
8.16 User Manager ... 415

8.16.1 Server security ISC4.GDB / SECURITY.FDB................................ 418
8.16.2 Change user password per batch .. 419

8.17 Grant Manager .. 419
8.17.1 Granting access to stored procedures.. 422
8.17.2 Using the GRANT AUTHORITY option ... 422

8.18 Secondary Files Manager .. 423
8.18.1 Primary file .. 425
8.18.2 Secondary files... 425

8.19 Localize IB Messages ... 426
8.20 Localize IBExpert... 427

8.20.1 Find IBExpert Message .. 428
8.21 Report Manager .. 429
8.22 Blob Viewer/Editor... 429
8.23 Database Designer .. 430

8.23.1 Database Designer right–click menus .. 432
8.23.2 Reverse Engineer.. 434
8.23.3 Generate Script .. 435
8.23.4 Export ... 436
8.23.5 Print ... 436
8.23.6 Manage Subject Areas... 437
8.23.7 Manage Subject Layers.. 438
8.23.8 Model Options .. 439

8.24 Test Data Generator .. 442
8.25 IBExpert Command–Line Tools.. 443

8.25.1 IBEBLOCK (EXECUTE IBEBLOCK) .. 444
8.25.2 IBECompare... 496
8.25.3 IBEExtract ... 498
8.25.4 IBEScript ... 499

8.26 InterBase and Firebird Command–Line Utilities ... 502
8.26.1 GBAK and GSPLIT... 503
8.26.2 GFIX ... 506
8.26.3 GSEC .. 510
8.26.4 GSTAT... 512

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

8.26.5 IBLOCKPR (Windows) and GDS_LOCK_PRINT (Unix) 512
8.26.6 IBMGR... 513
8.26.7 ISQL ... 513

9 IBExpert Services Menu 515
9.1 Backup Database... 515

9.1.1 Why is a database backup and restore important? 517
9.1.2 Garbage collection .. 518

9.2 Restore Database .. 519
9.2.1 Database Shadow Files.. 521

9.3 Server Properties/Log .. 528
9.4 Server Activation Certificates .. 529
9.5 Database Validation ... 530
9.6 Database Statistics .. 532
9.7 Database Properties... 534

9.7.1 General ... 534
9.7.2 Active Users... 536

9.8 Database Shutdown... 537
9.9 Database Online .. 538
9.10 Communication Diagnostics .. 538

10 IBExpert PlugIns Menu 541

11 IBExpert Windows Menu 543
11.1 Windows Manager ... 543
11.2 Close All ... 543
11.3 Cascade / Tile / Minimize / Arrange ... 543

12 IBExpert Help 545
12.1 IBExpert Customer Area... 546
12.2 What Is New? ... 546
12.3 Contents .. 573
12.4 Additional Help Files... 573
12.5 Product Home Page ... 573
12.6 Send bug reports to ... 574
12.7 Bug Track System ... 574
12.8 About... 574
12.9 IBExpert Direct ... 575
12.10 Download Firebird / Purchase InterBase ... 575

I SQL Language Reference 581
I.1 Firebird SQL.. 581

I.1.1 String delimiter symbol ... 581
I.1.2 Double–quoted identifiers .. 581
I.1.3 Apostrophes in strings... 582
I.1.4 Concatenation of strings .. 582
I.1.5 Division of an integer by an integer... 582
I.1.6 Expressions involving NULL.. 583

I.2 DDL – Data Definition Language.. 583
I.2.1 ALTER ... 584
I.2.2 COMMIT .. 585

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

I.2.3 CONNECT .. 587
I.2.4 CREATE ... 589
I.2.5 DECLARE EXTERNAL FUNCTION (incorporating a new UDF

library).. 590
I.2.6 DESCRIBE ... 593
I.2.7 DISCONNECT ... 594
I.2.8 DROP .. 595
I.2.9 END DECLARE SECTION .. 596
I.2.10 EVENT... 596
I.2.11 EXECUTE ... 597
I.2.12 GRANT .. 601
I.2.13 PREPARE ... 604
I.2.14 REVOKE... 605
I.2.15 ROLLBACK ... 607
I.2.16 SET... 608
I.2.17 WHENEVER .. 613

I.3 DML – Data Manipulation Language ... 614
I.3.1 SIUD... 614

I.4 Stored Procedure and Trigger Language ... 621
I.4.1 Supported Firebird 2 features... 622
I.4.2 Using DML statements... 622
I.4.3 Using SELECT statements .. 622
I.4.4 SET TERM terminator or terminating character 623
I.4.5 SUSPEND .. 624
I.4.6 BEGIN and END statement... 624
I.4.7 DECLARE VARIABLE .. 624
I.4.8 IF THEN ELSE... 624
I.4.9 WHILE and DO ... 625

I.5 Comparison Operators ... 625
I.6 JOIN .. 626

I.6.1 INNER JOIN ... 628
I.6.2 OUTER JOIN... 629
I.6.3 Joining more than two tables ... 630
I.6.4 Self joins / reflexive joins .. 631

II GLOSSARY 633
II.1 */Wildcard.. 633
II.2 Alias .. 633
II.3 API (Application Program Interface)... 634
II.4 Application ... 634
II.5 ASCII... 635
II.6 BDE (Borland Database Engine) .. 635
II.7 Client/Server .. 635
II.8 Comdiag... 636
II.9 Comments.. 636
II.10 Compile and Commit / Rollback... 637
II.11 Conditional Test .. 637
II.12 Constant .. 637
II.13 DBMS (Database Management System) ... 637
II.14 DDE (Dynamic Data Exchange) ... 638
II.15 Default... 638
II.16 DLL (Dynamic Link Library)... 639

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

II.17 Event ... 639
II.18 Expression.. 639
II.19 FBK Files .. 640
II.20 FDB Files .. 640
II.21 FTP (File Transfer Protocol)... 640
II.22 GBK Files.. 640
II.23 GDB Files ... 641
II.24 GRC Files.. 641
II.25 HTML (HyperText Markup Language) ... 641
II.26 HTTP (HyperText Transfer Protocol) ... 641
II.27 IDE (Integrated Development Environment) ... 642
II.28 OAT (Oldest Active Transaction) .. 642
II.29 ODBC (Open DataBase Connectivity) ... 642
II.30 ODS Version ... 642
II.31 OIT (Oldest Interesting Transaction) .. 643
II.32 OLAP (Online Analytical Processing) ... 643
II.33 OLE (Object Linking and Embedding) ... 643
II.34 Operand ... 643
II.35 Operator .. 643
II.36 PIP (Page Inventory Page).. 644
II.37 RDBMS (Relational Database Management System)................................... 644
II.38 Statement .. 645
II.39 String .. 645
II.40 TID (Transaction ID).. 645
II.41 TIP (Transaction Inventory Page) .. 646
II.42 Transaction... 648

II.42.1 Transaction Number Column .. 648
II.42.2 Active Transactions ... 648
II.42.3 Transactions in Limbo.. 649

II.43 Two–Phase Commit ... 649
II.44 Variable ... 650

III FAQs 651
III.1 How do I connect to a database? ... 651
III.2 Why do I need to register a database? ... 651
III.3 How do I create a new database? .. 651
III.4 How do I use the SQL Editor?.. 651
III.5 What is the Performance Analysis for?.. 651
III.6 What is the Query Plan? ... 651
III.7 How can I optimize an SQL Statement?.. 651
III.8 How do I debug a stored procedure?.. 651
III.9 Are there typical windows for all Object Editors?.. 652
III.10 How can I use the view and procedure version control?.............................. 652
III.11 What is the Project View in the DB Explorer for?.. 652
III.12 What is the Recent list in the DB Explorer for? .. 652
III.13 How do I use the integrated Report Manager?... 652
III.14 Why can I not see the index statistics in the Table Editor? 652
III.15 Why does the index selectivity/statistics not change?................................. 652
III.16 Indices do not seem to work on my newly installed application.................... 652
III.17 How can I integrate the online Help files into IBExpert?.............................. 652
III.18 Import CSV Files ... 652

1

2

3

4

5

6

7

8

9

10

11

12

I

II

III

IV

Contents

IV Database technology–related articles 655
IV.1 Enterprise–wide data model.. 655

1

Getting Started - The First Steps

15

1 Getting Started
What you need to get started with IBExpert

All you need to get started is a Borland InterBase (version 7 or earlier) or Firebird
(version 1.5 or earlier) client installed on your workstation/PC and a connection to an
InterBase or Firebird server (either locally or remote).

And of course IBExpert should be installed on the computer, where you intend to work.

IBExpert works ideally on operating systems not older than Win 98; and only 10MB
memory is needed to get started.

Please refer to The First Steps for details of how to install Firebird and IBExpert.

1.1 The First Steps
In order to start working and developing with IBExpert, it is necessary to take the fol-
lowing steps:

• Download and install Firebird (Open Source database)
• Download and install IBExpert (Personal, Trial or Customer edition)
• Register a database (the example uses the EMPLOYEE database supplied with Fire-

bird and InterBase)
• Working with a database (based on the EMPLOYEE sample database).

Please refer to the individual subjects for more information.

1.1.1 Download and Install Firebird

The current Firebird version can be downloaded free of charge from
http://firebird.sourceforge.net/, or http://firebirdsql.org subject to Open Source condi-
tions.

Alternatively, use the IBExpert Help menu item Download Firebird to directly access
the download website.

1

Getting Started - The First Steps

16

Simply click the DOWNLOAD tab and select All Released Packages. Scroll down to the
latest file releases and click DOWNLOAD to the right of the version for your platform,
for example firebird_win32 for the Windows version (most current version in March
2005 is Firebird 1.5.2 from 24th December 2004; Firebird 2.00 Alpha 01 was released
on March 21 2005, currently for testing purposes only). Please refer to Posix Platforms
and Windows Platforms for further information for individual platforms with regard to
download and installation.

A new window appears:

Click on the Firebird-1.5.2.4731-Win32.exe file. Select a download server:

1

Getting Started - The First Steps

17

and click the download symbol. Specify drive and path for the download file and save.

Now double-click the downloaded firebird file to start the installation. Again, please re-
fer to Posix Platforms and Windows Platforms for installation details for the various
platforms.

Read and accept the Firebird License Agreement, before proceeding further.

Please note that the Firebird server, along with any databases you create or connect
to, must reside on a hard drive that is physically connected to the host machine. It is
not possible to locate components of the server or database on a mapped drive, a file
system share or a network file system.

1

Getting Started - The First Steps

18

It is important to note that the Firebird server must be installed on the target com-
puter. The new Firebird 1.5. Embedded Server version provides a useful enhancement:
the client library is embedded in the server, this combination performing the work of
both client and server, for a single attached application.

Should problems be encountered during installation, please refer to the Firebird Infor-
mation file.

Copy of Firebird License Agreement

INTERBASE PUBLIC LICENSE
Version 1.0

1. Definitions. 1.0.1. "Commercial Use" means distribution or otherwise making the
Covered Code available to a third party.
1.1. ''Contributor'' means each entity that creates or contributes to the creation of
Modifications.
1.2. ''Contributor Version'' means the combination of the Original Code, prior to Modifi-
cations used by a Contributor, and the Modifications made by that particular Contribu-
tor.
1.3. ''Covered Code'' means the Original Code or Modifications or the combination of
the Original Code and Modifications, in each case including portions thereof.
1.4. ''Electronic Distribution Mechanism'' means a mechanism generally accepted in the
software development community for the electronic transfer of data.
1.5. ''Executable'' means Covered Code in any form other than Source Code.
1.6. ''Initial Developer'' means the individual or entity identified as the Initial Developer
in the Source Code notice required by Exhibit A.
1.7. ''Larger Work'' means a work which combines Covered Code or portions thereof
with code not governed by the terms of this License.
1.8. ''License'' means this document.
1.8.1. "Licensable" means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently acquired, any and all of the
rights conveyed herein.
1.9. ''Modifications'' means any addition to or deletion from the substance or structure
of either the Original Code or any previous Modifications. When Covered Code is re-
leased as a series of files, a Modification is:
 A. Any addition to or deletion from the contents of a file containing Original Code or
previous Modifications.
 B. Any new file that contains any part of the Original Code or previous Modifica-
tions.
1.10. ''Original Code'' means Source Code of computer software code which is de-
scribed in the Source Code notice required by Exhibit A as Original Code, and which, at
the time of its release under this License is not already Covered Code governed by this
License.
 1.10.1. "Patent Claims" means any patent claim(s), now owned or hereafter ac-
quired, including without limitation, method, process, and apparatus claims, in any
patent Licensable by grantor.
1.11. ''Source Code'' means the preferred form of the Covered Code for making modifi-
cations to it, including all modules it contains, plus any associated interface definition
files, scripts used to control compilation and installation of an Executable, or source
code differential comparisons against either the Original Code or another well known,
available Covered Code of the Contributor's choice. The Source Code can be in a com-

1

Getting Started - The First Steps

19

pressed or archival form, provided the appropriate decompression or de-archiving
software is widely available for no charge.
1.12. "You'' (or "Your") means an individual or a legal entity exercising rights under,
and complying with, all of the terms of, this License or a future version of this License
issued under Section 6.1. For legal entities, "You'' includes any entity which controls, is
controlled by, or is under common control with You. For purposes of this definition,
"control'' means (a) the power, direct or indirect, to cause the direction or manage-
ment of such entity, whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial ownership of such entity.

2. Source Code License. 2.1. The Initial Developer Grant. The Initial Developer
hereby grants You a world-wide, royalty-free, non-exclusive license, subject to third
party intellectual property claims:
 (a) under intellectual property rights (other than patent or trademark) Licensable
by Initial Developer to use, reproduce, modify, display, perform, sublicense and dis-
tribute the Original Code (or portions thereof) with or without Modifications, and/or as
part of a Larger Work; and
 (b) under Patents Claims infringed by the making, using or selling of Original Code,
to make, have made, use, practice, sell, and offer for sale, and/or otherwise dispose of
the Original Code (or portions thereof).
 (c) the licenses granted in this Section 2.1(a) and (b) are effective on the date Ini-
tial Developer first distributes Original Code under the terms of this License.
 (d) Notwithstanding Section 2.1(b) above, no patent license is granted: 1) for code
that You delete from the Original Code; 2) separate from the Original Code; or 3) for
infringements caused by: i) the modification of the Original Code or ii) the combination
of the Original Code with other software or devices.
2.2. Contributor Grant. Subject to third party intellectual property claims, each Con-
tributor hereby grants You a world-wide, royalty-free, non-exclusive license
 (a) under intellectual property rights (other than patent or trademark) Licensable
by Contributor, to use, reproduce, modify, display, perform, sublicense and distribute
the Modifications created by such Contributor (or portions thereof) either on an un-
modified basis, with other Modifications, as Covered Code and/or as part of a Larger
Work; and
 (b) under Patent Claims infringed by the making, using, or selling of Modifications
made by that Contributor either alone and/or in combination with its Contributor Ver-
sion (or portions of such combination), to make, use, sell, offer for sale, have made,
and/or otherwise dispose of: 1) Modifications made by that Contributor (or portions
thereof); and 2) the combination of Modifications made by that Contributor with its
Contributor Version (or portions of such combination).
 (c) the licenses granted in Sections 2.2(a) and 2.2(b) are effective on the date Con-
tributor first makes Commercial Use of the Covered Code.
 (d) Notwithstanding Section 2.2(b) above, no patent license is granted: 1) for any
code that Contributor has deleted from the Contributor Version; 2) separate from the
Contributor Version; 3) for infringements caused by: i) third party modifications of
Contributor Version or ii) the combination of Modifications made by that Contributor
with other software (except as part of the Contributor Version) or other devices; or 4)
under Patent Claims infringed by Covered Code in the absence of Modifications made
by that Contributor.

3. Distribution Obligations. 3.1. Application of License. The Modifications which You
create or to which You contribute are governed by the terms of this License, including
without limitation Section 2.2. The Source Code version of Covered Code may be dis-

1

Getting Started - The First Steps

20

tributed only under the terms of this License or a future version of this License re-
leased under Section 6.1, and You must include a copy of this License with every copy
of the Source Code You distribute. You may not offer or impose any terms on any
Source Code version that alters or restricts the applicable version of this License or the
recipients' rights hereunder. However, You may include an additional document offer-
ing the additional rights described in Section 3.5.
3.2. Availability of Source Code.
Any Modification which You create or to which You contribute must be made available
in Source Code form under the terms of this License either on the same media as an
Executable version or via an accepted Electronic Distribution Mechanism to anyone to
whom you made an Executable version available; and if made available via Electronic
Distribution Mechanism, must remain available for at least twelve (12) months after
the date it initially became available, or at least six (6) months after a subsequent ver-
sion of that particular Modification has been made available to such recipients. You are
responsible for ensuring that the Source Code version remains available even if the
Electronic Distribution Mechanism is maintained by a third party.
3.3. Description of Modifications. You must cause all Covered Code to which You con-
tribute to contain a file documenting the changes You made to create that Covered
Code and the date of any change. You must include a prominent statement that the
Modification is derived, directly or indirectly, from Original Code provided by the Initial
Developer and including the name of the Initial Developer in (a) the Source Code, and
(b) in any notice in an Executable version or related documentation in which You de-
scribe the origin or ownership of the Covered Code.
3.4. Intellectual Property Matters (a) Third Party Claims.
If Contributor has knowledge that a license under a third party's intellectual property
rights is required to exercise the rights granted by such Contributor under Sections 2.1
or 2.2, Contributor must include a text file with the Source Code distribution titled "LE-
GAL'' which describes the claim and the party making the claim in sufficient detail that
a recipient will know whom to contact. If Contributor obtains such knowledge after the
Modification is made available as described in Section 3.2, Contributor shall promptly
modify the LEGAL file in all copies Contributor makes available thereafter and shall
take other steps (such as notifying appropriate mailing lists or newsgroups) reasonably
calculated to inform those who received the Covered Code that new knowledge has
been obtained.
 (b) Contributor APIs.
If Contributor's Modifications include an application programming interface and Con-
tributor has knowledge of patent licenses which are reasonably necessary to implement
that API, Contributor must also include this information in the LEGAL file.
 (c) Representations.
Contributor represents that, except as disclosed pursuant to Section 3.4(a) above,
Contributor believes that Contributor's Modifications are Contributor's original crea-
tion(s) and/or Contributor has sufficient rights to grant the rights conveyed by this Li-
cense.
3.5. Required Notices. You must duplicate the notice in Exhibit A in each file of the
Source Code. If it is not possible to put such notice in a particular Source Code file due
to its structure, then You must include such notice in a location (such as a relevant di-
rectory) where a user would be likely to look for such a notice. If You created one or
more Modification(s) You may add your name as a Contributor to the notice described
in Exhibit A. You must also duplicate this License in any documentation for the Source
Code where You describe recipients' rights or ownership rights relating to Covered
Code. You may choose to offer, and to charge a fee for, warranty, support, indemnity
or liability obligations to one or more recipients of Covered Code. However, You may do

1

Getting Started - The First Steps

21

so only on Your own behalf, and not on behalf of the Initial Developer or any Contribu-
tor. You must make it absolutely clear than any such warranty, support, indemnity or
liability obligation is offered by You alone, and You hereby agree to indemnify the Ini-
tial Developer and every Contributor for any liability incurred by the Initial Developer
or such Contributor as a result of warranty, support, indemnity or liability terms You
offer.
3.6. Distribution of Executable Versions. You may distribute Covered Code in Executa-
ble form only if the requirements of Section 3.1-3.5 have been met for that Covered
Code, and if You include a notice stating that the Source Code version of the Covered
Code is available under the terms of this License, including a description of how and
where You have fulfilled the obligations of Section 3.2. The notice must be conspicu-
ously included in any notice in an Executable version, related documentation or collat-
eral in which You describe recipients' rights relating to the Covered Code. You may dis-
tribute the Executable version of Covered Code or ownership rights under a license of
Your choice, which may contain terms different from this License, provided that You
are in compliance with the terms of this License and that the license for the Executable
version does not attempt to limit or alter the recipient's rights in the Source Code ver-
sion from the rights set forth in this License. If You distribute the Executable version
under a different license You must make it absolutely clear that any terms which differ
from this License are offered by You alone, not by the Initial Developer or any Con-
tributor. You hereby agree to indemnify the Initial Developer and every Contributor for
any liability incurred by the Initial Developer or such Contributor as a result of any
such terms You offer.
3.7. Larger Works. You may create a Larger Work by combining Covered Code with
other code not governed by the terms of this License and distribute the Larger Work as
a single product. In such a case, You must make sure the requirements of this License
are fulfilled for the Covered Code.

4. Inability to Comply Due to Statute or Regulation. If it is impossible for You to
comply with any of the terms of this License with respect to some or all of the Covered
Code due to statute, judicial order, or regulation then You must: (a) comply with the
terms of this License to the maximum extent possible; and (b) describe the limitations
and the code they affect. Such description must be included in the LEGAL file described
in Section 3.4 and must be included with all distributions of the Source Code. Except to
the extent prohibited by statute or regulation, such description must be sufficiently de-
tailed for a recipient of ordinary skill to be able to understand it.

5. Application of this License. This License applies to code to which the Initial De-
veloper has attached the notice in Exhibit A and to related Covered Code.

6. Versions of the License. 6.1. New Versions. Inprise Corporation (''Inprise'') may
publish revised and/or new versions of the License from time to time. Each version will
be given a distinguishing version number.
6.2. Effect of New Versions. Once Covered Code has been published under a particular
version of the License, You may always continue to use it under the terms of that ver-
sion. You may also choose to use such Covered Code under the terms of any subse-
quent version of the License published by Inprise. No one other than Inprise has the
right to modify the terms applicable to Covered Code created under this License.
6.3. Derivative Works. If You create or use a modified version of this License (which
you may only do in order to apply it to code which is not already Covered Code gov-
erned by this License), You must (a) rename Your license so that the phrases ''Mozilla'',
''MOZILLAPL'', ''MOZPL'', ''Netscape'', "MPL", ''NPL", "Inprise", "ISC", "InterBase", "IB''

1

Getting Started - The First Steps

22

or any confusingly similar phrase do not appear in your license (except to note that
your license differs from this License) and (b) otherwise make it clear that Your version
of the license contains terms which differ from the Mozilla Public License and Netscape
Public License. (Filling in the name of the Initial Developer, Original Code or Contribu-
tor in the notice described in Exhibit A shall not of themselves be deemed to be modifi-
cations of this License.)
6.4 Origin of the InterBase Public License. The InterBase Public License V 1.0 is based
on the Mozilla Public License V 1.1 with the following changes:
1. The license is published by Inprise Corporation. Only Inprise Corporation can modify
the terms applicable to Covered Code.
2. The license can be modified and used for code which is not already governed by this
license. Modified versions of the license must be renamed to avoid confusion with Net-
scape's or Inprise Corporation's public license and must include a description of
changes from the InterBase Public License.
3. The name of the license in Exhibit A is the "InterBase Public License".
4. The reference to an alternative license in Exhibit A has been removed.
5. Amendments I, II, III, V, and VI have been deleted.
6. Exhibit A, Netscape Public License has been deleted
7. A new amendment (II) has been added, describing the required and restricted rights
to use the trademarks of Inprise Corporation.

7. DISCLAIMER OF WARRANTY. COVERED CODE IS PROVIDED UNDER THIS LI-
CENSE ON AN "AS IS'' BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE
COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PUR-
POSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORM-
ANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE
DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER
CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR COR-
RECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF
THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT
UNDER THIS DISCLAIMER.

8. TERMINATION. 8.1. This License and the rights granted hereunder will terminate
automatically if You fail to comply with terms herein and fail to cure such breach within
30 days of becoming aware of the breach. All sublicenses to the Covered Code which
are properly granted shall survive any termination of this License. Provisions which, by
their nature, must remain in effect beyond the termination of this License shall survive.
8.2. If You initiate litigation by asserting a patent infringement claim (excluding de-
claratory judgment actions) against Initial Developer or a Contributor (the Initial De-
veloper or Contributor against whom You file such action is referred to as "Participant")
alleging that:
 (a) such Participant's Contributor Version directly or indirectly infringes any patent,
then any and all rights granted by such Participant to You under Sections 2.1 and/or
2.2 of this License shall, upon 60 days notice from Participant terminate prospectively,
unless if within 60 days after receipt of notice You either: (i) agree in writing to pay
Participant a mutually agreeable reasonable royalty for Your past and future use of
Modifications made by such Participant, or (ii) withdraw Your litigation claim with re-
spect to the Contributor Version against such Participant. If within 60 days of notice, a
reasonable royalty and payment arrangement are not mutually agreed upon in writing
by the parties or the litigation claim is not withdrawn, the rights granted by Participant
to You under Sections 2.1 and/or 2.2 automatically terminate at the expiration of the

1

Getting Started - The First Steps

23

60 day notice period specified above.
 (b) any software, hardware, or device, other than such Participant's Contributor
Version, directly or indirectly infringes any patent, then any rights granted to You by
such Participant under Sections 2.1(b) and 2.2(b) are revoked effective as of the date
You first made, used, sold, distributed, or had made, Modifications made by that Par-
ticipant.
8.3. If You assert a patent infringement claim against Participant alleging that such
Participant's Contributor Version directly or indirectly infringes any patent where such
claim is resolved (such as by license or settlement) prior to the initiation of patent in-
fringement litigation, then the reasonable value of the licenses granted by such Partici-
pant under Sections 2.1 or 2.2 shall be taken into account in determining the amount
or value of any payment or license.
8.4. In the event of termination under Sections 8.1 or 8.2 above, all end user license
agreements (excluding distributors and resellers) which have been validly granted by
You or any distributor hereunder prior to termination shall survive termination.

9. LIMITATION OF LIABILITY.UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL
THEORY, WHETHER TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE,
SHALL YOU, THE INITIAL DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBU-
TOR OF COVERED CODE, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO
ANY PERSON FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAM-
AGES OF ANY CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY
AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL
HAVE BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF
LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL INJURY RESULT-
ING FROM SUCH PARTY'S NEGLIGENCE TO THE EXTENT APPLICABLE LAW PROHIBITS
SUCH LIMITATION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMI-
TATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS EXCLUSION AND
LIMITATION MAY NOT APPLY TO YOU.

10. U.S. GOVERNMENT END USERS. The Covered Code is a ''commercial item,'' as
that term is defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of ''commercial com-
puter software'' and ''commercial computer software documentation,'' as such terms
are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48
C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all U.S. Government End Users
acquire Covered Code with only those rights set forth herein.

11. MISCELLANEOUS. This License represents the complete agreement concerning
subject matter hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it enforceable. This
License shall be governed by California law provisions (except to the extent applicable
law, if any, provides otherwise), excluding its conflict-of-law provisions. With respect to
disputes in which at least one party is a citizen of, or an entity chartered or registered
to do business in the United States of America, any litigation relating to this License
shall be subject to the jurisdiction of the Federal Courts of the Northern District of Cali-
fornia, with venue lying in Santa Clara County, California, with the losing party respon-
sible for costs, including without limitation, court costs and reasonable attorneys' fees
and expenses. The application of the United Nations Convention on Contracts for the
International Sale of Goods is expressly excluded. Any law or regulation which provides
that the language of a contract shall be construed against the drafter shall not apply to
this License.

1

Getting Started - The First Steps

24

12. RESPONSIBILITY FOR CLAIMS. As between Initial Developer and the Contribu-
tors, each party is responsible for claims and damages arising, directly or indirectly,
out of its utilization of rights under this License and You agree to work with Initial De-
veloper and Contributors to distribute such responsibility on an equitable basis. Nothing
herein is intended or shall be deemed to constitute any admission of liability.

13. MULTIPLE-LICENSED CODE. Initial Developer may designate portions of the
Covered Code as "Multiple-Licensed". "Multiple-Licensed" means that the Initial Devel-
oper permits you to utilize portions of the Covered Code under Your choice of the IPL
or the alternative licenses, if any, specified by the Initial Developer in the file described
in Exhibit A.

EXHIBIT A - InterBase Public License.The contents of this file are subject to the Inter-
Base Public License Version 1.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.Inprise.com/IPL.html
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License.
The Original Code was created by Inprise Corporation and its predecessors.
Portions created by Inprise Corporation are Copyright (C) Inprise Corporation. All
Rights Reserved.
Contributor(s): ______________________________________.

AMENDMENTS I. Inprise and logo. This License does not grant any rights to use the
trademarks "Inprise'', "InterBase," "Java" or "JavaScript" even if such marks are in-
cluded in the Original Code or Modifications.
II. Trademark Usage.
II.1. Advertising Materials. All advertising materials mentioning features or use of the
covered Code must display the following acknowledgement: "This product includes
software developed by Inprise Corporation. "
II.2. Endorsements. The names "Inprise," "InterBase," "ISC," and "IB" must not be
used to endorse or promote Contributor Versions or Larger Works without the prior
written permission of Inprise.
II.3. Product Names. Contributor Versions and Larger Works may not be called "In-
prise" or "InterBase" nor may the words "Inprise" or "InterBase" appear in their names
without the prior written permission of Inprise Corporation.

Copy of Firebird Information file

Firebird Database Server 1.5 Final Release

This document is a guide to installing this package of Firebird 1.5 on the Win32 plat-
form. These notes refer to the installation package itself, rather than Firebird 1.5 in
general.

** IMPORTANT NOTE **

If you used one of the installable binaries from Sourceforge to install RC2 it is recom-
mended that you uninstall directly from the installation directory with unins000.exe.

1

Getting Started - The First Steps

25

Do not use the Control Panel as the path to the uninstaller. There appears to be a bug
that prevents the server service from being shut down if the uninstaller is run from
there.

This only applies to the uninstaller with RC2 from Firebird on Sourceforge. Later instal-
lable binaries can be uninstalled via any available means.

** END **

Contents

• Before installation
• New features of the installer
• Deprecated Features related to installation
• Deinstallation
• Other Notes
• Installation from a batch file

Before installation

It is recommended that you UNINSTALL all previous versions of Firebird 1.0, Firebird
1.5 or InterBase before installing this package.

New features of the installer in Firebird 1.5

• This installer now combines the super server and classic server binaries into a sin-
gle installation package. You can choose to install one or the other, but not both. To
switch server type you need to uninstall and re-install.

• The rules for library installation have changed considerably. They are explained in
detail in .\docs\README.Win32LibraryInstallation.txt which will be available
to you after installation.
As a result of these new rules the installer checks for an existing install of Firebird
or InterBase.

• If Firebird 1.5 is already installed it will attempt to install over it. If the server is

running it will halt the install.
• If another version of Firebird or InterBase is already installed it will warn the user.

If the user continues the installer will install Firebird and set up registry entries but
it will not configure Firebird to run, either as a service or as an application. This
must be done manually.

• The installer has a new command-line option /force which allows those with a
'devil may care' attitude to override the above.

• If an amended firebird.conf exists in the installation directory it is saved as: fire-
bird.conf.saved.n where n is a number. The installer always installs the default
firebird.conf file. This is to guarantee consistency to the installation process.
Otherwise the installer would have to parse the existing (and possibly broken) con-
figuration file.

Deprecated Features related to installation

1

Getting Started - The First Steps

26

• Firebird 1.0 reserved a new registry key for Firebird use. It was:
HKLM\SOFTWARE\FirebirdSQL This is now deprecated and will be deleted by the in-
staller. If you have applications which rely on this key you should add it back
manually.
However, it is preferable if you rebuild your application to read the new key.

• Earlier Firebird 1.5 release candidates installed fbclient.dll in the <system> di-
rectory. This practice is now deprecated. An option to install it into the <system> di-
rectory is available at install time. However, it is preferable if you rebuild your ap-
plications to conform to the new usage of fbclient.

Deinstallation

• It is preferred that this package be uninstalled correctly using the uninstallation ap-
plication supplied. This can be called from the Control Panel.
Alternatively it can be uninstalled by running unins000.exe directly from the instal-
lation directory.

• If Firebird is running as an application (instead of as a service) it is recommended
that you manually stop the server before running the uninstaller. This is because
the uninstaller cannot stop a running application. If a server is running during the
uninstall the uninstall will complete with errors. You will have to delete the rem-
nants by hand.

Other Notes

Firebird requires WinSock2. All Win32 platforms should have this, except for Win95. A
test for the Winsock2 library is made during install. If it is not found the install will fail.
You can visit this link:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q177719

to find out how to go about upgrading.

Installation from a batch file

The setup program can be run from a batch file. The following parameters may be
passed:

/SP- Disables the 'This will install... Do you wish to continue?' prompt at the begin-
ning of Setup.

/SILENT, /VERYSILENT Instructs Setup to be silent or very silent. When Setup is si-
lent the wizard and the background window are not displayed but the installation pro-
gress window is. When a setup is very silent this installation progress window is not
displayed. Everything else is normal so for example error messages during installation
are displayed and the startup prompt is (if you haven't disabled it with the '/SP-'
command line option explained above).

If a restart is necessary and the '/NORESTART' command isn't used (see below) and
Setup is silent, it will display a Reboot now? messagebox. If it's very silent it will reboot
without asking.

/NORESTART Instructs Setup not to reboot even if it's necessary.

1

Getting Started - The First Steps

27

/DIR="x:\dirname" Overrides the default directory name displayed on the Select Des-
tination Directory wizard page. A fully qualified pathname must be specified. If the
[Setup] section directive DisableDirPage was set to yes, this command line parameter
is ignored.

/GROUP="folder name" Overrides the default folder name displayed on the Select
Start Menu Folder wizard page. If the [Setup] section directive DisableProgramGroup-
Page was set to yes, this command line parameter is ignored.

/NOICONS Instructs Setup to initially disable the Don't create any icons check box on
the Select Start Menu Folder wizard page.

/COMPONENTS="comma separated list of component names" Choose from -

• SuperServerComponent,
• ClassicServerComponent,
• ServerComponent,
• DevAdminComponent and
• ClientComponent

Overrides the default components settings. Using this command line parameter causes
Setup to automatically select a custom type. A full install requires combining compo-
nents. For example:

/COMPONENTS="SuperServerComponent, ServerComponent,
DevAdminComponent, ClientComponent"

would be required for a full install.

/FORCE Tells the installer to ignore its analysis of the existing environment. It will at-
tempt to install and configure Firebird 1.5 as if no previous version of Firebird or Inter-
Base was installed.

This can be useful if you have a seriously broken installation that you cannot uninstall.
Or it could be another way to aggravate your users by breaking a perfectly good work-
ing install of InterBase. It's your choice.

/NOCPL Don't install the Control Panel Applet. This is useful for two reasons:

• Installing/Uninstalling the CPL applet will often require a system restart.
• You may wish to use an alternative CPL applet.

/NOGDS32 Don't install a copy of the client library into the system directory, even if in-
stallation analysis concludes it is OK to do so.

/COPYFBCLIENT Copy the fbclient.dll to the system directory. This is recommended
for client installs if you are sure that you will only ever be accessing a single server
version. If your client applications are likely to take advantage of accessing different
server versions this is not recommended. See
doc/README.Win32LibraryInstallation.txt for more information.

1

Getting Started - The First Steps

28

Windows platforms

On Windows server platforms - Windows NT, 2000 and XP, the Firebird service is
started upon completion of the installation. It starts automatically every time the
server is booted up.

The non-server Windows platforms, Windows 95, 98 and ME, do not support services.
The installation starts the Firebird server as an application, protected by another appli-
cation known as the Guardian. Should the server application terminate abnormally, the
Guardian will attempt to restart it.

Excerpts of this article have been taken from the IBPhoenix "Firebird Quick Start
Guide". Many thanks to Paul Beach (www.ibphoenix.com)!

Posix platforms

As there may be significant variations from release to release of any Posix operating
system, especially the open source one, it is important to read the release notes per-
taining to the Firebird version to be installed. These can be downloaded from the
Download page at http://firebird.sourceforge.net. Further help can be found at
http://firebird.sourceforge.net/index.php?op=doc&id=install.

Please consult the appropriate platform documentation, if you have a Linux distribution
supporting rpm installs, for instructions about using the RedHat Package Manager.
Most distributions offer the choice of performing the install from a command shell or
through a GUI interface.

For Linux distributions that cannot process rpm programs, use the ".tar.gz" kit. Again
instructions are included in the release notes (see above link).

Shell scripts have been provided, but in some cases, the release notes may advise
modification of the scripts as well as some manual adjustments.

Excerpts of this article have been taken from the IBPhoenix "Firebird Quick Start
Guide". Many thanks to Paul Beach (www.ibphoenix.com)!

Performing a client–only install

Each remote client machine needs the client library that matches the release version of
the Firebird server: libgds.so on Posix clients; gds32.dll on Windows clients.

Firebird versions from 1.5 onward require an additional client library, libfb.so or
fb32.dll, which contains the full library. In these newer distributions, the "gds"-
named files are distributed to maintain compatibility with third-party products which
require these files. Internally, the libraries jump to the correct access points in the re-
named libraries.

Also needed for the client-only install:

Windows

1

Getting Started - The First Steps

29

If you want to run Windows clients to a Linux or other Posix Firebird server, you need
to download the full Windows installation kit corresponding to the version of Firebird
server installed on the Linux or other server machine.

Simply run the installation program, as if you were going to install the server, selecting
the CLIENT ONLY option in the Install menu.

Linux and some other Posix clients

Some Posix flavors, even within the Linux constellation, have somewhat idiosyncratic
requirements for file system locations. For these reasons, not all *x distributions for
Firebird even contain a client-only install option.

For the majority, the following procedure is suggested for Firebird versions lower than
1.5. Log in as root for this.

• Search for libgds.so.0 in /opt/interbase/lib on the machine where the Firebird
server is installed, and copy it to /usr/lib on the client.

• Create the symlink libgds.so or it, using the following command:
ln -s /usr/lib/libgds.so.0 /usr/lib/libgds.so

• Copy the interbase.msg file to /opt/interbase.
• In the system-wide default shell profile, or using setenv() from a shell, create the
INTERBASE environment variable and point it to /opt/interbase, to enable the API
routines to locate the messages.

Excerpts of this article have been taken from the IBPhoenix "Firebird Quick Start
Guide". Many thanks to Paul Beach (www.ibphoenix.com)!

Performing a minimum Firebird 1.5 client install

by Stefan Heymann (April 11th 2004)

This article describes how to run Firebird 1.5 based applications with the absolute
minimum client installation required.

What you need

Your application needs access to the Firebird client library, fbclient.dll. The easiest
way to do this is to put fbclient.dll in the same directory as your application's .exe
file.

fbclient.dll needs access to two other DLLs: msvcp60.dll and msvcrt.dll. Both
are delivered together with the Windows installation of Firebird, so if you have a Fire-
bird server installed on your development machine, you'll find these DLLs in the bin di-
rectory of your Firebird installation.

msvcrt.dll (Microsoft Visual C/C++ RunTime) is a part of Windows and resides in the
Windows\System directory on Win9x machines and in Windows\System32 on NT-based
machines (NT4, W2K, XP, 2003). On Windows 95 and Windows 98 machines, it's too
old for the msvcp60.dll that fbclient.dll uses. So you'll have to replace the
msvcrt.dll by the one that comes with Firebird (or even a newer one).

1

Getting Started - The First Steps

30

msvcp60.dll can stay in your application directory.

Your application directory now looks like this:

<YourApp>.exe and other application files
fbclient.dll
msvcp60.dll

That's it. Easy!

What you have to write to the Registry

Nothing - there's nothing you'll have to do to the registry.

What you have to do to the Windows\System directory

Only on Windows 95 and Windows 98 "First Edition" machines: you will need to replace
msvcrt.dll with the newer version that comes with Firebird 1.5 (if there isn't already
a new version installed).

Some version numbers of msvcrt.dll:

Windows 98 FE 5.00.7128 does NOT work

Windows 98 SE 6.00.8397.0 works

Firebird 1.5.0 6.00.8797.0 works

Windows XP SP1 7.0.2600.1106 works

What you have to do to your code (Delphi, IBObjects)

A "normal" InterBase access library uses gds32.dll as the client library. Firebird's cli-
ent library is named fbclient.dll. If you use IBObjects (http://www.ibobjects.com/),
you can set another client library name.

• Include IB_Constants.pas as the first unit in your USES clause .
• Put the following line in the INITIALIZATION part of your Unit:
IB_Constants.IB_GDS32 := 'fbclient.dll';

• This line must be executed before the first database connect is performed.

Classic Server versus SuperServer

Many thanks to Paul Beach of IBPhoenix for this article.

• The InterBase SuperServer Architecture
• The InterBase Classic Architecture
• Comparing Classic and SuperServer
• Why Two Implementations?

1

Getting Started - The First Steps

31

InterBase SuperServer architecture

SuperServer is a multi-client, multi-threaded implementation of the InterBase server
process. This implementation replaces the "Classic" implementation used for previous
versions of InterBase.

SuperServer serves many clients at the same time using threads instead of separate
server processes for each client. Multiple threads share access to a single server proc-
ess. The benefits of SuperServer architecture include:

Having a single server process eliminates bottlenecks resulting from arbitration for
shared database pages and reduces the overhead required for multiple process start-
ups and database queries.

SuperServer improves message interaction performance because a shared library call
is always faster than an interprocess communication request to a server process.

SuperServer improves database integrity because only one server process has write
access to the database, rather than one process for each client. All database engine
functionality is encapsulated into a unified, protected subsystem that is isolated from
user application error.

SuperServer allows for the collection of database statistics and user information that
InterBase's tools can use for performance monitoring and administrative tasks.

SuperServer is more cost-effective than the Classic architecture. All operating systems
have limits on the number of OS processes that can run concurrently. SuperServer al-
lows for a fixed number of database threads to be multiplexed over a potentially large
number of concurrent database connections. Since these threads are not hard-wired to
any specific database connection, SuperServer can support a larger number of users
with minimum resources use.

InterBase Classic architecture

Classic architecture, the design in InterBase 4.0 and earlier, was process-based. For
every client connection, a separate server process was started to execute the database
engine, and each server process had a dedicated database cache. The server processes
contended for access to the database, so a Lock Manager subsystem was required to
arbitrate and synchronize concurrent page access among the processes.

Invoking the Classic Server

The InterBase Classic server runs on demand as multiple processes. When a client at-
tempts to connect to an InterBase database, one instance of the gds_inet_server ex-
ecutable runs and remains dedicated to that client connection for the duration of the
connection.

The initiator of gds_inet_server is inetd, the UNIX service turnkey process. It has a
configuration file, /etc/inetd.conf, which associates services with the executable that
is to receive the connection. When inetd receives a connection request for a given
service, it looks up the appropriate program in /etc/inetd.conf, executes it, and
transfers the network connection to the service program.

1

Getting Started - The First Steps

32

When the client chooses to disconnect, gds_inet_server closes its connection to the
database and any other files, and then exits. When there are no clients connected to
any database, there should be no invocations of gds_inet_server running.

Lock management

Lock management is taken care of by another process, gds_lock_mgr. This program is
started when the second client attaches to a given database. The job of the lock man-
ager is to serve (metaphorically) as a traffic cop. It grants locks on database resources
to clients. It also requests that clients relinquish locks on a resource when that re-
source is in demand by other clients. The gds_lock_mgr remains running even after
the last client disconnects. The next time a client connects, it can avoid the slight over-
head of starting the lock manager process.

Use of Posix signals

The gds_lock_mgr process communicates with each client process by using a shared
memory area, and a signaling mechanism using the POSIX signals SIGUSR1 and
SIGUSR2. Signals are caught in signal handling routines in libgdslib.a, and for this
reason user applications should not perform signal handling or any modification to the
signal mask. Applications which need to use POSIX signals must compile with an alter-
nate InterBase library, libgds.a. This library functions identically to libgdslib.a, but
it handles signals sent by the lock manager in a child process called gds_pipe. All cli-
ent applications compiled with libgds.a automatically run with this child process. No
changes to application code are needed, only a different linking option.

Resource use

Each instance of gds_inet_server keeps a cache of database pages in its memory
space, which is likely to result in some duplication of cached data across the system.
While the resource use per client is greater than in SuperServer, Classic uses less
overall resources when the number of concurrent connections is low.

Local access method

The Classic architecture permits application processes to perform I/O on database files
directly, whereas the SuperServer architecture requires applications to request the ib-
server I/O operations by proxy, using a network method. The local access method is
faster than the network access method, but is only usable by applications which run on
the same host as the database.

Monitoring

The database information call for active connections always reports exactly one con-
nection on a Classic server, no matter how many clients are connected to databases on
that server. The reason for this is that every client connection has its own
gds_inet_server process on the server, and each instance of that program knows
only about its own connection. Only in SuperServer does the server process have the
ability to report all client connections on the server.

1

Getting Started - The First Steps

33

Security

In order for InterBase Classic to work with a mixture of local and remote clients run-
ning as different user ID's, the server executables gds_inet_server and
gds_lock_mgr must run as root.

The processes must run with a real uid of root to set their effective uid to that of the
client uid. The lock manager must have the superuser privilege to send signals to the
processes. In some IT environments, the presence of executables with setuid bits
turned on raises concerns about security. Nevertheless, do not change the runtime
configuration of InterBase server. The setuid root configuration of the Classic software
is important to its function.

Because applications can run as any uid, database files must be writable by all uids
that access the databases. To simplify maintenance, database files are created writable
by the whole world.

With care, you can restrict these file permissions, so that the database files are safe
from accidental or deliberate damage. Make sure you understand file permissions com-
pletely before attempting this, because all local and remote clients need write access to
the database, even if they intend only to read data.

Classic versus SuperServer

Please refer to:

• Invoking SuperServer
• Lock Management
• Resource Use
• Threaded Server and UDFs
• Security

Invoking SuperServer

SuperServer runs as a single process, an invocation of the ibserver executable. ib-
server is started once by the system administrator or by a system boot script. This
process runs always, waiting for connection requests. Even when no client is connected
to a database on the server, ibserver continues to run quietly.

The SuperServer process is not dependant on inetd; it waits for connection requests
to the gds_db service itself.

The SuperServer process is a multi-threaded application. Different threads within the
process are dedicated to different tasks. For instance, one thread waits on the gds_db
service port for incoming connection requests. Other threads are analogous to individ-
ual gds_inet_server processes in the Classic model, serving client queries. Another
thread serves as the lock manager, replacing the gds_lock_mgr process from the Clas-
sic model.

1

Getting Started - The First Steps

34

Lock management

The lock manager in SuperServer is implemented as a thread in the ibserver executa-
ble. Therefore InterBase does not use the gds_lock_mgr process. Likewise, POSIX sig-
nals are not used by the lock manager thread in SuperServer; interthread communica-
tion mechanisms are used.

Resource use

The SuperServer implementation has less overhead and uses fewer system resources
per client connection than the Classic model. SuperServer has one cache space for all
client attachments, allowing more efficient use of cache memory. For these and other
reasons, SuperServer has demonstrated an ability to efficiently serve a higher number
of concurrent clients.

Threaded server & UDFs

User-Defined Functions (UDFs) are libraries of functions that you can add to extend the
set of functions that the InterBase server supports. The functions in your UDF library
execute within the process context of the InterBase server. Due to the threaded im-
plementation of SuperServer, there are issues with UDFs that require that you write
UDF functions more carefully than when writing UDFs for a Classic server.

You must design UDFs for SuperServer as thread-safe functions. You cannot use global
variables in your UDF library, because if two clients run the UDF simultaneously, they
conflict in their use of the global variables.

Do not use thread-local global variables to simulate global variables. SuperServer im-
plements a sort of thread pooling mechanism, to share threads among all the client
connections. It is likely that if a given client executes a UDF twice, that each execution
is not executed in the context of the same thread. Therefore, you cannot depend on
thread-local variables keeping values from one execution of the UDF to the next for a
given client.

UDFs that allocate memory dynamically run the risk of creating a memory leak. Be-
cause SuperServer is supposed to stay up and running indefinitely, not just for the du-
ration of the client connection, memory leaks can be more damaging in SuperServer
than in Classic. If your UDFs return dynamically allocated objects, then you must use
malloc() to allocate the memory for these objects (on Win32, you must use
ib_util_malloc() or the malloc() that is part of the Microsoft Visual C++ runtime
library). Do not use new or globalalloc() or the Borland malloc().

Finally, such functions must be declared in databases with the FREE_IT option of the
DECLARE EXTERNAL FUNCTION statement.

By contrast, in Classic, there is a separate process for each client connection, so the
UDFs are guaranteed not to conflict. Global variables are safe to use. Also, memory
leaks are not as dangerous, because any leaked memory is released when the client
disconnects. InterBase recommends that you design UDFs for SuperServer, the more
restrictive model, even if you use a version of InterBase implemented with the Classic
model. Eventually InterBase will be implemented with SuperServer on the platform you

1

Getting Started - The First Steps

35

use. If you design UDFs with this assumption, you can upgrade to a later version of In-
terBase without the risk that your UDFs must be redesigned to work with SuperServer.

Security

SuperServer can be configured to run as a non-root uid, for enhanced security. In Su-
perServer, you can restrict the permissions on database files to allow only the Inter-
Base server uid to access the database.

Why two implementations?

The Classic implementation predates the SuperServer implementation, and the Su-
perServer implementation is the future of InterBase. Classic configuration is used on
operating systems that currently don't have the technology for threaded applications,
which is required for SuperServer. InterBase also distributes the Classic version on
platforms that have threading technology, but which benefit from the low-profile im-
plementation.

SuperServer has a greater ability to meet the demands of a growing multi-user sys-
tem, while retaining good performance and efficiency. SuperServer is implemented in
InterBase product on all platforms where it is technically practical. It is the intention
that SuperServer is the future direction of InterBase on all platforms.

Changing server to solve undefined crashes

September 2004. Many thanks to Gerhard Behnke at dpa (Deutsche Presse Agentur)
for this contribution.

We managed to solve our problem with undefined Firebird crashes in the following
way:

W2003/Superserver

It is essential to check Firebird's memory requirements using the Task Manager. If the
requirements are approaching 2 GB, there is a danger of Firebird crashing, e.g. if more
than 2 GB is required when submitting a long and detailed query.

Solution:

• Equip your server with at least 3 GB, and ensure the 3GB switch is set in the
Boot.ini. In order to handle this 3 GB address space, it is necessary to use the ap-
propriate Firebird version (when the normal Firebird version is only linked with a
different link flag). I think we may be the only company to currently be in posses-
sion of such a Firebird version (Paul Reeves performed the linking for us).

• The best solution is however to change to the Firebird Classic Server, together with
sufficient RAM and more that one CPU. This certainly puts life back into the data-
base!

1

Getting Started - The First Steps

36

1.1.2 Download and Install InterBase®

This guide will lead you through the process of downloading and installing the free trial
version of InterBase. For those having purchased InterBase®, the installation routine
is the same (just skip the download instructions).

The current InterBase® trial version (at the time of writing this it was version 7.5.
Please refer to InterBase 7.5 trial version for further information) can be downloaded
free of charge from
http://www.borland.com/products/downloads/download_interbase.html.

The InterBase 7.5 Release Notes are included in the download file. The full InterBase
documentation can be purchased in printed form if wished.

To proceed, click the Trial Download link, and enter your login name/Email and pass-
word, if you are already a registered Borland user. If not, the click the New User but-
ton:

1

Getting Started - The First Steps

37

If not already registered, you will have to register as a user, before proceeding further.

Following login/registration, the download dialog appears:

Simply click the button (HTTP or FTP) for the platform required and specify the drive
and path on the computer where the InterBase trial version is to be installed.

To complete product registration, open the Borland Product Registration e-mail and
save the attached text file to your hard drive in the InterBase home directory before
running the InterBase install.

If the e-mail has no attachment, save it as a text or .eml file into the InterBase home
directory. For example:
Netscape: Choose File / Save As / File and save it as (reg999.txt) into <inter-
base_home>.
Outlook: Choose File / Save As and save it as (reg999.eml) into <interbase_home>.

Extract the ZIP file (for example in Windows to C:\Program Files\Interbase\) and
start the relevant install_[platform].exe file.

1

Getting Started - The First Steps

38

For those installing InterBase for the first time, we recommend reading the Setup In-
formation first. As Interbase has introduced a new installer with version 7, the Setup
Information is also of interest to those upgrading from older versions.

The Install InterBase 7.5 button guides you through the installation: click the Install
Borland InterBase 7.5 Server Trial button and follow the prompts to accept the license
agreement. In the Choose Install Set panel, select Server and Client or Client Only, as
appropriate.

Choose an install location and click Next to proceed to the review panel. In most cases,
the defaults chosen for you by the Install Wizard will be appropriate. If you see any-
thing that you need to change, click the Previous button to return to the earlier panels.
To install different product components, return to the Install Set panel and select Cus-
tom. This choice lets you select which components to install.

When the Review panel displays your desired configuration, click Install. The installer
completes the product installation and then displays the Registration Wizard.

You should register now because you cannot start the InterBase server until registra-
tion is complete. If you have an active internet connection and you are able to specify
the drive and path of the registration text file, this should run automatically.

InterBase® 7.5 Trial Version

The trial version of InterBase 7.5 (released November 29, 2004), available for Win-
dows, Linux and Solaris, offers you a chance to evaluate InterBase and see just how
easy it is to develop and deploy complex business applications.

New users and current users alike can use this 90 day trial version to evaluate the
performance gains resulting from greater SMP scalability and simultaneous memory al-
locations, improved trigger and stored procedure cache management, enhanced Inter-
Client Type 4 JDBC driver, index optimization, along with all the usual advantages of
an InterBase® database.

Trial version features:

1

Getting Started - The First Steps

39

• All of the functionality of InterBase 7.5 is provided.
• The server can address up to 4 CPUs
• 20 users (80 logical connections) to the server are available.
• The InterBase 7.5 Trial version is available for Windows, Linux and Solaris.
• A limited documentation set (Release Notes in PDF format) is included in the trial

version.

Limitations of the trial version:

The 7.5 trial version licensing expires 90 days after the installation and registration of
the trial, on all platforms. After that date, the 7.5 trial version will cease to function.

The trial version is self-contained in licenses as stated above. It will not make use of
any existing ib_license.dat (InterBase licenses) from previous versions of InterBase
you may have.

InterBase® 7.5 minimum system requirements

Borland InterBase 7 minimum system requirements:

• 32 MB RAM
• 20 MB hard disk space for install
• CD-ROM drive

Windows®

• Microsoft® Windows® 2000 (SP2), Windows Server™ 2003, Windows NT® 4.0
(SP6a or higher), or Windows XP

Linux®

• Red Hat® Enterprise Linux® and SUSE® LINUX Enterprise Server 9 recommended

Solaris™

• Solaris™ 7, 8, or 9

JDBC™

• Development JDK™ 1.2 , 1.3 , 1.4, or J2SE™ 5.0
• Deployment JDK 1.2 , 1.3, 1.4, or J2SE 5.0

Product registration required.

1.1.3 Download and Install IBExpert

IBExpert can be downloaded from http://www.ibexpert.com/. There are a number of
versions - please refer to IBExpert License for further information.

The DOWNLOAD page on the IBExpert website offers a number of download options:

1

Getting Started - The First Steps

40

Registered customers should click on the http://www.ibexpert.com/customer/ link.

Enter your user name and the password supplied with the registration confirmation.
The Username is a combination of key A and key B (for example 1234567887654321
when key A is 12345678 and key B is 87654321). The Password is always ibexpert.

For those wishing to download the free Personal Edition (for more information please
refer to IBExpert Personal Edition), click on the download link at the bottom of the
page. For those wishing to download the Trial Version, click on Complete download in-
dex.

In the Download Area, you will find the following EXE files:

ibet_ = Trial version: these files are fully functional versions in the last stable build.
They run for 45 days without any restrictions.

1

Getting Started - The First Steps

41

ibep_ = Personal Edition: this edition is totally free of charge. The files are fully
functional and temporally unlimited. This version does however have some functional
limitations.

In the Password protected Customer Area, you will find the following files:

ibec_ = Customer versions: these files include the unlimited use of the full version.
When started for the first time, it is necessary to enter the computer-specific key, pro-
vided with the registration form. Customers with site or VAR licenses need to copy the
license file into the IBExpert directory before starting IBExpert for the first time, in or-
der to avoid this key request.

All IBExpert versions include one of the above prefixes, followed by the version number
(date in reverse order), and the suffix _full.exe (this single version replaced the ear-
lier options full and exe in September 2004*). This also includes all command-line
tools.

*Since IBExpert version 2004.9.12.1 all files (IBExpert.stg, IBExpert.tb, IBExpert.scm
etc.) are stored in the user home directory (for example, C:\Documents and set-
tings\<User_Name>\Application Data\ HK-Software\IBExpert\). Existing files will be
moved to this directory automatically when the new version is started for the first time.

Double click on the .EXE file to start the installation. IBExpert is then automatically
started upon completion.

Should you encounter any problems whilst attempting to download IBExpert, please
send an e-mail (in either the English or German language) to register@ibexpert.com,
with a detailed error description.

1.1.4 Registering a database (using the EMPLOYEE example)

In order to administrate a database using IBExpert, it is first necessary to register the
database. For detailed information regarding database registration, please refer to
Register Database.

1

Getting Started - The First Steps

42

Here we will briefly show how to register a database, based on the sample EMPLOYEE
database supplied with both Firebird and InterBase.

First open the Register Database dialog, using the IBExpert menu item Database /
Register Database, right-clicking in the DB Explorer (left-hand panel) and selecting the
Register Database menu item, or using the key shortcut [Shift + Alt + R].

The Register Database dialog appears:

(1) Server: first the server storing the database needs to be specified. This can be lo-
cal (localhost) or remote (see Create Database).

By specifying a local server, fields (2) and (3) are automatically blended out, as they
are in this case irrelevant.

(2) Server name: must be known when accessing remotely. The standard port for In-
terBase and Firebird is 3050. However this is sometimes altered for obvious reasons of
security, or when other databases are already using this port. If a different port is to
be used for the InterBase/Firebird connection, the port number needs to be included as
part of the server name (parameter is server/port). For example, if port number 3055
is to be used, the server name is SERVER/3055. This is sometimes the case when a
Firewall or a proxy server is used, or when another program uses the standard port.
For using an alias path for a remote connection, please refer to the article remote da-
tabase connect using an alias.

(3) Protocol: a pull-down list of three options: TCP/IP, NetBEUI or SPX. TCP/IP is the
worldwide standard (please refer to Register Database for more information).

(4) Server versions: this enables a server version to be specified as standard/default
from the pull-down list of options. This is necessary for various internal lists. For ex-
ample, possible key words can be limited this way.

1

Getting Started - The First Steps

43

(5) Database File: by clicking on the folder icon to the right of this field, the path can
easily be found and specified and the database name and physical path entered. For
example for Firebird:

C:\Programs\Firebird\Firebird_1_5\examples\EMPLOYEE.FDB

for InterBase:

C:\Programs\Interbase\examples\EMPLOYEE.GDB

If no database alias has been specified, the database name must always be specified
with the drive and path. Please note that the database file for a Windows server must
be on a physical drive on the server, because InterBase/Firebird does not support da-
tabases on mapped drive letters.

(6) Database Alias: descriptive name for the database (does not have to conform to
any norms, but is rather a logical name). The actual database name and server path
and drive information are hidden behind this simple alias name - aiding security, as us-
ers only need to be informed of the alias name and not the real location of the data-
base. For example:

Employee

(7) User Name: the database owner (i.e. the creator of the database) or SYSDBA.

(8) Password: if this field is left empty, the password needs to be entered each time
the database is opened. Please refer to Database Login for further information. The de-
fault password for SYSDBA is masterkey. Although this may be used to create and reg-
ister a database, it is recommended - for security reasons - that this password be
changed at the earliest opportunity.

(9) Role: an alternative to (7) and (8);can initially be left empty.

(10) Charset (abbreviation for Character Set): Here the default character set can be
specified. This is useful when the database is designed to be used for foreign lan-
guages, as this character set is applicable for all areas of the database unless overrid-
den by the domain or field definition. If not specified, the parameter defaults to NONE,
i.e. values are stored exactly as typed. For more information regarding this subject,
please refer to Charset/Default Character Set. If a character set was not defined when
creating the database, it should not be used here.

(11) Additional connect parameters: input field for additional specifications. For
example, system objects such as system tables and system-generated domains and
triggers can be specified here. They will then automatically be loaded into the DB Ex-
plorer when opening the database alias.

(12) Path to ISC4.GDB: This can be found in the InterBase or Firebird main direc-
tory. This database holds a list of all registered users with their encrypted passwords,
who are allowed to access this SERVER.

1

Getting Started - The First Steps

44

When creating new users in earlier InterBase versions (<6), IBExpert needs to be told
where the ISC4.GDB can be found. Since InterBase version 6 or Firebird 1 there is a
services API. So those working with newer versions may ignore this field!

(13) Always capitalize database objects' names (checkbox): this is important as
in SQL Dialect 3 entries can be written in upper or lower case (conforming to the SQL
92 standard). InterBase however accepts such words as written in lower case, but does
not recognize them when written in upper case. It is therefore recommended this al-
ways be activated.

(14) Font character set: this is only for the IBExpert interface display. It depends on
the Windows language. If an ANSI-compatible language is being used, then the
ANSI_CHARSET should be specified.

(15) Test connect: the Comdiag dialog appears with a message stating that every-
thing works fine, or an error message - please refer to the IBExpert Services menu
item, Communication Diagnostics for more details.

(16) Copy Alias Info: alias information from other existing registered databases can
be used here as a basis for the current database. Simply click on the button and select
the registered database which is to be used as the alias.

(17) Register or Cancel: after working through these options, the database can be
registered or cancelled.

Details of further options (listed in the left-hand panel in the Register Database dialog)
may be found under Register Database (individual subjects are listed in the upper gray
panel in the online documentation). These are not compulsory, and may be altered at a
later date, if wished, using the Database / Database Registration Info menu item.

1.1.5 Working with a database

A registered database can be connected simply by double-clicking on the database
name in the DB Explorer. Alternatively use the IBExpert menu item Database / Connect
to Database, click the Connect Database icon in the toolbar, or use the key shortcut
[Shift + Ctrl + C]. The database and its objects appear in a tree form in the DB Ex-
plorer:

1

Getting Started - What is IBExpert?

45

For information with regard to the details displayed in the DB Explorer, please refer to
Register Database / Additional and Options / Environment Options / Tools for alterna-
tives regarding the DB Explorer.

The individual database objects may be opened by double-clicking on the object name.
For further information about the individual objects, please refer to Database Objects.

For further information regarding IBExpert navigation, please refer to IBExpert Screen.
Options and templates may be specified and adapted using the IBExpert Options menu.
Other important IBExpert features can be found in the IBExpert Tools menu and IBEx-
pert Services menu.

The IBExpert online documentation provides not only a comprehensive documentation
for using IBExpert, but also offers many tips for those new to database development.
The online documentation can be viewed under
http://www.ibexpert.info/documentation or alternatively individual subjects may be
viewed context-sensitively, using the [F1] key from any IBExpert dialog or the DB Ex-
plorer. The documentation includes an index, search function, and even a "What's
New" function, whereby you can select, for example, all new articles written after a
certain date. Or you can download the complete documentation files onto your hard
drive.

And if you can't find an answer to your problem there, please mail us at documenta-
tion@ibexpert.com.

1.2 What is IBExpert?
Have you taken a look at the IBExpert Guided Tour yet? For a brief overview demon-
strating many of the main IBExpert features, please refer to http://www.ibexpert.com/
DEMO page, IBExpert Guided Tour (published December 2003. Therefore some of the
more recent IBExpert features are not included in this tour).

IBExpert is a professional Integrated Development Environment (IDE) for the devel-
opment and administration of InterBase and Firebird databases. Whether you enjoy the
control of hand-coding DML or DDL statements or working in a visual editing environ-
ment, IBExpert makes it easy to get started and provides you with vital tools to speed
and enhance your work.

1

Getting Started - What is IBExpert?

46

IBExpert includes many coding tools and features: visual editors for all Database Ob-
jects, an SQL Editor and Script Executive, a Debugger for stored procedures and trig-
gers, a Query Builder, a powerful Database Designer and much, much more...

IBExpert's visual editing features allow even the total beginner to quickly create a da-
tabase and add database objects without writing a single line of code. You can view,
navigate and work on all your database objects in the IBExpert DB Explorer.

Features list:

SQL

• Supports InterBase 4-7.x and Firebird 1.x
• Hyperlinks in all Editors
• SQL Editor History
• SQL Monitor
• Visual Query Builder
• Export of results in several formats
• Background execution in own thread
• Direct CSV file data import using SQL statement
• Insert Into with automatic creation of target table
• Insert Into also into another database
• Automatic display of parameters with history

Editors

• Code Completion
• Customizable Keyboard Templates
• Editors for all Database Objects
• Stored Procedure and Trigger Debugger including Trace Into, conditional Break-

points, and much more
• Blob Editor with text, RTF, image and Hex display options
• Autoinc Assistant for Trigger, Generator and Stored Procedure creation
• Alteration of field sequence in tables as wished
• Parser for Stored Procedures and Triggers with warnings and tips (e.g. unused vari-

ables, etc.)

Security

• Special Editors for users, groups and rights
• Autogrant for automatic assignment of rights for new objects

Data Definition

• Entity Relation Database Designer including layers, subject areas, autoroute, re-
verse engineering and much more

• Assistant for Dependencies Analysis
• Database Comparer for comparison of two database structures, including creation

of update script

Performance

1

Getting Started - What is IBExpert?

47

• Performance Analysis
• Plan Analysis
• Global Stored Procedure/Trigger operations index analysis
• Metadata cache for speedier opening of database connections via slow connections

Scripts

• Own Editor for SQL script execution
• Parser for Scripter with tree display of those objects created by the script
• Metadata Extract for the creation of an empty database copy with identical struc-

ture
• Data extract by creation of SQL scripts
• Inclusion of blob data in SQL scripts
• Creation of complete scripts including both metadata and data for database restora-

tion

Reports

• User-defined reports
• Ready-made reports for database documentation
• All reports can be saved as PDF, Word, and other formats
• Reports can be stored as a file or in the database
• HTML report database documentation

Wizards

• Backup and Restore with ability to store options
• Database Statistics summary
• Full-text search in metadata

Tools

• Data Analysis - an OLAP and data warehouse tool for analyzing data
• Integrated Communication Diagnostics
• SIUD Assistant for creation of Select, Insert, Update and Delete procedures
• Assistant for the creation of procedures and views from any SQL statements
• Test Data Generator
• Database monitoring for InterBase 7.x
• Integrated Bug Tracking System
• IBExpert Direct for information about the newest versions

Specials

• User-defined project views for customized structure of database objects
• Stored Procedure and Trigger Version Control System VCS
• Log Assistant for constructing Data Change protocols
• Customizable templates for all automatically created objects
• User Interface offers MDI or SDI application options
• User-definable toolbars, colors and fonts
• Open PlugIn interface with Delphi source code sample
• Integration of external programs into the Tools menu
• Assistant for global updating of index statistics

1

Getting Started - IBExpert License

48

• Assistant for compilation of all stored procedures and triggers
• Assistant for deactivation and reactivation of all stored procedures and triggers
• Multilingual

Educational Version

• Includes all the functionality of the full version; the database size is, however, lim-
ited to 50MB

1.3 IBExpert License
The IBExpert License Agreement can be found and read under IBExpert Help / About.
The various licensing options are listed briefly here. For more details and email contact
for queries, please refer to http://www.ibexpert.com.

Single, Additional, Site or VAR License?

If you purchase the Site License, we will create a License File for all computers used in
your company. The Single License is only for one computer.

The IBExpert VAR (Value Added Reseller) Version is for software companies, who wish
to bundle IBExpert with their software. Here we offer a new model to integrate IBEx-
pert. We create a license file for your company and you can install IBExpert every-
where, where your software is installed.

Updates

All products include all new versions for 12 months. This includes both major and mi-
nor updates. At the end of this period you can purchase Extension Products for
downloading all new versions for the next 24 months.

Upgrades

If you want to upgrade from any Single, Additional or Starter Pack combination to a
Site or VAR license, you will receive access to all new versions for 24 months.

Additional License for the computer in the home office?

We have had a lot of queries regarding the licensing model of IBExpert. Here is our of-
fer to users, who work on two computers (one in the office and the other at home). If
you do not work on both computers at the same time, you can order a free License Key
for your home office computer, providing you have purchased a license for the com-
puter in the office.

Simply send an e-mail to register@ibexpert.com quoting the computer name of your
home computer or laptop, your company name and the current registered license ID of
your work computer.

New! Free Version for Educational Purposes!

As we've had a lot of queries from students, who want to use IBExpert as part of a
course at a university or school, we have decided to create a special version for this.

1

Getting Started - IBExpert License

49

The only limitation is that a database is restricted to a maximum of 50 MB, when work-
ing with this version. There are no further constraints, such as a time limit, so you can
use it for studying SQL Language (DDL, DML), Transactions, Stored Procedures, Trig-
gers, Entity Relationship Modeling, Reporting, Optimizing and much more.

In addition to the free database InterBase or Firebird, you get a unique opportunity to
learn professional database programming at no costs.

How to get the free IBExpert Educational Version?

We need an e-mail or fax order, where you describe the institution where IBExpert is
to be used (University, School, ...). We also need a brief description of the course in
which you plan to use it. You gain access to our Educational Area as soon as we receive
your order.

The email with the Download Info will only be sent to an e-mail in a University/School
domain. Unfortunately we will not be able to send a license if we do not receive this in-
formation.

Free IBExpert Educational Orders can be placed by fax to +49 700 42397378 (IBEX-
PERT) or by email to education@ibexpert.com.

How to get the free IBExpert Personal Edition?

You can download it from http://www.ibexpert.com/download.

Further information can be found at http://www.ibexpert.com/.

1.3.1 IBExpert Personal Edition

The IBExpert Personal Edition is a free version, offering new users the chance to get
acquainted with IBExpert at their own pace. It is however somewhat limited in its func-
tionality, and does not include the following features:

• Data Analysis
• Database Designer
• SP/Triggers Debugger
• Visual Query Builder
• Report Manager
• Test Data Generator
• Blob Editor
• Grant Manager
• SP/Triggers/Views Analyzer
• Database Comparer
• Log Manager
• Table Data Comparer
• some other features such as autogranting privileges, recomputing selectivity of all

indices etc.

To view and test these features it is necessary to download the trial version.

1

Getting Started - How to register IBExpert

50

1.4 How to register IBExpert
If you are reading this, you have probably already installed the IBExpert trial version.
We hope you will take the time to test IBExpert thoroughly during the next forty-five
days; you will soon see how quick and easy it is to develop and work with InterBase or
Firebird using IBExpert, even if you have no previous experience of database develop-
ment.

Following the forty-five day trial period, you are required to either remove the program
from your hard drive or to register IBExpert.

How to register:

All prices can be found in our Shop at
https://secure.element5.com/shareit/product.html?productid=153856.

Don´t forget to fill out all fields. The data is transmitted using a secure connection.
Payment can also be made by invoice and remittance to our bank account, but in this
case, the keys will not be sent until after receipt of payment. For details contact sup-
port@ibexpert.com.

License Key:

Your license key will be generated and sent to you by e-mail on the working day fol-
lowing confirmation of payment. Please remember, the license is generated for the
computer name(s) entered in our shop. For the VAR and site licenses we do not need
computer names.

Computer Name:

To determine your computer name in Windows, go to the Windows "My Computer" and
select the right-click menu item "System Properties". On the second page you will find
the computer name ("Full Computer Name").

If you have to change the computer name for this license, please send us the new
computer name, not forgetting to write the License ID on the form, that you received
with the first registration.

1.5 IBExpert Screen
When IBExpert is started, the standard IBExpert screen appears as follows:

1

Getting Started - IBExpert Screen

51

The standard IBExpert settings display a large working window, with the Menu and
toolbar at the top of the screen, a windows bar and status bar at the bottom, and the
Database Explorer on the left, divided from the SQL Assistant (lower left) by a splitter.

The View menu can be used to blend the DB Explorer, status bar, windows bar and
toolbars in or out.

Further visual options can be specified by the user in the IBExpert Options menu.

1.5.1 IBExpert Splash Screen

The IBExpert splash screen appears when IBExpert is started. It displays the IBExpert
logo and version number.

1

Getting Started - IBExpert Screen

52

The splash screen may be disabled if wished, by checking the "Don't Show Splash
Screen" option, found under Options / Environment Options on the initial Preferences
page.

1.5.2 (1) Title Bar

The title bar is the blue horizontal bar at the top of the main IBExpert screen, and at
the top of all IBExpert editors. It displays the program or editor name on the left, and
in the right hand corner there are four small icons (from left to right):

• Print (only on the IBExpert screen with the MDI Interface; with the SDI Interface it
appears on the active window/editor)

• Minimize IBExpert / Editor window
• Maximize IBExpert / Editor window
• Exit IBExpert / Exit Editor

1.5.3 (2) Menu

The IBExpert menu bar can be found at the top of the screen:

The individual menu headings conceal drop-down lists, opened simply by clicking on
one of the words with the mouse or by using [Alt + {underlined letter}], e.g. the Da-
tabase menu can be started by clicking with the mouse on the word database, or by
using the key combination [Alt + D].

The most frequently-used menu items can also be found in the toolbars, represented
as icons, or using the right mouse button in either the DB Explorer or the main editors.
Alternatively keyboard shortcuts can also be used.

Shortcuts (Localizing Form)

Many menu items can also be executed using so-called keyboard shortcuts (a combina-
tion of keys). Where available, these are listed to the right of the menu item name in
the menus, and when the cursor is placed over a toolbar icon.

[Ctrl + Shift + Alt + L] works in almost all IBExpert forms and calls the Localizing
Form, where you can refer to a complete list of all available shortcuts relevant to the
active dialog.

1

Getting Started - IBExpert Screen

53

These can be changed by the user as wished.

1.5.4 (3) Toolbars

The toolbar is a row of symbols (called icons), representing different menu items. By
clicking on an icon with the mouse, a pre-defined menu item is executed. This shortcut
is ideal for those operations performed often, as they save the necessity of repeatedly
searching through the main menus.

Toolbars can be found in IBExpert in the main window and in the main editors. As with
most Windows applications the toolbars are positioned as standard in a horizontal row
directly below the main menu in the upper part of the window, or in the upper part of
the dialogs. They can however be positioned as wished within the window (main or dia-
log) using drag 'n' drop.

When the cursor is placed over an icon the respective menu command and keyboard
shortcut are displayed.

The user can specify which toolbars he wishes to be displayed in the main IBExpert
window using the menu item View / Toolbars.

1

Getting Started - IBExpert Screen

54

The individual icons can be specified using the Customize... menu item, opened by
holding the mouse over the toolbar and right-clicking.

The Customize Tools page displays a list of the toolbar options available. User-defined
toolbars can be created here if wished, or reset to the original IBExpert toolbar.

The Command page enables the different menu options listed under Categories to be
selected, and the icons (in the right-hand list) added or removed to toolbars using drag
'n' drop.

The Options page allows certain menu and icon options to be checked if wished.

The Editor toolbars can be customized by clicking the downward arrow to the right of
the toolbar, and using the menu item Add or Remove Buttons to check the relevant
icons in the menu list, or using the above method by selecting the last menu item Cus-
tomize...

1

Getting Started - IBExpert Screen

55

Icon

Icons are a principal feature of graphical user interfaces. An icon is a small, square
graphical symbol. Each icon represents a menu item, the description of which appears,
when the mouse is held over it. Icons can be used as shortcuts by those users who
work mainly with a mouse (as opposed to the keyboard).

Icons are usually grouped together in a toolbar, which offers a series of symbols all re-
lating to a certain subject, e.g. new database object, grants etc.

Toolbar Database

This standard toolbar can be viewed in the main IBExpert window. It can be blended in
and out using the IBExpert View Menu / Toolbar (check boxes).

The icons (from left to right) can be used to execute the following operations:

• Register Database (Shift + Alt + R)
• Unregister Database (Shift + Alt + U)
• Connect to Database (Shift + Ctrl + C)
• Disconnect from Database (Shift + Ctrl + D)
• Reconnect to Database
• Create Database
• Exit (Alt + F4)

These items can also be found in the main IBExpert Database menu. To alter, custom-
ize or reset this toolbar, please refer to Toolbar.

Toolbar Edit

This standard toolbar can be viewed in the main IBExpert window. It can be blended in
and out using the IBExpert Menu View / Toolbar (check boxes).

The icons (from left to right) can be used to execute the following operations:

• Load from File (Ctrl + L). The downward arrow produces a pull-down list of the
most recent files.

• Save to File (Ctrl + S). The downward arrow produces a pull-down list of the most
recent files.

• Cut (Ctrl + X)
• Copy (Ctrl + C)
• Paste (Ctrl + V)
• Find (Ctrl + F)
• Search again (F3)
• Replace (Ctrl + R)

These items can also be found in the main IBExpert Edit menu.

1

Getting Started - IBExpert Screen

56

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Tools

This standard toolbar can be viewed in the main IBExpert window. It can be blended in
and out using the IBExpert Menu View / Toolbar (check boxes).

The icons (from left to right) can be used to execute the following operations:

• SQL Editor (F12)
• New SQL Editor (Shift + F12)
• Query Builder
• Script Executive (Ctrl + F12)
• SQL Monitor (Ctrl + M)
• Search in Metadata (Shift + Alt + F)
• Extract Metadata
• Print Metadata
• User Manager
• Grant Manager
• Report Manager
• Blob Viewer/Editor

These items can also be found in the main IBExpert Tools menu.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar New Database Object

This standard toolbar can be viewed in the main IBExpert window. It can be blended in
and out using the IBExpert Menu View / Toolbar (check boxes).

The icons (from left to right) can be used to execute the following operations:

• New Domain
• New Table
• New View
• New Procedure
• New Trigger
• New Generator
• New Exception
• New UDF
• New Role

These items can also be found in the main IBExpert Database menu, or in the IBExpert
DB Explorer by clicking the right mouse key to offer a context-sensitive option for the
selected database object. Alternatively [Ctrl + N] can be used in the DB Explorer to
create new objects (providing an object type has been selected).

1

Getting Started - IBExpert Screen

57

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Domain Editor

The standard toolbar for the Domain Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Table Editor

The standard toolbar for the Table Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar View Editor

The standard toolbar for the View Editor includes the following icons:

1

Getting Started - IBExpert Screen

58

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Procedure Editor

The standard toolbar for the Procedure Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Debug Procedure

The toolbar for the Debug Procedure Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

1

Getting Started - IBExpert Screen

59

Toolbar Trigger Editor

The standard toolbar for the Trigger Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Generator Editor

The standard toolbar for the Generator Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Exception Editor

The standard toolbar for the Exception Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

1

Getting Started - IBExpert Screen

60

Toolbar SQL Editor

This toolbar can be viewed in the Tools / SQL Editor dialog and includes the following
icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

New to IBExpert version 2.5.0.61 is the added possibility to quickly change the "Trans-
action Isolation Level" (TIL) for a separate SQL Editor. There is a corresponding button
on the SQL Editor toolbar which allows you to choose one of the following isolation lev-
els: Snapshot, Read committed, Read-only table stability, Read-write table stability:

Toolbar Navigation

The navigational toolbar can be found on the Table Editor's Data page, the View Edi-
tor's Data page and in the SQL Editor on the Results page and includes the following
icons:

The icons (from left to right) can be used to execute the following operations:

• Apply filter
• Show Filter Panel (Ctrl + Alt + F)
• Quick Add Filter Criteria
• Record Number
• Data Analysis (new to IBExpert version 2004.10.25.1)
• Show summary footer (new to IBExpert version 2004.8.5.1)

1

Getting Started - IBExpert Screen

61

• Display data as Unicode [F3] (new to IBExpert version 2004.8.26.1)
• First
• Previous
• Next
• Last
• Insert
• Delete
• Edit
• Save Updates
• Cancel Updates
• Refresh

To the right the number of records fetched is displayed.

Toolbar Filter Panel

The navigational toolbar can be found on the Table Editor's Data page, the View Edi-
tor's Data page and in the SQL Editor on the Results page when the Show Filter Panel
is activated, and includes the following icons:

The icons (from left to right) can be used to execute the following operations:

• Apply Filter
• Add New Criteria (Ins)
• Delete Criteria (Ctrl + Del)
• Vertical Layout (Shift + Ctrl + L)
• Count Records

Toolbar SQL Query Builder (Visual Query Builder)

This toolbar can be viewed in the Tools / SQL Query Builder dialog and includes the fol-
lowing icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Data Analysis (PivotCube Form)

This toolbar can be viewed in the IBExpert Tools / Data Analysis dialog and includes
the following icons:

1

Getting Started - IBExpert Screen

62

The icons (from left to right) can be used to execute the following operations:

• Load cube from file [Ctrl + L]
• Save cube to file (Ctrl + S]
• Build cube
• Abort cube building
• Toggle toolbars on/off (applies to the cube dimensions, columns and measures

toolbars)
• Cube Manager
• Print [Ctrl + P]
• Export data (to Excel (OLE), HTML or metafile) [Ctrl + E]
• Dataset (pull-down list)

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Script Executive

This toolbar can be viewed in the Tools / Script Executive dialog and includes the fol-
lowing icons:

The icons (from left to right) can be used to execute the following operations:

• Pull-down menu detailing the most important operations
• Select database including a pull-down list of available databases
• Load from file (Ctrl + L) including a pull-down list of recent files
• Save to file (Ctrl + S) including a pull-down list of recent files
• Show script explorer (blends the script explorer on the left-hand side in and out)
• Run script (F9)
• Stop script
• Use current connect (toggle)

To alter, customize or reset this toolbar, please refer to Toolbar.

Toolbar Dependencies Viewer

This toolbar can be viewed in the Tools / Dependencies Viewer dialog and includes the
following icons:

• Refresh
• Clear All
• Print
• Stop
• Don't check domain dependencies (checkbox)

1

Getting Started - IBExpert Screen

63

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Extract Metadata

This toolbar can be viewed in the Tools / Extract Metadata dialog and includes the fol-
lowing icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Meta Objects

This toolbar can be viewed in the Tools / Extract Metadata dialog under the Meta Ob-
jects tab and includes the following icons:

The icons (from left to right) can be used to execute the following operations:

• Domains (Ctrl + Alt + D)
• Tables (Ctrl + Alt + T)
• Views (Ctrl + Alt + V)
• Procedures (Ctrl + Alt + P)
• Triggers (Ctrl + Alt + R)
• Generators (Ctrl + Alt + G)
• Exceptions (Ctrl + Alt + E)
• UDFs (Ctrl + Alt + U)
• Roles (Ctrl + Alt + L)
• Extract all (checkbox)

Toolbar Print Metadata

This toolbar can be viewed in the Tools / Print Metadata dialog and includes the follow-
ing icons:

The icons (from left to right) can be used to execute the following operations:

• Select database including a pull-down list of available databases.

1

Getting Started - IBExpert Screen

64

• Show Domains
• Show Tables
• Show Views
• Show Procedures
• Show Triggers
• Show Exceptions
• Show User-defined functions
• Preview
• Print

To alter, customize or reset this toolbar, please refer to Toolbar.

Toolbar Grant Manager

This toolbar can be viewed in the Tools / Grant Manager dialog and includes the follow-
ing icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Grants

This toolbar can be viewed in the Tools / Grant Manager dialog under "Grants on", as
well as in the Table Editor under the Grants tab, and includes the following icons:

The icons (from left to right) can be used to execute the following operations:

• Grant All
• Grant All with GRANT OPTION
• Grant to All with GRANT OPTION
• Grant to All
• Grant All to All
• Revoke All
• Revoke from All
• Revoke All from All

Toolbar Localize IB Messages

This toolbar can be viewed in the Tools / Localize IB Messages dialog and includes the
following icons:

1

Getting Started - IBExpert Screen

65

The icons (from left to right) can be used to execute the following operations:

• Load from File
• Save to File
• Undo
• Goto Message Number
• Find
• Search Again
• Export to Text File
• Import from Text File

Toolbar Localize IBExpert

This toolbar can be viewed in the Tools / Localize IBExpert dialog and includes the fol-
lowing icons:

The icons (from left to right) can be used to execute the following operations:

• Save to File
• Find
• Search Again
• Export to Text File
• Import from Text File
• Font Charset (pull-down list)

Toolbar Report Manager

This toolbar can be viewed in the Tools / Report Manager dialog and includes the fol-
lowing icons:

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Blob Viewer/Editor

This toolbar can be viewed in the Tools / Blob Viewer/Editor dialog and includes the fol-
lowing icons:

1

Getting Started - IBExpert Screen

66

These can be blended in and out by clicking the downward arrow to the right of the
toolbar, and using the menu item Add or Remove Buttons to check the relevant icons
in the menu list.

To customize or reset this toolbar, please refer to Toolbar.

Toolbars Database Designer

These toolbars can be viewed in the Tools / Database Designer dialog. They comprise 4
individual toolbars and include the following icons:

The individual menus are as follows:

I. Menu and Palette:

The icons (from left to right) can be used to carry out the following operations:

• Pointer
• Zoom in
• Zoom out
• Table
• New View
• Comment Box
• Reference

II. Main:

III. Layout:

1

Getting Started - IBExpert Screen

67

IV. Font / Colors:

The icons displayed in the Main, Layout and Font Colors toolbars can be blended in and
out by clicking the downward arrow to the right of the toolbar, and using the menu
item Add or Remove Buttons to check the relevant icons in the menu list.

To customize or reset these toolbars, please refer to Toolbar.

Toolbar Server Properties/Log

This toolbar can be viewed in the Services / Server Properties/Log dialog and includes
the following icons:

• Select server (pull-down list of available servers)
• Retrieve
• Preview Log Report
• Print

To customize or reset this toolbar, please refer to Toolbar.

Toolbar Database Statistics

This toolbar can be viewed in the Services / Database Statistics dialog and includes the
following icons:

• Select Database (pull-down list of available databases)
• Analyze from File

1

Getting Started - IBExpert Screen

68

• Retrieve Statistic
• Preview Log Report
• Print
• Export

To customize or reset this toolbar, please refer to Toolbar.

1.5.5 (4) DB Explorer

The IBExpert Database Explorer is a navigator which considerably simplifies the work
with InterBase/Firebird databases and the database objects.

The Database Folder displays all registered databases at a glance. A database connec-
tion can be made simply by double-clicking on the database name.

Each connected database is displayed in a logical tree form, including a list of all the
database objects created in this database. If the database contains objects of some of
these types, the name of the respective object branch appears in bold. The blue num-
ber in brackets behind the object caption shows the number of objects already created
for this database.

When a database, the object captions or the objects themselves are highlighted, the
DB Explorer menu can be opened by right-clicking the mouse.

In IBExpert version 2004.9.12.1 a separate node was added for database indices. It is
also possible to display system indices (indices for system tables). Use the IBExpert
menu item Database Registration Info / DB Explorer / Additional / Show System Indi-
ces to enable/disable the display of system indices.

In IBExpert version 2004.12.12.1 support for InterBase 7.5 embedded user authentica-
tion was added. There is now a separate node for embedded users in the Database Ex-
plorer. It is possible to create, alter and delete embedded users using the DB Explorer
context menu.

Using the control panel and right mouse button many basic metadata and data opera-
tions can be performed directly from the DB Explorer, such as creating, editing and
dropping a database and its objects. In IBExpert version 2004.12.12.1 the option to

1

Getting Started - IBExpert Screen

69

activate/deactivate only selected procedures/triggers was added. Just select the re-
quired SP/triggers holding the [Ctrl] or [Shift] keys and choose the Deactivate/Activate
item in the DB Explorer context menu.

Detailed information regarding the highlighted database object can be viewed in the
SQL Assistant (below the DB Explorer).

The object tree branches can be expanded or reduced by double-clicking the object
heading or clicking the '+' or '-' sign to the left of these headings (alternatively use the
'+' and '-' keys to open a highlighted object heading). The individual objects them-
selves can be opened with a double-click or by pressing the Enter key.

The object description can be seen to the right of the object name, provided a descrip-
tion was inserted at the time of creation, and providing the DB Explorer is opened wide
enough (the width of the DB Explorer can be expanded or reduced by dragging the
right-hand splitter (i.e. the divider between the DB Explorer and the Main Window)
with the mouse).

Should you experience any problems with double-click expanding, or your object de-
scriptions are not displayed at all, please check the IBExpert Options menu item Envi-
ronment Options under the branch, Tools / DB Explorer, to ensure that these options
have been checked. It is also possible to specify color display here for system objects,
the Database Folder and inactive triggers.

The text input field at the top of the DB Explorer (directly underneath the tabs) can be
used to filter object names, e.g. to search for an object, EMP, simply type EMP. If EMP*
or EMP% is typed, IBExpert displays all objects beginning with EMP; for an object end-
ing in EMP, type *EMP or %EMP. To display objects which have a substring in their
name, it is necessary to type *EMP* or %EMP%.

It is also possible to use ? For example, to display objects whose names start with EMP
and are exactly 6 symbols in length. In case type EMP???. Regular expressions are, of
course, also allowed.

1

Getting Started - IBExpert Screen

70

Please note that this option does not, however, search for individual fields - if this is
required, use the IBExpert Tools menu item Search in Metadata.

Certain display default filters can also be defined, under Register Database / Explorer
Filters. And under Database Registration Info or Register Database, system tables, sys-
tem generated domains and triggers and object details (fields, triggers etc. relating to
a specific object) can be displayed or blended out as wished, by clicking on the Addi-
tional / DB Explorer branches.

The DB Explorer includes the following tabs:

• Database Folder (described above)
• Project View
• Diagrams (only visible when the Database Designer is in use)
• Windows Manager
• Recent List

[F11] blends the DB Explorer in and out. And please also refer to the IBExpert Menu
item View / Autohide DB Explorer. This option namely enables the DB Explorer to dis-
appear automatically when any editor is opened - allowing a larger working area. It is
blended back into view simply by holding the mouse over the left-hand side of the
IBExpert main window.

Objects may be dragged 'n' dropped from the DB Explorer and SQL Assistant into many
of the IBExpert Tools and Services code editor windows, for example, the SQL Editor
and Query Builder. Since version 2004.2.26.1 this has been greatly improved: when an
object node(s) is dragged from the DB Explorer or SQL Assistant, IBExpert will offer
various relevant versions of text to be inserted into the code editor.

Since IBExpert version 2004.8.5.1 it is possible to store server info (server type, server
name, server version, connection protocol) and client library name for database fold-
ers.

1

Getting Started - IBExpert Screen

71

Database Folder

The DB Explorer Database Folder can be used to specify a selection of databases as
wished, so that it is not necessary to search through all available databases each time
a specific database is required. The database folder allows a hierarchical classification
of the Database Registration. This is for example useful for system vendors with many
customers and databases, and simplifies, for example, the logging in to customer da-
tabases via a router.

When a database is registered, it is automatically displayed here in the folder list. Con-
nected databases are displayed in bold, disconnected in normal type. Please note: it is
possible to blend out all unconnected databases using the DB Explorer right-click menu
item, Hide Disconnected Databases.

A new database folder can be created in the DB Explorer by highlighting the connected
database for which a folder is to be created, right-clicking and selecting New Database
Folder ... (or [Ctrl + N]).

It is then possible to rename the database folder, by selecting the folder and using the
right-click context-sensitive menu or [Ctrl + O]:

Since IBExpert version 2004.8.5.1 it is also possible to store server information (server
type, server name, server version, connection protocol) and client library name for da-
tabase folders.

A folder can also be deleted (again, using the right-click menu or [Ctrl + Del]). Please
be careful when using this delete command, as IBExpert does not ask for confirmation
before deleting the folder!

Project View

In the DB Explorer, projects can be defined to streamline the overview of database ob-
jects currently being worked with.

1

Getting Started - IBExpert Screen

72

Database objects within a database can be hierarchically classified (user-specified) as
wished. For example, for an Accounts project, only those objects necessary for all ac-
counting processes are included, a Sales project would include certain objects used in
Accounts and also, in addition, sales-specific objects.

This is ideal for large software projects in an enterprise.

The first time a folder or object is inserted in the project tab, IBExpert asks for confir-
mation whether it should create certain system tables for the project page.

This only needs to be confirmed once. Following this, folders and objects can be in-
serted as wished using the right mouse button menu, [Shift + Ctrl + F] or drag 'n' drop
in the Inspector Page Mode, to organize databases individually and personally.

The context-sensitive right-click menu offers a number of further options:

1

Getting Started - IBExpert Screen

73

These menu options allow new folders to be created, objects to be added to or deleted
from a project (and searched for within the Explorer tree). User items may be created
and copied; and the visual display customized (Show SQL Assistant, Inspector Page
Mode, Hide Disconnected Databases). Since IBExpert version 2004.2.26.1 there is also
the added option to sort items in alphabetical order, using the menu item "Sort child
nodes alphabetically".

Diagrams (Database Designer)

The Diagrams page was added in IBExpert version 2004.9.12.1. It provides a Model
Navigator to navigate models in the Database Designer quickly and easily.

Simply click on an object in the DB Explorer, and it is immediately marked in the main
Database Designer window. Double-clicking on a selected object automatically opens
the Model Options page in the Database Designer.

Please also refer to the Model Navigator in the SQL Assistant.

Windows Manager

The Windows Manager can be opened using the IBExpert Windows menu item Windows
Manager, the key combination [Alt + O], or - of course - by simply clicking on the Win-
dows tab heading directly in the DB Explorer.

In the DB Explorer, the Windows page displays a list of all open windows, and allows
the user to change quickly and easily from one window to the next by simply clicking
on the object name in the list.

1

Getting Started - IBExpert Screen

74

The right mouse button can be used to close individual or all windows, or to find the
selected object in the DB Explorer database tree.

The open windows can also be viewed and selected in the windows bar, directly above
the status bar at the bottom of the IBExpert Screen.

Recent List

By clicking on the Recent tab in the DB Explorer, a list of the most recent objects
worked upon appears. This list can be sorted by object name, date or count in ascend-
ing or descending order, by simply clicking on the column header. The object can be
reopened by double-clicking.

1

Getting Started - IBExpert Screen

75

Inspector Page Mode

When either the Database Page or the Project Page in the IBExpert DB Explorer is ac-
tive (i.e. visible in the foreground), it is possible to compare the two to each other by
switching on the Inspector Page Mode. This can be done using the right-click menu and
selecting Inspector Page Mode, to produce two adjacent windows:

1

Getting Started - IBExpert Screen

76

Objects can be dragged 'n' dropped from one window to the other, allowing a quick and
easy selection of those objects necessary for a project.

To return to a single window display in the DB Explorer, simply right-click and the se-
lect the menu item Inspector Page Mode again.

1.5.6 (5) SQL Assistant

The IBExpert SQL Assistant offers additional detailed information regarding the high-
lighted database, object or group of objects in the DB Explorer.

The SQL Assistant can be found in the lower left-hand part of the screen, directly below
the DB Explorer.

1

Getting Started - IBExpert Screen

77

When a database in the DB Explorer is highlighted, the Properties page displays the ac-
tual server version of InterBase or Firebird (this can be subsequently corrected in the
Database Registration if specified wrongly or previously unknown). The Active Users
page shows which users are currently logged on to the database.

Selecting an object group in the DB Explorer displays a list of the corresponding ob-
jects. Selecting a single object displays detailed object information and content in the
SQL Assistant.

When a table is selected in the DB Explorer, the fields are not only displayed in the SQL
Assistant, but can also be selected and incorporated into any of the SQL Editors using
drag 'n' drop. Since version 2004.2.26.1 this has been greatly improved. When an ob-
ject node(s) is dragged from the DB Explorer or SQL Assistant, IBExpert will offer vari-
ous relevant versions of text to be inserted into the Code Editor.

The SQL Assistant can be blended in and out as wished using [Ctrl + A] or the DB Ex-
plorer right-click menu item Show SQL Assistant.

Dynamic Help

The Dynamic Help page can be found in the SQL Assistant (underneath the DB Ex-
plorer) and offers context-sensitive help.

1

Getting Started - IBExpert Screen

78

Since IBExpert version 2004.2.26.1, this has been replaced by a new context-sensitive
dynamic help system. Pressing [F1] in any of the IBExpert forms now opens a new
web-based Help page. It is also possible to download all Help files from
http://www.ibexpert.info/documentation/documentation.zip and unzip this in the IBEx-
pert main directory with subdirectories (there must be a new subdirectory called
documentation). If a local Help document is available, it will be opened in the browser.
Otherwise the browser will open the page from our web server.

Model Navigator (Database Designer)

The Model Navigator page was added in IBExpert version 2004.9.12.1. It provides a
visual orientation to aid navigation of models in the Database Designer.

The red rectangle indicates which part of the database model is currently being dis-
played in the main Database Designer window. It is possible to move this rectangle by
drag 'n' dropping with the mouse - much quicker and easier than moving about in the
main Database Designer window.

Please also refer to the Diagrams page in the DB Explorer which lists all model objects
in the usual DB Explorer tree form.

1.5.7 (6) Windows Bar

The IBExpert windows bar is a horizontal bar and can be found in the lower area of the
screen, directly above the status bar:

This displays the number and type of open windows in IBExpert; the symbols indicating
the editor type (e.g. Table Editor, Procedure Editor, etc.), followed by the object name
or editor type.

1

Getting Started - IBExpert Screen

79

1.5.8 (7) Status Bar

The IBExpert status bar is a horizontal bar found in the lower area of the screen, di-
rectly below the windows bar:

This displays information concerning the current status of, for example, the connected
database, the IBExpert window contents and memory.

changes of table left

Note: each table in an InterBase/Firebird database has its own metadata changes
counter. Each table can be altered 255 times (add or remove columns, change field
type etc.). When any of these counters reaches the value of 255 it is not possible to al-
ter any tables any further, and a database backup and restore is necessary.

IBExpert indicates in the status bar how many changes my be made in the database
before being forced to perform a database backup and restore. This message may be
deactivated, if wished, using the IBExpert menu item, Database / Register Database or
Database / Database Registration Info, and checking the option "Don't display meta-
data changes counter info" on the Additional page.

1.5.9 Exit

Exit is the command used to close IBExpert. The program can be closed by using either
the menu item Database / Exit, or clicking the black X button in the top right-hand
corner of the screen. Alternatively the key combination [Alt + F4] may be used.

IBExpert requires confirmation that you really wish to exit the program - either click on
Yes or press the Return/Enter key. Should you wish to eliminate this default setting,
uncheck the Confirm Exit box found in the IBExpert Options / Environment Options
menu under Confirmations.

Any editors left open at the time of exiting, will automatically be loaded the next time
that IBExpert is started, unless the following default setting is switched off: Options /
Environment Options / Preferences - uncheck Restore Desktop after Connect.

All connected databases are automatically disconnected when IBExpert is shut down.

2

Database - IBExpert Screen

81

2 Database
A relational database is a collection of tables related to each other, each storing a spe-
cific set of data. A database also contains Indices, business rules and processes, for the
database administration. It can be considered to be a collection of pages, each page
being of a pre-defined size, which is determined when the database is created.

The data itself may contain any information, be it for business accounts, sales, scien-
tific measurement logging or personal addresses and finances. The information stored
in a database may be shared by more than one application.

Available databases can be viewed in IBExpert in the left-hand panel, the DB Explorer.
Connected databases are displayed in bold type.

The relational system assumes the following:

• The physical storage model and the logical data storage in files are independent of
each other.

• All data is stored in tables.
• Users do not need to know which files are stored how and where. Access occurs via

tables, which represent a logical view of data.
• A data set's physical position in the database is irrelevant to the user.
• The relational database administrates all information necessary for internal access

optimization internally, using indices.
• The relational database undertakes the data integrity checks independently.

InterBase/Firebird administrates data in database objects. Within the database, the fol-
lowing database objects (database metadata) can be created and maintained:

2

Database - Database Design

82

• Domains
• Tables
• Generators
• Constraints
• Indices
• Views
• Triggers
• Stored Procedures
• Exceptions
• Blob Filters
• User-Defined Functions (UDFs)

2.1 Database Design
A good database design is vital for a client/server application. It is important to think
about the design of the tables among each other to optimize data storage, i.e. in which
table should each quantity of information be placed, and how this table should be
linked to the information in other tables. The normalization process helps here as it
avoids double data storage as well as unnecessary wastage of space; data access be-
comes considerably more efficient, at the same time improving database performance
and data integrity. Special business problems in the database can be solved with the
aid of database design; for example, they enable typical relationships between master
and detail tables.

Relational databases work best when data is broken up into different tables that are
joined together on common columns. This design results in narrower, longer tables,
where the primary key is used to access the data, and indices are used to speed this
process.

Database models are generally designed to solve specific business problems: they al-
low typical business data relationships to be represented. This is particularly important,
for example, when many detail rows need to be joined to one master row. This is most
often done by splitting the data into two or more tables and joining them on a shared
column. When data is represented in this way, some duplication is unavoidable. There
are always columns that must appear in each table in order to actually create the join.
However database models allow you to minimize unnecessary duplication.

These models also ensure that if a value is updated in one table, the matching values
are updated in related tables, known as referential integrity.

The IBExpert Database Designer is an ideal tool for data modeling and design, whether
creating a model of an existing database for analysis, or designing a new database.

2.1.1 Database Normalization

The goal of normalization is to reduce redundant information. In other words, only
store one piece of information one time. A table is said to have repeating groups and to
be un-normalized if:

• it contains many repetitions of the same piece of information in the same column
• more than one column contains almost the same type of information

2

Database - Database Design

83

• a column consists of complex information that should be broken into several
smaller pieces.

Tables without repetitive values are described as normalized. The transition from one
design to the other is called normalization.

Five forms of normalization can be differentiated. The first four normalization forms will
be described very briefly here, the fifth being an extremely theoretical demand on ta-
bles. There is a wide range of specialist literature available on this subject, for those
requiring more in-depth information.

Rule Zero

The relational theory requires, as a rule, a unique key in each table, in order to identify
information clearly. This is composed from the three following:

• The table, in which the data is stored,
• The field in this table, which needs to be accessed,
• The value of the primary key for this data set.

It is clear that the primary key is important for the identification of a data set. At the
same time InterBase/Firebird automatically creates an index via the primary key, so
that searches in multi-table queries are much quicker than those without an index.

A table has only one primary key, although the primary key can consist of several col-
umns. So, a simple rule for normalizing databases is - always key your tables!

First Normal Form

The first rule of database design states: eliminate repetitive groups. For each group of
related columns, make a separate table and give that table a primary key.

A table is said to be in first normal form if all columns contain atomic (i.e. indivisible)
values only. This is another way of saying that there are no repeating groups.

First Normal Form Problems

INSERT anomalies (e.g. certain master data cannot be recorded until an order or sale
is placed), UPDATE anomalies (it is too easy to miss certain entries when updating)
and DELETE anomalies (whole records disappear from the database, including master
data).

Second Normal Form

The second rule of database design is: If a table column is only dependent upon part of
a multicolumn key, this column should be removed to a separate table.

For a table in the second normal form, it must already be in the first normal form, and
all non-key-column contents must be dependent upon the complete primary key. The
second normal form avoids double storage of information.

2

Database - Inside InterBase/Firebird

84

Tables become narrower, the more the database is normalized, with less duplication of
wide column values. Where duplication is unavoidable, it can be made as small as pos-
sible by using an ID number.

Second Normal Form Problems

There are no repetitive groups, and all columns are dependent on their table's primary
key. However some irregularities can still be found; from the relational viewpoint, cer-
tain fields may have no relationship to each other, e.g. a customer telephone number
has nothing to do with an order number. It is a customer feature, not an order feature,
and leads to storage of redundant data. For this reason, it makes sense to remove this
information to a separate table.

Third Normal Form

The third normal form is tantamount to the second normal form, as it is also aimed to
avoid update, delete and insert problems. It is mainly concerned with relationships in
tables with a single column primary key. The rule can be defined: when column con-
tents have no connection to the table's primary key, they should be removed to a
separate table.

A table is in the third normal form, when each column describes data corresponding to
the primary key. Most operations are carried out on key fields, ensuring a high per-
formance. Details are maintained in their own tables, secure from UPDATE, DELETE,
and INSERT anomalies.

Fourth Normal Form

The majority of applications need go no further than the third normal form. There are
however certain situations, in which the data segmentation needs to be refined. For
example, each sales team order needs to be assigned to the sales person responsible,
for a planned monthly sales per person summary. Where should this information be
stored? A simple solution is to expand the relevant table to include the field SalesCon-
tact.

The problem becomes clear, when it is considered that often more than one call was
necessary to result in one sale. The fourth normal form rule is: isolate independent
multiple relationships.

There are one or more calls leading to each order. The order position information has
nothing to do with the telephone calls made. Therefore the call information is removed
to its own table, to ensure that, here also, the independence of information in each ta-
ble is warranted.

2.2 Inside InterBase/Firebird
This section offers a more in-depth view of the InterBase/Firebird database and how it
functions.

2.2.1 Space management in InterBase

This article was written by Ann Harrison, IBPhoenix.

2

Database - Inside InterBase/Firebird

85

An InterBase database consists of a set of fixed length pages of different types. Ten
page types are currently defined:

• Header Page (HDR)
• Data Page (DPG)
• Blob Page (BLP)
• Transaction Inventory Page (TIP)
• Page Inventory Page (PIP)
• Pointer Page (PTR)
• Index Root Page (IRT)
• B-tree Page (BTR)
• Write-Ahead Log Page (LIP)
• Generator Page (GEN)

Two of these, page inventory and pointer are used for space management. For those
not familiar with InterBase's on-disk structure, here is a brief description of each of the
page types.

Page Types

All page types include a header that holds generic page information.

typedef struct pag {
 SCHAR pag_type;
 SCHAR pag_flags;
 USHORT pag_checksum;
 ULONG pag_generation;
 ULONG pag_seqno; /* WAL seqno of last update */
 ULONG pag_offset; /* WAL offset of last update */
} *PAG;

Each specific page type adds more structural information. The first page in every data-
base is its header (HDR) page. Secondary database files also have header pages. Data
pages (DPG) contain data; blob pages (BLP) contain blob data for those blobs that
don't fit on the data page with their parent record. Any data page contains data for
only one table. Any blob page contains data for only one blob. Transaction inventory
pages (TIP) contain an array of bits, two per transaction, that indicate the state of the
transaction. A transaction id is an index into this array. Every page in the database is
represented by one bit in a page inventory page (PIP). The bit indicates whether the
page is currently in use. Page inventory pages (PIP) occur at fixed intervals in the da-
tabase - the interval is determined by the page size. A pointer (PTR) page is the top-
level locator for data pages. It contains an array of page numbers for the data pages of
the table and a corresponding array of bits that indicate whether the page is full. No
pointer page entry is made for blob pages or pages that contain only the second or
subsequent pages of data from a fragmented record. Index (IRT) root and b-tree (BTR)
pages are what they appear to be. The only odd thing is that each table can have only
one index root page. For that reason, you can put more indexes on a table when you
use a large page size. The log information pages (LIP) for the write-ahead log are not
currently used, though code to use them is included conditionally. Generator pages
(GEN) contain arrays of 32 or 64 bit integers, depending on the dialect.

Basic Page Allocation

2

Database - Inside InterBase/Firebird

86

Page allocation is handled by the routine PAG_allocate in PAG.C. When some routine
needs a new page, it calls PAG_allocate. PAG_allocate gets the page control block from
the database block to find the first page information page that has free space. If nec-
essary, it reads that pointer page from disk. It then scans the page, looking for the
first free bit, and assigns that page number to the new page. The page image is cre-
ated in the cache manager (CCH), which give it the appropriate page type. The cache
manager then returns the buffer pointer to the routine that requested the new page.
When the page is marked for write, the page I/O module (PIO) writes it to the appro-
priate offset in the database file.

Housekeeping Note. To keep the database on disk consistent, the pointer page must be
written before any page that is allocated from it to avoid doubly allocated pages. Under
ordinary circumstances, the shared cache or page locks keep this from happening. If,
however, the machine were to crash in mid-operation, the order of page writes can
prevent corruption.

Advanced Page Allocation

If the system does not find space on the first PIP it examines, it reads the next, and so
on until it searches the last PIP. If the last unallocated page is the last bit on the last
PIP, the routine allocates that page number as the next new PIP, formats it, marks the
new PIP as needing to be written and the old PIP as dependent on it. Finally,
PAG_allocate calls itself to allocate the page that was requested originally, using the
first bit on the new page inventory page. If the database is defined to hold multiple
files, when page allocation reaches the end of the first file, it creates a new file, gives it
a new header, and resumes allocating pages.

Additional Page Allocation Steps For Data Pages

A data page is recorded as being in use both in the PIP and in a pointer page for that
table. Once the new data page has been marked for write, its page number is written
into the first free slot one in the current pointer page or the first free slot on any
pointer page. The order of writes is: PIP, data page, pointer-page.

Additional Steps For "Interesting" Pages

Information about interesting pages is stored in a System Table called RDB$PAGES.
When an index root page, a transaction inventory page, a generator page, or a pointer
page is created, a new rows is stored in RDB$PAGES. This operation can cause a new
page, a new pointer page, a new page inventory page or even a new file to be allo-
cated.

Releasing pages

The header page is never released. Generator pages and transaction inventory pages
are not released either. In theory, they could be, but that would complicate (slightly)
some sensitive bookkeeping for (relatively) little gain. Nor are page inventory pages
are released. Once a database has grown to some size, the only way to shrink it is to
recreate it from a backup. When a page is empty, it is put back in the "free space pool"
by clearing its bit on the appropriate page inventory page. B-tree pages are released
when the index is deleted, deactivated, or rebalanced. Blob pages are released when
the blob is released, because the record that owns it is deleted or because the blob it-

2

Database - Inside InterBase/Firebird

87

self was modified. Data pages created to hold the trailing part of a fragmented row are
released when the row - or at least that version of the row - is removed.

Releasing Data Pages

When the last row on a normal (non-overflow) data page is deleted, the page is re-
turned to free space in a two-part operation. First, the page is removed from its
pointer page, which is the page that associates it with its table. If that empties the
pointer page, then the pointer page is also marked as released on its page inventory
page. Releasing a pointer page requires changing a system table called RDB$PAGES.
RDB$PAGES contains one row for each "interesting" page in the database. Pointer
pages, index root pages, generator pages, and transaction inventory pages are consid-
ered "interesting". Releasing an index root page also requires deleting a row from
RDB$PAGES. This process can recurse, just as the allocation process recurses, except
that neither files nor page inventory pages are released.

Elementary Allocation On Page

For most of the page types, allocation of space on page is not difficult. Generator
pages, transaction inventory pages, page inventory pages, and pointer pages are just
arrays. When one page fills, another one is allocated. (Theoretic rather than actual in
the case of generator pages, but the principle holds). Routines in the module PAG.C
manage header pages - they are essentially simple structures followed by a byte array
that holds the filenames for secondary files. Space on generator pages and transaction
inventory pages is never reused, so there is no reason to look for space on any page of
those types except the last. Space on page inventory pages is reused. When a page is
released - no longer needed for whatever purpose it had - its entry is cleared. For that
reason, the page number of the lowest PIP with space is carried in the database control
block. That number is not considered reliable, but a good starting point.

Finding Space For Data

Each table carries with it a vector of its pointer page numbers, and two high-water
marks, one for the first pointer page with data space, and one for the first pointer page
with space for a new data page. When storing a record that compresses to less than
the page size, DPM looks first for a pointer page with data pages that have free space,
then at the header of the pointer page to find the first slot pointing to a page with
space.

Now, just a bit more about data pages. Every data page has a header like this:

typedef struct dpg {
 struct pag dpg_header;
 SLONG dpg_sequence; /* Sequence number in relation */
 USHORT dpg_relation; /* Relation id */
 USHORT dpg_count; /* Number of record segments on page */
 struct dpg_repeat
 {
 USHORT dpg_offset; /* Offset of record fragment */
 USHORT dpg_length; /* Length of record fragment */
 } dpg_rpt [1];
} *DPG;

2

Database - Database Registration Info

88

The repeating offset/length is an array of pointers to data on the page. These pointers
are called line index entries, at least by me. The actual data starts at the bottom of the
page and works up. When there is no longer enough space for another line index entry
and another minimal sized record, plus whatever space is reserved for future expan-
sion (that's another topic), the page is marked full, both in its header and on the
pointer page.

DPM goes through the line index, adding up the space on page. If there's enough for
the compressed record, alignment overhead, and a line index entry, it's got a winner.
However, the space may not be contiguous. In that case, DPM shuffles all the data
down to the bottom of the page. Obviously, it doesn't compress the line index entries,
though it does correct the offset for data that has moved. Next step is to create a new
line index entry and shoot the data onto the page. Final step is to see if the page's full-
ness quotient has changed and make appropriate changes if so.

If there is space on page, but not enough for the current compressed record, DPM
marches on through the pointer page, checking plausible candidates, then on through
other pointer pages until there are no more allocated data pages.

OK, now it's time to allocate a new data page. First, find a free page in the current PIP,
or the next PIPs, or create a new PIP. Next, create the page in a buffer. Now, starting
with the first pointer page that has space to hold a new data page pointer, or create a
new pointer page for the table. That's it. At least that's all I can explain at the mo-
ment.

This paper was written by Ann Harrison in November 2000, and is copyright Ms. Harri-
son and IBPhoenix Inc. You may republish it verbatim, including this notation. You may
update, correct, or expand the material, provided that you include a notation that the
original work was produced by Ms. Harrison and IBPhoenix Inc.

2.3 Database Registration Info
Information appertaining to any of the registered databases can be viewed in IBExpert
in the Database Properties dialog, started using the menu item Database / Database
Registration Info... or the DB Explorer right-click menu:

2

Database - Register Database

89

The information displayed here is that which was entered, when the database was
originally registered (please refer to Register Database for details).

The tree in the left panel shows the various registration options available. Certain items
may be amended here. Again please refer to Register Database for further information.

New in version 2.5.0.47! It is possible to automatically connect to a database when
starting IBExpert. Use the following menu: Database Registration Info / Additional /
check: Open database when IBExpert starts.

New in version 2004.04.01.1 - under Database Registration Info / Additional there are
now two additional options:

• Disable plan request in SQL Editor
• Disable performance analysis.

New to version 2003.12.18.1: the added possibility to execute SQL scripts before and
after connecting to the database and before and after disconnecting from the database.
And under Database Registration Info / Additional there is now the additional option -
"Always prompt for a user name and password". If this option is activated, IBExpert
will display a login prompt dialog each time you try to connect to the database.

2.4 Register Database
Database registration is necessary, in order for IBExpert to recognize the presence of a
database. It is possible to specify certain options, settings and defaults here. The Da-
tabase Registration Editor can be opened using the IBExpert menu item Database /
Register Database, or key combination [Shift + Alt + R]. It is automatically generated
when the 'Register Database After Creating' checkbox is flagged in the Create Data-
base dialog.

2

Database - Register Database

90

The Database Registration dialog is split into two sections: on the left-hand side a tree
overview of the various registration options is displayed; the right input panel shows
the information and setting options available for each tree subject.

2.4.1 General

The following entry fields allow the user to specify certain general properties and de-
faults for the database to be registered.

2

Database - Register Database

91

(1) Server : firstly the server storing the database needs to be specified. This can be
local or remote (see Create Database).

By specifying a local server, fields (2) and (3) are automatically blended out, as they
are in this case irrelevant.

(2) Server name: must be known when accessing remotely. The syntax is as follows:

• Windows SERVER_NAME:C:\path\database.gdb
• Linux SERVER_NAME:/path/database.gdb

The standard port for InterBase and Firebird is 3050. However this is sometimes al-
tered for obvious reasons of security, or when other databases are already using this
port. If a different port is to be used for the InterBase/Firebird connection, the port
number needs to be included as part of the server name. For example, if port number
3055 is to be used, the server name is SERVER/3055. For using an alias path for a re-
mote connection, please refer to the article Remote Database Connect using an Alias.

(3) Protocol: a pull-down list of three options: TCP/IP, NetBEUI or SPX. TCP/IP is the
worldwide standard (please refer to Register Database for more information).

(4) Server versions: this enables a server version to be specified as standard/default
from the pull-down list of options.

(5) Database File: by clicking on the folder icon to the right of this field, the path can
easily be found and specified and the database name and physical path entered. The
database name must always be specified with the drive and path when registering a
database. Please note that the database file for a Windows server must be on a physi-
cal drive on the server, because InterBase/Firebird does not support databases on
mapped drive letters.

For example for Firebird:

C:\Programs\Firebird\Firebird_1_5\examples\EMPLOYEE.FDB

for InterBase:

C:\Programs\Interbase\examples\EMPLOYEE.GDB

(6) Database Alias: descriptive name for the database (does not have to conform to
any norms, but is rather a logical name). The actual database name and server path
and drive informati0n are hidden behind this simple alias name - aiding security, as
users only need to be informed of the alias name and not the real location of the data-
base.

(7) User Name: the database owner (i.e. the creator of the database) or SYSDBA.

(8) Password: if this field is left empty, the password needs to be entered each time
the database is opened. Please refer to Database Login for further information. The de-
fault password for SYSDBA is masterkey. Although this may be used to create and reg-
ister a database, it is recommended - for security reasons - this password be changed
at the earliest opportunity.

2

Database - Register Database

92

(9) Role: an alternative to (7) and (8); can initially be left empty.

(10) Charset (abbreviation for Character Set): Here the default character set can be
specified. This is useful, when the database is created to be used for foreign languages,
as this character set is applicable for all areas of the database unless overridden by the
domain or field definition. If not specified, the parameter defaults to NONE, i.e. values
are stored exactly as typed. For more information regarding this subject, please refer
to Charset/Default Character Set. If a character set was not defined when creating the
database, it should not be used here.

(11) Additional connect parameters: input field for additional specifications. For
example, system objects such as system tables and system generated domains and
triggers can be specified here. They will then automatically be loaded into the DB Ex-
plorer when opening the database alias.

(12) Path to ISC4.GDB: This can be found in the InterBase or Firebird main direc-
tory. This database holds a list of all registered users with their encrypted passwords,
who are allowed to access this SERVER.

When creating new users in earlier InterBase versions (<6), IBExpert needs to be told
where the ISC4.GDB can be found. Since InterBase version 6 or Firebird 1 there is a
services API. So those working with newer versions may ignore this field!

(13) Always capitalize database objects' names (checkbox): this is important as
in SQL Dialect 3 as entries can be written in upper or lower case (conforming to the
SQL 92 standard). InterBase however accepts such words as written in lower case, but
does not recognize them when written in upper case. It is therefore recommended this
always be activated.

(14) Font character set: this is only for the IBExpert interface display. It depends on
the Windows language. If an ANSI compatible language is being used, then the
ANSI_CHARSET should be specified.

(15) Test connect: the Comdiag dialog appears with a message stating that every-
thing works fine, or an error message - please refer to the IBExpert Services menu
item, Communication Diagnostics for more details.

(16) Copy Alias Info: here alias information from other existing registered databases
can be used as a basis for the current database. Simply click on the button and select
the registered database which is to be used as the alias.

(17) Register or Cancel: after working through all the options listed in the tree view
on the left, the database can be registered or cancelled.

2.4.2 Additional

The Database Registration / Additional options are as follows:

2

Database - Register Database

93

(1) Show System tables into Performance Analysis: the developer can choose
whether he also wishes to have the database system tables (in addition to the user-
defined objects) included in the Performance Analysis found in the SQL Editor, Stored
Procedure Editor and Visual Query Builder.

(2) Trim Char Fields in Grids: adapts field length to ideal length in all grids (see Ta-
ble Editor / Data and SQL Editor / Results as well as the IBExpert Grid menu).

(3) Autocommit Transactions: This allows all transactions to be committed immedi-
ately (i.e. IBExpert no longer asks for confirmation of a commit command and there is
NO option to rollback). This is an EXTREMELY dangerous option! For example, if an ir-
reversible DROP command has been wrongly entered (e.g. instead of typing a
[FIELD_NAME] the [DATABASE_NAME]is mistakenly entered), it is still automatically
committed.

(4) Open database when IBExpert starts: New in version 2.5.0.47! Checking this
option automatically connects this database when IBExpert is started.

(5) Always prompt for a user name and password: New in version 2003.12.18.1.
If this option is activated, IBExpert will display a login prompt dialog each time you try
to connect to the database.

(6) Use Metadata cache: e.g. when accessing remotely using a modem line, the In-
terBase server can only be accessed at a limited speed. IBExpert needs to know which
information it needs to fetch, and this may take some time. If the metadata cache is
checked, IBExpert does not download the complete database each time, only the in-
formation that it really needs.

2

Database - Register Database

94

(7) Disable plan request in SQL Editor: New option in version 2004.04.01.1. This
deactivates the query plan displayed in the lower panel of the Results page in the SQL
Editor.

(8) Disable performance analysis: New option in version 2004.04.01.1. This deac-
tivates the Performance Analysis page in the SQL Editor. This may be desirable, when
working remotely on a slow modem connection.

(9) Disable object description in hints These hints appear when you move the
mouse cursor over the column captions
in the Data Grid. If descriptions in these hints are not disabled IBExpert executes some
SELECTs to get them from the database. If you're working with the database using a
slow modem connection this decrease the performance dramatically.

(10) Don't display metadata changes counter info This deactivates the message
"253 changes to [TABLE] left", which is displayed in the status bar.

Additional / DB Explorer

(1) Show System Tables: tables generated by InterBase/Firebird are displayed in
the IBExpert DB Explorer in red.

(2) Show System Generated Domains: domains generated by InterBase/Firebird
are displayed in the IBExpert DB Explorer in red.

(3) Show System Generated Triggers: triggers generated by InterBase/Firebird are
displayed in the IBExpert DB Explorer in red.

(4) Show System Indices: indices generated by InterBase/Firebird are displayed in
the IBExpert DB Explorer in red.

(5) Show objects details (fields, indices etc.)

2

Database - Register Database

95

For database development it is wise to have all these items visible in the DB Explorer.

Additional / SQL Editor

The SQL Editor History Count determines the number of SQLs that are saved and dis-
played in the IBExpert SQL Editor. Here the default value of 100 can be adjusted as
wished.

2.4.3 Log Files

If you would like IBExpert to protocol all statements that change metadata and/or are
executed from the SQL Editor, use this section to enter path and file names. This is
useful for keeping a record of which changes were made to the data structure in IBEx-
pert.

2

Database - Register Database

96

Write Timestamp into logs: the timestamp option is useful for noting date and time
on logs.

Log Files - Metadata changes

Enable Logging Metadata Changes: allows all changes to metadata to be logged, in
order to follow all alterations to the data structure.

2

Database - Register Database

97

Log Files - SQL Editor

Enable Logging SQL Editor: Allows all SQL Editor work to be logged - a useful op-
tion, which should be checked. Should the log files become too large, older logs can
always be deleted at regular intervals.

Log Files - Script Executive

2

Database - Register Database

98

Enable Logging Metadata Changes: checkbox to specify whether all alterations to
metadata should be logged or not.

2.4.4 Backup/Restore

Files

Backup and restore file names and options can be specified for each database alias.
This makes it easier to backup a database with a single mouse click from the IBExpert
Services menu.

Using the first icon on the left a file name can be specified as the default file for back-
ups. When left empty, the backup file name must be specified for each backup. For
versions since Firebird 1.0 or InterBase 6.5 the file size is irrelevant (64B file system).
Secondary backup files can also be specified here.

Backup Options

2

Database - Register Database

99

(1) Ignore check sums: ignores any check sum errors and continues to backup the
database. This option should be selected if a backup is being performed because data-
base errors are suspected. If this option is not checked, the backup is aborted if a
check sum error is found. This is one possibility to force a backup for a corrupt data-
base. Please note that checksums are not maintained in UNIX versions.

(2) Ignore Transactions in Limbo: in limbo transactions are those which are sup-
posed to run across two or more databases and have been started, but neither finally
committed nor rolled back at the time of the database backup. This option backs up
only the most recent, committed transactions. It allows you to back up a database be-
fore recovering corrupted transactions. Generally, you should recover in limbo transac-
tions before performing a backup.

(3) Backup Metadata only: results in an empty copy of the database, as only the da-
tabase definition (metadata) is saved, not the data itself. This option is similar to using
Windows ISQL to extract a database to a file.

(4) Garbage collection: checks every row, removing outdated versions, empty pages
and parts of them. Because each page is carefully examined, the backup takes longer.
Should a backup need to be executed rapidly, the garbage collection can be switched
off here. Only the deleted and NOT the older versions of updated data sets are
dumped. The distribution of page occupation can be viewed in the database statistics.
The garbage collection in InterBase/Firebird can also be started using the SELECT
command.

(5) Old Metadata Description: this enables a backup and restore to older InterBase
versions.

(6) Convert to Tables: this concerns so-called external files. Following a backup the
external files are also incorporated, and then restored as tables.

2

Database - Register Database

100

(7) Format: the options 'transportable' or 'non-transportable' are offered here. As a
rule always choose "transportable", so that the database can be easily transported to
other platforms such as Linux.

(8) Verbose Output: Writes step-by-step status information to the output log. This
option is useful if the backup is failing, and the reasons need to be tracked down.

(9) The output log options 'on-screen' or 'into file' are offered here.

(10) File name, path and drive can be specified here, if the 'into file' output option
has been chosen.

Restore Options

(1) Deactivate indexes: This option does not restore indices as part of the restore
process. It is used to improve restore performance. If this option is not checked, Inter-
Base/Firebird updates indices after all tables have been filled with the restored rows.
This option can also be used if duplicate values are suspected in indices that are
flagged as unique. After the duplicate values have been found and corrected, the indi-
ces can be reactivated.

(2) Don't recreate shadow files: this option deletes the database shadow definition.
This option is required if the destination database does not support shadows, if you are
migrating from an earlier version of InterBase where shadows were not supported, or if
the machine where the shadow resides is not available.

(3) Don't enforce validity conditions: this option does not restore constraints, i.e.
it deletes the validity constraints from the database's metadata definition. It is impor-
tant to save a copy before a restore is performed with this option checked.

2

Database - Register Database

101

This option is necessary if the validity constraints were changed after data had already
been entered into the database. When a database is restored, InterBase/Firebird com-
pares each row with the metadata; an error message is received if incompatible data is
found. Once the offending data has been corrected, the constraints can be added back.

(4) Commit after each table: this option restores metadata and data for each table in
turn as a single transaction, and then commits the transaction. This option is recom-
mended, so that should a problem occur during the restore, at least all correct tables
are restored. It is particularly useful, if corrupt data is suspected in the backup, or if
the backup is not running to completion. Normally, InterBase/Firebird first restores all
metadata and then the data.

(5) Replace existing database: this should. as a rule, be toggled, as it makes no
difference if there is no database present as yet. Although leaving this option un-
checked provides a measure of protection from accidentally overwriting an existing da-
tabase file that may still be needed.

(6) Use all space: only relevant if restoring the database to a CD. In this case 100%
space of each page is used, and not, as is usual, 80%.

(7) Page size: Changes the default size of each page. There are numerous reasons
for wanting to change the database page size (please refer to page size).

(8) Verbose Output: Writes step-by-step status information to the output log. This
option is useful if the backup is failing, and you need to track down the reason.

(9) The output log options 'on-screen' or 'into file' are offered here.

(10) File name, path and drive can be specified here, if the 'into file' output option has
been chosen.

2.4.5 Default paths

2

Database - Register Database

102

Here standard default drives, paths and files may be specified, if wished, for the follow-
ing:

• Metadata Extract File
• Metadata Extract Directory (for Separate Files Mode)
• Export Path
• Quick Save Path
• Parameters Path
• HTML Report Directory

2.4.6 Explorer Filters

2

Database - Register Database

103

This is only of interest for extremely large and complex databases with multiple regis-
trations. It refines the selection of database objects displayed in the IBExpert DB Ex-
plorer. The database object names displayed can be filtered according to one or more
of the conditions listed.

2.4.7 Scripts

Since IBExpert version 2003.12.18.1 there is the added possibility to execute SQL
scripts before and after connecting to the database and before and after disconnecting
from the database:

2

Database - Unregister Database

104

2.5 Unregister Database
It may be desirable to unregister one or more databases in IBExpert, for example
when a remote link to a customer database will never be needed again. Unregistering a
database does not delete the database; it merely deletes the registration necessary for
working with IBExpert.

If you are unsure whether a registered database will ever be needed again, but are
tired of having it displayed in the DB Explorer every time work is started, it is possible
to blend out unconnected databases using the DB Explorer right-click menu item Hide
Disconnected Databases.

A database can be unregistered using the IBExpert menu item Database / Unregister
Database, the DB Explorer right-click menu, or the key combination [Shift + Alt + U].

IBExpert asks for confirmation:

before finally unregistering the database.

2.6 Connect to an existing Database
After starting IBExpert, you will see the Database Explorer on the left side. Before a
database connection can be made, the database must be registered (please refer to
Register Database).

2

Database - Connect to an existing Database

105

A database connection can be made to a registered database simply by double-clicking
on the database alias name, displayed in the DB Explorer. There are also a number of
menu options: either using the IBExpert menu item Database / Connect to Database,
or the following icon:

in the Database toolbar. Alternatively the DB Explorer right-click menu may be used, or
the key combination [Shift + Ctrl + C].

New in version 2.5.0.47! It is possible to automatically connect to a database when
starting IBExpert. Use the following menu: Database Registration Info / Additional /
check: Open database when IBExpert starts.

Should there be any problems connecting to the database, use the IBExpert Services
menu item Communication Diagnostics.

An example connecting to a remote database using the IBExpert Database menu item
Database Registration Info:

Server = Remote
Server Name = <network name of the server or its ip address> e.g.
OUR_SERVER
Protocol = TCP/IP
DB File Name = <path to the db file on the server PC> e.g.
"D:\Data\MyDB.fdb"

Of course Firebird/InterBase should be installed properly on the server PC (where your
database is placed) and the Firebird/InterBase client (fbclient.dll or gds32.dll) on
your local PC.

2.6.1 Accessing a Firebird embedded database with Win1252
(or other character set)

This tip comes from Gerhard Knapp.

In order to connect to a Firebird embedded database with WIN1252 (or other character
set) using IBExpert:

• Rename fbembed.dll to fbclient.dll (always recommendable; not just in this
case!).

• Define this fbclient.dll including drive and path in the IBExpert Database Regis-
tration.

• Specify WIN1252 in IBExpert.
• Copy the subdirectory "\intl" from the Program Files directory, where fbcli-
ent.dll is installed, into the directory C:\Program Files\HK-Software\IBExpert
2.0 !!

You should then have no further access problems.

Further information:

2

Database - Connect to an existing Database

106

• When "fbembed.dll" is renamed "fbclient.dll", it is also a fully-fledged client,
i.e. if an application needs to access an embedded database on a Firebird server,
the fbclient.dll is more than sufficient.

2.6.2 Database login

If a password is not entered at the time of registering the database (see Register Da-
tabase), it needs to be logged into each time the database is opened.

Specify a username and associated password. If the user is not authorized or the
password is not correct, an error message appears.

Optionally, a role may be specified. If the role has previously been GRANTed to the
username, all access privileges assigned to that role for the duration of the current
session apply for that user.

If the user is an authorized user for that server, and if the password is correct, access
is granted to the database.

2.6.3 Remote database connect using an alias

This article was written by Claudio Valderrama (http://www.cvalde.net/ - The Inter-
Base Unofficial Site), February 2002

Many developers wish to avoid the client having to give the engine the full path of the
database in the same machine (node) where the engine runs? It is not only inconven-
ient when the database's location is changed, it is also a low level that the client
shouldn't be concerned about. Finally, many developers have concerns with the secu-
rity. Ideally, the physical location of the engine and the databases shouldn't be dis-
closed to the client. Only an Alias should be visible.

It's incredible that for years, a built-in solution in the engine (that works whenever the
server is a NT machine) has been lying in the heart of the code and nobody made it
public, less even documented in some help file. Perhaps because it unfortunately is a
Win32 only solution, nothing that can be used on Linux, so the location of a gdb is not
truly transparent.

The syntax is very simple. It has the form:

 \\server\!share_name!\database.gdb

2

Database - Connect to an existing Database

107

or the form

server:\!share_name!\database.gdb

It's not a true alias, since you still know the name of the database and of course, the
server machine should be known. But it helps if you need to move the database around
NT servers, without having to change configuration files or recompiling programs.
Here, "server" is the NetBEUI name of the NT machine, followed by the pseudo-UNC
paths that IB/FB uses. Alternatively, "server" is the TCP/IP name of the NT machine,
but followed by backslashes, not the typical slashes the IB's TCP syntax uses. (Really,
using slashes or backslashes is not important in a typical full path, since the engine
makes the adjustments, but in this case, the syntax to recognize the share demands
backslashes.) The difference is that instead of a full path inside the server, a share's
name in the server is used, surrounded by exclamation marks. This share points in
turn to the full path of the database, so you only have to append the database's name.
It has nothing do to with client-side mappings.

How it works: the client library recognizes a UNC-like path and knows it's NetBEUI.
Otherwise, it recognizes a TCP-like syntax thanks to the colon. Then it connects to the
required server with the right network protocol and passes the remnant of the path,
stripping the server's name. A routine inside the engine, named "ex-
pand_share_name", will look for the backslash followed by the exclamation mark, then
if a matching "!\" occurs, it takes the name inside the two pairs ("\!" and "!\") and will
open the registry (RegOpenKeyEx) at

SYSTEM\\CurrentControlSet\\Services\\LanmanServer\\Shares

to extract the data (RegQueryValueEx) in the value <share_name>, that's supposedly
the name of a registered share in the server machine. It proceeds to decode the data
and gets the "Path" component inside the multi-string data that's the physical path. It
loads this path in its argument and returns to the caller that will continue testing to see
finally if the database's name is valid and exists.

For example, given a share's name "myshare", the registry key shown above contains
a list of values that denote shares. You can find there the implicit ones such as IAS1$
(very bad, get rid of it since it points to the IIS admin dir), the NETLOGON share and
"myshare". Reading the data in the value "myshare", the following can be seen:

MaxUses=4294967295.Path=H:\PROY.Permissions=127.Remark=for fb.Type=0..

The dots denote the NULL ASCII value, since this is a multi-string. The engine looks for
"path" and gets the string that follows, namely H:\PROY, then appends the backlash if
missing. Hence, the engine uses information in the server itself to decode the full path.
This path will prefix the database name when the function expand_share_name returns
to the caller.

An advantage is that you don't need to grant permissions on this share. You can deny
anyone any right (even if NT prompts if you are sure) and you can go further: you can
stop the service responsible for handling requests of NetBEUI shares. The engine reads
the registry directly, so it doesn't query the network layer. It's a true hack, a commod-
ity to avoid the inclusion of hard-coded paths in the client. If you want to change it,
just change the share's information, without granting anyone any right on the share.

2

Database - Reconnect to Database

108

Since the engine reads that registry location each time a connection string should be
analyzed, it will get the changed name in the next attachment request. If you disabled
some networks services, so that changing the share is not possible through high level
interfaces, you can edit the registry directly and change the path. Beware that the each
dot represents a NULL ASCII value in the example shown above, so your path should
end with that value. An even nicer feature is that this works:

H:\ibdev\fbbuild\interbase\jrd>isql \\atenea\!myshare!\g
Database: \\atenea\!myshare!\g
SQL> ^Z

but it's not restricted to NetBEUI. Indeed, as noted before, you can use TCP syntax:

H:\ibdev\fbbuild\interbase\jrd>isql localhost:\!myshare!\g
Database: localhost:\!myshare!\g
SQL> ^Z

(Remember that there's no restriction to the name of a gdb other than the file name
conventions in the platform where the engine resides. In this case, it's simply named
"g", although an extension helps the database admin.)

There are a couple of drawbacks: first, this hack is tied to Win32. (Furthermore, I don't
have a way to test it on XP, but I've been informed of success with Windows 2000.)
Second, when I read that internal function expand_share_name(), I found a possible
buffer overrun and closed it. Revisiting the code when I wrote this article, I found a
registry key handle that wasn't closed if the function gives up prematurely for lack of
RAM. (I solved this second glitch in Firebird at the time I was finishing this article.)
Hence, I believe the lack of documentation comes from the untested nature of the fa-
cility.

2.7 Reconnect to Database
This menu item is useful should a database connection have accidentally been discon-
nected (this may happen sometimes with a remote connection).

The reconnection can be simply made either using the Menu Database / Reconnect Da-
tabase, or the following icon:

in the Database toolbar. Alternatively the DB Explorer right-click menu may be used.

Should there be any problems reconnecting to the database, go to the Database Regis-
tration Info and perform a Test Connect.

2.8 Disconnect from a Database
When you have finished working with a database it can be disconnected using the
IBExpert menu item Database / Disconnect from Database, or the following icon:

2

Database - Create Database

109

in the Database toolbar. Alternatively the DB Explorer right-click menu may be used, or
the key combination [Shift + Ctrl + D].

It is not necessary to disconnect all databases manually when you have finished work-
ing with IBExpert. IBExpert does this automatically when it closes down.

2.9 Create Database
A new database can be created by simply using the IBExpert menu item Database /
Create Database... or using the respective icon in the Database toolbar. The Create
Database dialog appears:

(1) Server: first the server which is to store the database needs to be specified. This
can be local or remote.

• Remote - the remote connection needs to be defined by specifying (2) Server
name and (3) Protocol. The pull-down list shows all servers previously connected
to/from this workstation/PC.

• Local - LOCALHOST (own Server). To create a new database on the same machine
where IBExpert is in use, you do not need to enter a server name.

The DOS 'PING LOCAL HOST' or 'PING SRVNAME' command shows the path if un-
known (it is not necessary to know which operating system is running or where this
server is). By specifying a local server, fields (2) and (3) are automatically blended
out, as they are in this case irrelevant.

(2) Server name: must be known when accessing remotely. The following syntax
should be used:

• Windows SERVER_NAME:C:\path\database.gdb
• Linux SERVER_NAME:/path/database.gdb

The standard port for InterBase and Firebird is 3050. However this is sometimes al-
tered for obvious reasons of security, or when other databases are already using this
port. If a different port is to be used for the InterBase/Firebird connection, the port
number needs to be included as part of the server name. For example, if port number
3055 is to be used, the server name is SERVER/3055.

(3) Protocol: a pull-down list of three options: TCP/IP, NetBEUI or SPX. As a rule we
recommend you always use TCP/IP (worldwide standard).

2

Database - Create Database

110

- SPX used to be used by Novell; now even Novell supports TCP/IP.
- NetBEUI - is not really a network protocol, it simply accesses the line. It is slow as it
makes everything available everywhere and anyone can access the information. This is
also purely a Windows protocol. Note: in DOS the TRACERT command lists the protocol
route. TCP/IP intelligently takes another direction, if one or part of the lines on the
quickest route is blocked or down.

(4) Database: by clicking on the folder icon to the right of this field, the path can eas-
ily found and specified, the database name entered, and the suffix selected from the
pull-down list. The database name must always be specified with the drive and path
when creating a database. Please note that the database file for a Windows server
must be on a physical drive on the server, because InterBase/Firebird does not support
databases on mapped drive letters. The database suffixes do not have to adhere to the
forms offered in the list.

(5) User Name: Only those names may be entered when creating a database, which
already exist in the server security database ISC4.GDB (which stores server rights;
user rights for the database objects are stored in the database itself). The person cre-
ating the database becomes the database owner. Only the database owner and the
SYSDBA (System Database Administrator) are allowed to perform certain operations
upon the database (such as a database shutdown). Therefore if the database owner is
defined as the SYSDBA, this is the only person entitled to perform these operations.
Note: when a role with the name SYSDBA is created, no other users (not even the
SYSDBA) can access the database.

(6) Password: The passwords are encrypted in the ISC4.GDB. If you insist upon using
the SYSDBA name as the database owner, at least change the standard password
(masterkey) to ensure at least some degree of security! The masterkey password
should be changed as soon as possible after creating the database.

InterBase verifies only the first 8 characters of a password, even if a longer word is en-
tered, i.e. in the case of the masterkey password only "masterke" is verified. All char-
acters following the 8th are ignored.

(7) SQL Dialect: Here Dialect 1 (up to and including InterBase 5) or 3 (InterBase
6/Firebird) needs to be specified. For more information regarding this subject, please
refer to SQL Dialect.

2

Database - Create Database

111

(8) Page size: Specifies the database page size in bytes. For more information re-
garding this subject, please refer to Page Size.

(9) Charset: Here the default character set can be defined. This character set is use-
ful, when the database created is to be used for foreign languages as it is applicable for
all areas of the database unless overridden by the domain or field definition. If not
specified, the parameter defaults to NONE, i.e. values are stored exactly as typed. For
more information regarding this subject, please refer to Charset/Default Character Set.

(10) Register Database After Creating: This checkbox automatically generates the
Database Registration dialog so that the database can be registered. Registration is
necessary, so that IBExpert recognizes that a database is present. The Register Data-
base dialog however offers many further options. We recommend clicking this check-
box (the default setting), so that the database is registered immediately after creation.
If the database is not registered at the time of creation, it cannot be seen in the DB
Explorer of the left of the IBExpert screen. This means that the user must know exactly
where the new database can be found (i.e. which server, path, name etc.) when regis-
tering at a later date.

Tip: IBExpert recommends creating a User Database - please refer to Environment Op-
tions / IBExpert User Database for further information.

For those preferring SQL, the syntax is as follows:

CREATE {DATABASE | SCHEMA} 'filespec'
[USER 'username' [PASSWORD 'password']]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
[secondary_file];
<secondary_file> = FILE 'filespec' [fileinfo] [secondary_file]
<fileinfo> = [LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int }
[fileinfo]

For example:

CREATE DATABASE 'C:\DATABASEFILES\employee.gdb'
DEFAULT CHARACTER SET ISO8859_1
FILE 'employee2.gdb' STARTING AT PAGE 10001;

2.9.1 Charset / Default Character Set

The default character set is the character set defined when creating the database, and
applicable for all areas of the database unless overridden by the domain or field defini-
tion. It controls not only the available characters that can be stored and displayed, but
also the collation order. If not specified, the parameter defaults to NONE, i.e. values
are stored exactly as typed.

InterBase/Firebird supports multiple character sets for use around the world. If no spe-
cial character set is specified for individual columns, the database default character set
is assumed. The default character set is defined in IBExpert in the Create Database
dialog:

2

Database - Create Database

112

If a character set is defined as the default character set when creating the database, it
is not necessary to define this again for individual columns.

InterBase/Firebird supports more that 20 different character sets directly. The chosen
character set is also of importance when importing and exporting data with different
character sets. This needs to be taken into consideration when applications are devel-
oped with multiple language versions.

The ASCII character set is not synonymous with a non-defined character set. If no
character set is defined, Firebird/InterBase chooses the character set NONE. The char-
acter set NONE does not translate characters. Umlauts and accents are not sorted cor-
rectly. When the ASCII character set is specified, all characters are translated into the
ASCII equivalents from the character set under which they were input.

The character set WIN 1252 is recommended for European countries, as it includes all
characters and collation orders of the most important European languages.

Generally this default character set cannot be altered at a later date (only using the
command line tools IBExtract and IBExpert Script). Alternate character sets can how-
ever be defined for individual domains and tables, which override the default character
set.

2.9.2 Page Size

This is the specification of the database page size in bytes.

Firebird/InterBase databases are saved in blocks. Each of these blocks is called a page.
Database administration occurs basically by accessing the hard drive block by block.
The more data per access fetched by a single database page, the less often it is neces-
sary to load a new page, at least theoretically. Practically, depending upon the operat-
ing system and server hardware, access to larger database pages can even influence
the performance negatively, as 1024 bytes can be loaded quicker than 8192 bytes.

When creating a database (IBExpert menu item Database / Create Database) the stan-
dard database page size of 1024 bytes is the default value. This is also the smallest
unit. Further values permitted are 2048, 4096, 8192 and 16384.

2

Database - Create Database

113

A large page size has certain advantages in the following situations:

1. Many index-based operations (indices work quicker if the index depth is minimized).

2. Wide records, because with very wide data structures, i.e. with very many and/or
very long columns, reading a data set is more efficient. With data sets that do not fit
onto one page, several pages have to be read to fetch a single data set. The same ap-
plies to writing; ie. fetches across several pages are necessary.

3. Large blob fields, as data is stored and retrieved more efficiently if fewer pages need
to be fetched. This is because blob columns, assuming the data contained fits onto one
page, are stored in the data pages with other data, and so when one data set is
fetched, the data from the standard field and the blob columns are also fetched. With
larger blobs the writing and reading processes are also more effective, as, for example,
100 accesses are necessary for a 100k blob column with a 1k page size. However with
an 8k page size only 13 accesses are required.

A small page size is sufficient if many transactions return only a small number of rows.
Slim table structures with small database pages can be accessed more quickly for read-
ing and writing as less memory is required, and more database pages can be held in
the cache.

Creating a database with a page size of 4096 can be viewed as optimal, as this is the
Windows block size. Therefore smaller page sizes do not bring any advantages, as
Windows will still fetch 4K blocks.

The only way to subsequently alter a database page size, is to perform a database
backup followed by a restore (IBExpert menu: Services / Restore Database) where the
database page size can be redefined.

2

Database - Create Database

114

2.9.3 Structure of a data page

By Paul Beach
(With thanks to Dave Schnepper and Deej Bredenberg)

A database is considered to be a collection of pages, each page has a pre-defined size
[see page size], this size is determined when the database is created [see Create Da-
tabase] by a database parameter that is passed in the isc_database_create call
(gds_dpb_page_size). Pages are identified by a page number (4 byte unsigned inte-
ger), starting at 0 and increasing sequentially from the beginning of the first database
file to the end of the last database file.

Page 0 of a database is always the database header page, which contains the informa-
tion that is needed when you attach to a database. Page 1 is the first PIP page (Page
Inventory Page) and the first WAL page is always page 2. By convention, page 3 is the
first pointer page for the RDB$PAGES relation, but that location is described on the
header page so it could (in theory) change.

Except for the header page there is no specific relationship between a page number
and the type of data that could be stored on it.

The types of pages are defined in ods.h and are as follows:

2

Database - Create Database

115

Pages are located in the database by seeking within the database file to position
page_number*bytes_per_page. The structure of a data page, as defined in ods.h is as
follows:

All pages have a page header, the page header consists of,

The remainder of the page (less the 16 bytes above) is used to store page specific
data.

A data page holds the actual data for a table, and a data page can only be used by a
single table, i.e. it is not possible for data from two different tables to appear on the

2

Database - Create Database

116

same data page. Each data page holds what is basically an Array of records (complete
or fragmented). Below the header is 8 bytes of :

• Page Sequence (dpg_sequence 4 bytes) sequence number of the data page in a ta-
ble, used for integrity checking.

• Page's Table/Relation id (dpg_relation 2 bytes) this id is also used for integrity
checking.

• Number of Records or record fragments that exist on the data page (dpg_count 2
bytes).

This is then followed by an Array of descriptors each of the format: offset of record or
fragment, length of record or fragment. This descriptor describes the size and location
of records or fragments stored on a page. For each record or fragment that is stored on
the page there is an equivalent record descriptor at the top of the page. As records get
stored the array grows down the page, whilst the records or fragments are inserted
backwards from the end of the page. The page is full when they meet in the middle.

Obviously data records can vary in size, so the number of records that may fit on a
page can vary. Equally records may get deleted, leaving gaps on a page.

The page free space calculation works by looking at the size of all of the records that
exist on a page. If space can be created on the page for a new record, then the records
will get compressed i.e. shifted downwards to fill the gaps that would get created dur-
ing normal insert, update and deletion of data. When the free space is less than the
size of the smallest possible fragment - then the page is full.

A record may be uniquely identified by its record number (rdb$db_key).

The record header structure is,

2

Database - Create Database

117

When a field is added or dropped, or the data type of a field is changed, a new format
is generated for that table. A history of all of the formats for a table is stored in
RDB$FORMATS. This allows the database to reconstruct records that were stored at any
time based on the format that existed for the table at that time. Metadata changes,
such as the above do not directly affect the records when the metadata change itself
takes place, only when the records are actually next visited.

Record header data (rhd_data size n as needed) is the actual record data and is com-
pressed by RLE (Run Length Encoding). When a run takes place the compression algo-
rithm will use 1 extra byte per 128 bytes, to represent the run length followed by one
or more bytes of data. A positive run length indicates that the next sequence of bytes
should be read literally, whilst a negative run length indicates that the following byte is
to be repeated ABS(n) times.

This paper was written by Paul Beach in September 2001, and is copyright Paul Beach
and IBPhoenix Inc.

2

Database - Drop Database/Delete Database

118

2.9.4 SQL Dialect

Structured Query Language is a language for relational databases, which serves to de-
fine, manipulate, find and fetch data in a database.

There are currently two SQL dialects used with InterBase and Firebird:

Dialect 1 = database performance is fully compatible to InterBase 5.x (e.g. numeric up
to 15 digits)
Dialect 3 = all new functions in InterBase 6 and upwards with SQL 92 features are
available (e.g. numeric up to 18 digits)

For those that work with the BDE, this can only work with dialect 1 up to and including
Delphi 6 (i.e. dialect 3 from Delphi 7 onwards).

Differences between dialects 1 and 3 include the numeric (15 or 18), and also for ex-
ample date:

Dialect 1 = Date includes the date and time
Dialect 3 = Date = date, time = time, timestamp = date and time.

For new projects it is recommended that dialect 3 be specified.

Occasionally the question arises\"What about SQL Dialect 2?". Dialect 2 is similar to
dialect 1, generates however warnings for all objects that are incompatible to Dialect 3
(i.e. only suitable for the client end); therefore, in principle, not really of importance.

The SQL dialect to be used in a database is specified when creating the database
(IBExpert menu: Database / Create Database). It can subsequently be altered using
the IBExpert menu Services / Database Properties (although watch out for possible
dialect incongruencies, for example, the different date and time types).

2.10 Drop Database/Delete Database
Databases can be dropped in IBExpert using the menu item Database / Drop Database.

When an InterBase/Firebird database is dropped, all the metadata and data for this da-
tabase are also deleted, along with all its secondary, shadow and log files
...permanently!

IBExpert asks for confirmation:

before finally dropping the database. Once dropped, it cannot be retrieved, so be ex-
tremely careful when using this command.

For those users preferring direct SQL input, the syntax is:

2

Database - Recreate Database

119

DROP DATABASE;

A database may only be dropped by its creator or the SYSDBA.

2.11 Recreate Database
This new IBExpert menu item, Recreate Database was introduced in IBExpert version
2004.9.12.1. This drops the database, along with all its contents, and creates it again
without the metadata and data content (after confirmation, of course) using the pa-
rameters of the database just dropped. The parameters are: server name, protocol,
user name, password, page size, SQL dialect and default character set.

2.12 Recompute selectivity of all indices
Indices statistics are used by the InterBase/Firebird Optimizer, to determine which in-
dex is the most efficient. All statistics are recalculated only when a database is restored
after backing up, or when this is explicitly requested by the developer.

When an index is initially created, its statistical value is 0. Therefore it is extremely im-
portant, particularly with new databases where the first data sets are being entered, to
regularly explicitly recompute the selectivity, so that the optimizer can recognize the
most efficient indices. This is not so important with databases, where little data ma-
nipulation occurs, as the selectivity will change very little.

To recompute the selectivity of all indices use the IBExpert menu item Recompute Se-
lectivity of all Indices. This recomputes the selectivity for all indices in the database
and can be found in the IBExpert Database menu or using the right mouse button in
the DB Explorer.

Individual indices can be recomputed directly in the SQL Editor using the command:

SET STATISTICS INDEX <index_name>;

Single or multiple indices can also be recomputed directly in the Table Editor / Indices
page, using the right-click menu.

2

Database - Recompile all Stored Procedures and Triggers

120

The same Recomputing Selectivity dialog as above is then displayed.

The new statistical values can be viewed for individual tables in the Table Editor on the
Indices page (providing the Statistics are blended in using the right-click menu item
Show Statistics).

2.13 Recompile all Stored Procedures and Trig-
gers

Stored procedures and triggers use indices internally. The Recompile command ensures
that the most up-to-date indices are used. Using this command it is also possible to
recognize when one procedure or trigger calls another.

This is also useful, for example, when backing up an older InterBase version (e.g. v5)
and restoring in a newer version, such as InterBase 6 or Firebird 1.5, as Inter-
Base/Firebird simply copies the data and metadata into the new version when restor-
ing. So that if a variable name that is a keyword in the stored procedure is wrong, it is
not recognized, as the compiler does not recognize variable names as such. When
however procedures and triggers are recompiled, any such problems are discovered.

The menu items, Recompile all Stored Procedures and Recompile all Triggers can be
found in the IBExpert Database menu or using the right-click menu in the DB Explorer.

2.14 Database Security
Please refer to the following subjects, for further information regarding database secu-
rity:

• Server Security ISC4.GDB / SECURITY.FDB,
• User Manager,
• Grant Manager.

2.15 Database Corruption
The following articles provide important information regarding the causes leading to
database corruption, as well as ways to recover a corrupt database. We would like to
thank the authors for allowing us to publish their articles here.

2

Database - Database Corruption

121

2.15.1 How to corrupt a database

Although Firebird is extremely stable and secure, there are a few things that you
should NOT do, as these could result in corrupting the database!

The following tips have been taken from the Firebird Quick Start Guide, © IBPhoenix
Publications 2002,2003. Many thanks to Paul Beach (www.ibphoenix.com)!

Modifying metadata tables

Firebird stores and maintains all of the metadata for its own and your user-defined ob-
jects in a Firebird database! More precisely, it stores them in relations (tables) right in
the database itself. The identifiers for the system tables, their columns and several
other types of system objects begin with the characters 'RDB$'.

Because these are ordinary database objects, they can be queried and manipulated
just like your user-defined objects. However, just because you can does not say you
should. The Firebird engine implements a high-level subset of SQL (DDL - please refer
to Data Definition Language for further information) for the purpose of defining and
operating on metadata objects, typically through CREATE, ALTER and DROP state-
ments.

It cannot be recommended too strongly that you use DDL - not direct SQL operations
on the system tables - whenever you need to alter or remove metadata. Defer the 'hot
fix'” stuff until your skills in SQL and your knowledge of the Firebird engine become
very advanced. A wrecked database is neither pretty to behold nor cheap to repair.

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

Disabling forced writes

Firebird is installed with forced writes (synchronous writes) enabled by default.
Changed and new data are written to disk immediately upon posting.

It is possible to configure a database to use asynchronous data writes - whereby modi-
fied or new data are held in the memory cache for periodic flushing to disk by the op-
erating system's I/O subsystem. The common term for this configuration is forced
writes off (or disabled). It is sometimes resorted to in order to improve performance
during large batch operations.

The big warning here is - do not disable forced writes on a Windows server. It has been
observed that the Windows server platforms do not flush the write cache until the Fire-
bird service is shut down. Apart from power interruptions, there is just too much that
can go wrong on a Windows server. If it should hang, the I/O system goes out of reach
and your users' work will be lost in the process of rebooting.

• Windows 9x and ME do not support deferred data writes

Disabling Forced Writes on a Linux server

2

Database - Database Corruption

122

Linux servers are safer for running an operation with forced writes disabled temporar-
ily. Do not leave it disabled once your large batch task is completed, unless you have a
very robust fall-back power system.

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

Restoring a backup to a running database

One of the restore options in the GBAK utility (gbak -r[estore]) allows you to restore
a gbak file over the top of an existing database. It is possible for this style of restore to
proceed without warning while users are logged in to the database. Database corrup-
tion is almost certain to be the result.

• Be aware that you will need to design your Admin tools and procedures to prevent
any possibility for any user (including SYSDBA) to restore to your active database if
any users are logged in.

If is practicable to do so, it is recommended to restore to spare disk space using the
gbak -c[reate] option and test the restored database using isql [or IBExpert]. If the
restored database is good, shut down the server. Make a file system copy of the old
database and then copy the restored database file (or files) over their existing coun-
terparts.

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

Allowing users to log in during a restore

If you do not block access to users while performing a restore using gbak -r[estore]
then users may be able to log in and attempt to do operations on data. Corrupted
structures will result.

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

2.15.2 Recovering corrupt databases

The following is an excerpt from the successful Russian book, "The InterBase World"
first published in September 2002, with a second edition following in April 2003. The
authors of the book are Alexey Kovyazin, developer of IBSurgeon
(www.ibsurgeon.com) and well-known Russian InterBase specialist, and Serg Vos-
trikov, CEO of the Devrace company (www.devrace.com).

Here the authors would like to offer you a draft copy of one chapter of this book de-
voted to recovery of InterBase/Firebird databases.

They would like to pass on their thanks to all who helped create this guide: Craig
Stuntz, Alexander Nevsky, Konstantin Sipachev, Tatjana Sipacheva and all the other
kind and knowledgeable members of the InterBase and Firebird community.

Main causes of database corruption

Unfortunately there is always a probability that any information stored will be cor-
rupted and some of this information will be lost. Databases are not an exception to this

2

Database - Database Corruption

123

rule. In this chapter we will consider the principal causes that lead to Inter-
Base/Firebird database corruption, some methods of repairing databases and extract-
ing information from them. We will also make recommendations and offer precautions
that will minimize the probability of information loss.

First of all, if we speak about database repair we should perhaps first define 'database
corruption'. A database is usually described as damaged if, when trying to extract or
modify some information, errors appear and/or the information to be extracted turns
out to be lost, incomplete or incorrect. There are cases when database corruption is
hidden and can only be found by testing with special facilities. However there are also
real database corruptions, when it is impossible to connect to the database, when ad-
justed programs send strange errors to the clients (without any data manipulation hav-
ing occurred), or when it is impossible to restore the database from a backup copy.

Principal causes of database corruption are:

• Abnormal termination of the server computer, especially an electrical power inter-
ruption. For the IT-industry it can be a real blow and that is why we hope there is
no need to remind you once again about the necessity of having a source of unin-
terrupted power supply on your server.

• Defects and faults on the server computer, especially the HDD (hard disk drive),
disk controllers, the computer's main memory and the cache memory of Raid con-
trollers.

• An incorrect connection string to a multi-client database with one or more users (in
versions prior to 6.x). When connecting via TCP/IP, the path to the database must
be pointed to a server name:
drive:/path/databasename /
For servers on UNIX platforms: servername: /path/databasename/
Using a NetBEUI protocol: \\servername\drive:\path\databasename.
Even when connecting to a database from the computer, on which the database is
located and where the server is running, the same specification should be used, re-
naming the servername as localhost. It is not possible to use mapped drives in
the connection specification. If you break one of these rules, the server thinks that
it is working with different databases and database corruption is guaranteed.

• File copy or other file access to the database when the server is running. The exe-
cution of the command 'shutdown', or disconnecting the users in the usual way is
not a guarantee that the server is doing nothing with the database. If the sweep in-
terval is not set to 0, garbage collection may be being executed. Generally the gar-
bage collection is executed immediately after the last user disconnects from the da-
tabase. Usually it takes several seconds, but if many DELETE or UPDATE operations
were committed before it, the process may take longer.

• Using unstable InterBase server versions 5.1-5.5. The Borland Company officially
admitted that there were several errors in these servers and these were removed in
the stable upgrade 5.6 only after the release of certified InterBase 6 was in free-
running mode for all clients of servers 5.1-5.5 on its site.

• Exceeding size restriction of a database file. At the time of writing this, for most ex-
isting UNIX platform servers the limit is 2 GB, for Windows NT/2000 - 4 GB, but it
is recommended to assume 2 GB. When the database size is approaching its limit,
an additional file must be created.

• Exhaustion of free disk space when working with the database.

2

Database - Database Corruption

124

• For Borland InterBase servers using versions under 6.0.1.6 - exceeding the restric-
tion of the maximum number of generators, according to Borland InterBase R & D
defined as follows (please refer to table 1 below).

• For all Borland InterBase servers - exceeding the permissible number of transac-
tions without executing a backup/restore. The number of transactions that have
been made in the database since the last backup and restore can be determined by
invoking the utility GSTAT with the key -h parameter NEXT TRANSACTION ID. Ac-
cording to Ann W. Harrison, the critical number of transactions depends on the
page size, and has the following values (please refer to table 2 below):

The constraints of Borland InterBase servers enumerated above are not applicable to
Firebird servers except for the earliest versions 0.x, the existence of which has already
become history. If you use the final version Firebird 1.0 or above, or InterBase 6.5-7.x,
you should not worry about points 5, 6, 8 and 9 and should instead concentrate your
efforts on other causes. Now we will consider the most frequent of these in detail.

Power supply failure

When shutting off the power on the server, all data processing activities are inter-
rupted in the most unexpected and (according to Murphy's law) dangerous places. As a
result the information in the database may be distorted or lost. The simplest case is
when all uncommitted data from a client’s applications are lost as a result of an emer-
gency server shutdown. After a power-cut restart the server. This analyzes the data,
makes a note of incomplete transactions related to none of the clients, and cancels all
modifications made within the bounds of these «dead» transactions. Actually such be-
havior is normal and assumed from the start by InterBase developers.

However power supply interruption is not always followed just by such insignificant
losses. If the server was executing a database extension at the moment of power sup-
ply interruption, there is a large probability of orphan pages present in the database
file (pages that are physically allocated and registered on the page inventory page
(PIP), upon which it is however impossible to write data).

Only GFIX, the repair and modification tool (we will consider it further on), is able to
combat orphan pages in the database file. Actually orphan pages lead to unnecessary
use of disk space and, as such, are not the cause of data loss or corruption. Power loss
leads to more serious damages. For example, after shutting off the power and restart-
ing, a great amount of data, including committed data, may be lost (after adding or
modification of which the command «commit transaction» was executed). This happens
because confirmed data is not written immediately to the database file on disk. The file
cache of the operating system (OS) is used for this purpose. The server process gives

2

Database - Database Corruption

125

the data write command to the OS. Then the OS assures the server that all the data
has been saved to disk although in reality the data is initially stored in the file cache.
The OS doesn't hurry to save this data to disk, because it assumes that there is a lot of
main memory left, and therefore delays the slow operation of writing to disk until the
main memory is full. Please refer to the next subject - Forced Writes - cuts both ways -
for further information.

Forced writes – cuts both ways

In order to influence this situation, tuning of the data write mode is provided in Inter-
Base 6 and Firebird. This parameter is called FORCED WRITES (FW) and has 2 modes -
ON (synchronous) and OFF (asynchronous). FW modes define how InterBase/Firebird
communicates with the disk. If FW is turned on, the setting of synchronous writes to
disk is switched on, and confirmed data is written to disk immediately following the
COMMIT command, the server waits for writing completion and only then continues
processing. If FW is switched off InterBase doesn't hurry to write data to disk after a
transaction is committed, and delegates this task to a parallel thread, while the main
thread continues data processing, not waiting until all writes are written to disk.

Synchronous writes mode is one of the most careful options and it minimizes any pos-
sible data loss. However it may cause some loss of performance. Asynchronous writes
mode increases the probability of loss of a great quantity of data. In order to achieve
maximum performance FW Off mode is usually set. But as a result of power interrup-
tion a much higher quantity of data is lost using the asynchronous writes mode than
when using the synchronous mode. When setting the write mode you should decide
whether a few percentage points of performance are more significant than a few hours
of work should power be interrupted unexpectedly.

Very often users are careless with InterBase. Small organizations save on any trifle, of-
ten on the computer server, where the DBMS server and different server programs
(not only server) are installed and running as well. If they hang-up people don't think
for long, and simply press RESET (it happens several times a day). Although InterBase
is very stable with regard to such activities compared with other DBMS, and allows
work with the database to start immediately after an emergency reboot, such a proce-
dure is not recommended. The number of orphan pages increases and data lose con-
nections among themselves as a result of faulty reboots. It may still function and con-
tinue for a long time, but sooner or later it will come to an end. When damaged pages
appear among PIP or generator pages, or if the database header page is corrupted, the
database may never open again and become a big chunk of separate data from which
it is impossible to extract a single byte of useful information.

Corruption of the hard disk

Hard disk corruptions lead to the loss of important database system pages and/or the
corruption of links among the remaining pages. Such corruptions are one of the most
difficult cases, because they almost always require low-level interference to restore the
database.

Database design mistakes

It is necessary to learn of some mistakes made by database developers that can lead
to an impossible database recovery from a backup copy (*.gbk files created by the

2

Database - Database Corruption

126

GBAK program). First of all a careless use of Constraints at database level. A typical ex-
ample is the constraint NOT NULL. Let’s suppose that we have a table filled with a
number of records. Now using the ALTER TABLE command we’ll add one more column
to this table and specify that it mustn’t contain the non-defined value NULL. Something
like this:

ALTER TABLE sometable Field/INTEGER NOT NULL

In this case there will be no server error as should be expected. This metadata modifi-
cation will be committed and we won't receive any error or warning message, which
creates an illusion of normality.

However, if we Backup the database and try to restore it from the backup copy, we'll
receive an error message at the phase of restoring (because NULLs are inserted into
the column that has NOT NULL constraint, and the process of restoring will be inter-
rupted. (An important note provided by Craig Stuntz: with version InterBase 7.1 con-
straints are ignored by default during a restore (this can be controlled by a command-
line switch) and nearly any non-corrupt backup can be restored. It's always a good
idea to do a test restore after performing a backup, but this problem should pretty
much disappear in version 7.1.). This backup copy can't be restored. If the restore was
directed to a file having the same name as the existing database (during restoration of
the existing database the working file was being rewritten), we'll lose all information.

It has to do with the fact that NOT NULL constraints are implemented by system Trig-
gers which check only incoming data. During restoration, data from the backup copy is
inserted into the empty, newly created tables - here we can find inadmissible NULLs in
the column with the constraint NOT NULL.

Some developers consider such InterBase behavior to be incorrect, but others will be
unable to add a field with NOT NULL restriction to the database table.

The question about required value by default and filling with this value at the moment
of creation was widely discussed by Firebird architects, but it wasn't accepted because
of the fact that the programmer is obviously going to fill it according to an algorithm,
which is rather complicated and maybe iterative. But there is no guarantee, whether
he'll be able to distinguish the records ignored by previous iteration from unfilled re-
cords or not.

A similar problem can be caused by a garbage collection fault, caused by the specifica-
tion of an incorrect path to the database (the cause of corruption 3) at the time of con-
nection, and file access to database files when the server is working with it (the cause
of corruption 4), and records wholly filled with NULLs can appear in some tables. It's
very difficult to detect these records, because they don't correspond to integrity control
restrictions, and operator Select just doesn't see them, although they get into the
backup copy. If it is impossible to restore for this reason, the GFIX utility should be
used (see below), to find and delete these records using non-indexed fields as search
conditions. After this try to make a backup copy again and restore the database from
it. In conclusion we can say that there are a great number of causes of database cor-
ruption and you should always be prepared for the worst - that your database could
become damaged for one reason or another. You should therefore be prepared at all
times to restore and rescue valuable information.

2

Database - Database Corruption

127

Precautions and methods of repair

And now we shall consider precautions that guarantee Firebird/InterBase database se-
curity, as well as methods of repairing damaged databases.

Regular backups

In order to prevent database corruption, backup copies should be created regularly (if
you want to know more about backup then please refer to Backup and Restore for fur-
ther information). It's the most trusted method to prevent and combat database cor-
ruption. Only a backup gives 100% guarantee of database security. As described
above, it is possible get a useless copy as the result of restoring a backup file (i.e. a
copy that can't be restored); that's why restoring a base from the copy should not be
performed by writing over the script, and a backup must be carried out according to
definite rules. Firstly, a backup should be executed as often as possible, secondly it
must be serial and thirdly, backup copies must be checked for their restoring capabil-
ity.

Usually, a backup means that it's necessary to make a backup copy rather often, for
example, once every twenty-four hours. The shorter the period is between database
backups, the less data will be lost as a result of a fault. The sequence of backups
means that the number of backups should increase and should be stored for at least a
week. If possible, backups should be written to special devices such as a streamer, but
if this is not possible - copy them to another computer. The history of backup copies
will help to discover hidden corruptions and cope with an error that perhaps arose
some time ago but has only just showed up unexpectedly. It is necessary to check
whether it is possible to restore the saved backup without errors or not. This can be
checked in only one way - through the test restore process. It should be mentioned
that the restore process takes 3 times longer than the backup, and it’s difficult to exe-
cute restore validation every day for large databases, because it may interrupt the us-
ers' work for a few hours (a night break may not be enough).

It would be better if big organizations didn't save at the wrong end and assigned one
computer just for these purposes.

In this case, if the server must work with a serious load 24 hours 7 days a week, we
can use the SHADOW mechanism for taking snapshots of the database, and performing
further backup operations from the immediate copy. When creating a backup copy and
then restoring the database from this backup, all data in the database is recreated.
This process (backup/restore or b/r) contributes to the correction of most non-fatal er-
rors in the database connected with hard disk corruptions, detecting problems with in-
tegrity in the database, cleaning the database of garbage (old versions and fragments
of records, incomplete transactions) which decreases the database size considerably.

Regular backup/restore is a guarantee of Firebird/InterBase database security. If the
database is working, then it is recommended to execute backup/restore on a weekly
basis. To tell the truth, there are some examples of Firebird/InterBase databases that
are intensively used for some years without a single backup/restore.

Nevertheless, to be on the safe side it's desirable to perform this procedure regularly,
especially as it can be easily automated (please refer to Backup and Restore).

2

Database - Database Corruption

128

If it's impossible to perform a regular backup/restore for certain reasons, then the GFIX
tool can be used for checking and restoring the database. GFIX allows you to check and
remove many errors without performing a backup/restore.

Using GFIX

The command-line utility GFIX is used for checking and restoring databases. Further-
more GFIX can also execute various database control activities: changing the database
dialect, setting and canceling the mode 'read-only', setting cache size for a specific da-
tabase and also some important functions.

GFIX is committed in command-line mode and has the following syntax:

Gfix [options] db_name

Options is a set of options for executing GFIX, db_name is the name of the database
for which the operations are to be performed, defined by a set of options. The following
table displays the GFIX options related to database repair:

Here are some typical GFIX examples:

gfix -w sync -user SYSDBA -pass masterkey firstbase.gdb

In this example we set for our test database, firstbase.gdb, the synchronous writes
mode (FW ON). (Of course, this is more useful before corruption occurs). And below is
the first command that you should use to check the database after corruption has oc-
curred:

gfix -v -full -user SYSDBA -pass masterkey firstbase.gdb

In this example we start checking our test database (option -v) and specify that frag-
ments of records must be checked as well (option -full). Of course, it is more conven-

2

Database - Database Corruption

129

ient to set various options for the checking and restoring process using IBExpert or an-
other GUI interface, but we’ll review the functions of database recovery using com-
mand-line tools. These tools are included in InterBase and Firebird and you can be sure
that their behavior will be the same on all OS running InterBase. It is vital that they
always be close to the server. Besides the existing tools, allowing you to execute data-
base administration from a client's computer, you can use the Services API, which isn't
supported by the InterBase server Classic architecture. That means you need to use a
third party product (such as IBExpert or other administration tool) with the Su-
perServer architecture.

Repairing a corrupt database

Let’s assume there are some errors in our database. Firstly, we have to check the exis-
tence of these errors; secondly, we have to try to correct these errors. We recommend
the following procedure:

You should stop the InterBase server if it’s still working and make a copy of the file or
the database files. All the restore activities should only be performed with a database
copy, because it may lead to an unsatisfactory result, and you’ll have to restart the re-
store procedure (from a starting point). After creating a copy we’ll perform the com-
plete database validation (checking fragments of records).

We should execute the following command for this (or use the IBExpert Services menu
item Database Validation):

gfix -v -full corruptbase.gdb -user SYSDBA -password

In this case corruptbase.gdb - is a copy of the damaged database. This command will
check the database for any structural corruption and produce a list of unsolved prob-
lems. If such errors are detected, we’ll have to delete the damaged data and get ready
for a backup/restore using the following command (or using the IBExpert Services
Menu item Backup Database):

gfix -mend -user SYSDBA -password your_masterkey corruptbase.gdb

After committing this command you should check if there are any errors left in the da-
tabase. Run GFIX using the options -v -full, and when the process is over, perform a
database backup:

gbak -b -v -ig -user SYSDBA -password corruptbase.gdb corruptbase.gbk

This command performs a database backup (option -b) and we’ll get detailed informa-
tion about the backup process execution (option –v). Errors with regard to checksums
will be ignored (option -ig).

Please refer to GBAK and Backup Database for further information.

If some errors are found during the backup, you should start it in another configura-
tion:

gbak -b -v -ig -g -user SYSDBA -password
corruptbase.gdb corruptbase.gbk

2

Database - Database Corruption

130

Where option -g will switch off garbage collection during the backup. This often helps
to solve backup problems.

Also it may be possible to make a backup of a database if it is set in the read-only
mode beforehand. This mode prevents writing any modifications to the database and
sometimes helps to complete the backup of a damaged database. For setting a data-
base to read-only mode, you should use the following command (or the IBExpert Ser-
vices menu item Database Properties):

gfix –m read_only –user SYSDBA –password masterkey
Disk:\Path\file.gdb

Following this, you should try to perform the database backup again using the parame-
ters given above (or the IBExpert Service menu item Backup Database).

If the backup was completed successfully, you should restore the database from the
backup copy, using the following command (or the IBExpert Services menu item Re-
store Database):

gbak –c –user SYSDBA –password masterkey Disk:\Path\backup.gbk
Disk:\Path\newbase,gdb

When you are restoring the database, you may come across some problems, especially
when creating the indices.

In this case the -inactive and -one_at_a_time options should be added to the re-
store command. These options deactivate indices when creating from the database
backup and commit data confirmation for each table. Alternatively use the IBExpert
Services menu item Restore Database.

Extract data from a corrupt database

It is unfortunately possible that even the operations previously mentioned in this sec-
tion do not lead to a successful database recovery.

It means that the database is seriously damaged or it cannot be restored as a single
entity, or a huge effort must be made to recover it. For example, it is possible to exe-
cute a modification of system metadata, use non-documented functions and so on. It is
very hard, time-consuming and ungrateful work with doubtful chances of success. If at
all possible, try to evade it and use other methods. If a damaged database opens and
allows you to perform reading and modification operations with some data, you should
take advantage of this possibility and save the data by copying it to a new database,
and say good-bye to the old one for good.

So, before transferring the data from the old database, it’s necessary to create a new
destination database. If the database hasn’t been altered for a long time, you can use
the old backup, from which metadata can be extracted for creating the new database.
Based on these metadata it is necessary to create a data destination and start copying
the data. The main task is to extract the data from the damaged database. Then we’ll
have to allocate the data in a new base, but that’s not very difficult, even if we have to
restore the database structure from memory.

2

Database - Database Corruption

131

When extracting data from tables, you should use the following algorithm of opera-
tions:

• At first you should try to execute SELECT * from table N. If it ran normally you
could save the data you’ve got in the external source. It’s better to store data in a
script (using IBExpert Tools menu item Extract Metadata for example), as long as
the table doesn’t contain blob fields. If there are blob fields in the table, then this
data should be saved to another database by a client program that will play the role
of mediator.

• If you failed to retrieve all data, you should delete all the indices and try again. In
fact, indices can be deleted from all the tables from the beginning of the restore,
because they won’t be needed any more. Of course, if you don’t have a metadata
structure which is the same as that of the corrupted database, it’s necessary to in-
put a protocol of all operations that you are doing with the damaged database
source.

• If you cannot read all the data from the table after deleting the indices, try to exe-
cute a range query by primary key, i.e. select a definite range of data. For exam-
ple:
SELECT * FROM table N WHERE field_PK >=0 and field_PK <=10000
Field_PK here is a primary key.

InterBase has page data organization and that’s why a range query of values may be
rather effective.

Nevertheless it works because we can expel data from the query from damaged pages
and fortunately read the other ones. You may recall our thesis that there is no defined
order of storing records in SQL.

Really, nobody can guarantee that an unordered query will, during restarts, return the
records in the same order, but nevertheless the physical records are stored within the
database in a defined internal order. It’s obvious that the server will not mix the re-
cords purely to abide to SQL standards. Try to use this internal order when extracting
data from a damaged database. Vitaliy Barmin, an experienced Russian InterBase de-
veloper reported that in this way he managed to restore up to 98% of information from
an unrecoverable database (there were a great number of damaged pages). Thus, data
from a damaged database must be moved to a new database or into external sources
such SQL scripts. When you copy the data, pay attention to generator values in the
damaged database (they must be saved for restarting proper work in the new data-
base. If you don’t have a complete copy of the metadata, you should extract the texts
of stored procedures, triggers, constraints and the definition of indices.

Restoring hopeless databases

In general, restoring a database can be very troublesome and difficult and that’s why
it’s better to make a backup copy of the database and then restore the damaged data
and whatever has happened, you shouldn’t despair because a solution can be found
even in the most difficult situations. And now we’ll consider two cases.

The first case (a classic problem): A backup that can’t be restored because of having
NULL values in a column with NOT NULL constraints (the restore process was run over
the working file). The working file was erased and the restore process was interrupted
because of an error. And as a result of thoughtless actions the result was a great

2

Database - Database Corruption

132

amount of useless data (that can’t be restored) instead of a backup copy. But a solu-
tion was found. The programmer managed to recollect which table and which column
contained the constraint NOT NULL. The backup file was loaded to a hexadecimal edi-
tor. And a combination of bytes, corresponding to the definition of this column, was
found by searching. After innumerous experiments it turned out that the constraint
NOT NULL adds 1 somewhere near the column name. In the HEX-editor this 1 was cor-
rected to 0 and the backup copy was restored. Following this, the programmer memo-
rized once and for all how to execute the backup process and restore successfully!

The second case: The situation was catastrophic. The database corrupted on the ex-
tension phase because of lack of disk space.

When increasing the database size, the server creates a series of critically important
pages (for example, Transaction Inventory Page and Page Inventory Page, additional
pages for RDB$Pages relations) and writes them down at the end of database.

As a result, the database could not be opened, neither by administration facilities nor
using the utility GBAK. And when we tried to connect to the database, an error mes-
sage (Unexpected end of file) appeared. When we ran the utility GFIX strange
things happened: The program was working in an endless cycle. When GFIX was work-
ing, the server was writing errors to log (file InterBase log) at high speed (around 100
Kb per second). As a result, the log file filled all the free disk space very quickly. We
even had to write a program that erased this log by timer. This process lasted for a
long time - GFIX was working for more than 16 hours without any results.

The log was full of the following errors: Page XXX doubly allocated. When starting
InterBase sources (in file val.c) there is a short description of this error. It says that
this error appears when the same data page is used twice.

It’s obvious that this error is a result of corruption of critically important pages.

As a result, after several days of unsuccessful experiments, all attempts to restore the
data in the standard way were abandoned. Which is why we had to use a low-level
analysis of the data stored in the damaged database.

Alexander Kozelskiy, head of Information Technologies at East View Publications Inc,
had the idea of how to extract information from similar unrecoverable databases.

The method of restoring, arrived at as a result of our research, was based on the fact
that a database has page organization and data from every table is collected by data
pages. Each data page contains an identifier of the table for which it stores data. It was
especially important to restore data from several critical tables. There was data from
similar tables, received from an old backup copy that worked perfectly and could be
used as a model. This database sample was loaded into an editor of hexadecimal
sources and then we searched for the patterns of the data that interested us. This data
was copied into a buffer in hexadecimal format and then the remains of the damaged
database were loaded into the editor. A sequence of bytes corresponding to the sample
was found in the damaged database, and the page was analyzed (on which this se-
quence was found).
At first we needed to define the start page, which wasn’t difficult because the size of
the database file is divisible by the data page size. The number of current bytes divided
by page size - 8192 bytes, approximates the result to integer (and we obtained the

2

Database - Database Corruption

133

number of the current page). Then the number of current page was multiplied by page
size and we got the number of bytes corresponding to the beginning of the current
page. Having analyzed the header, we defined the type of page (for pages with data
the type is 5 - please refer to the file ods.h from the set of InterBase sources as well
as the identifier of the necessary table.

Then a program was written, that analyzed the whole database, collected all the pages
for the necessary table into one single piece and moved it to file.

Thus, once we had the data we initially needed, we began analyzing the contents of
the selected pages. InterBase uses data compression widely in order to save space. For
example, a string such as VARCHAR containing an ABC string, stores a sequence of fol-
lowing values: string length (2 bytes), in our case it is 0003, and then the symbols
themselves followed by a checksum. We had to write an analyzer of the string as well
as other database types that converted data from hexadecimal format into an ordinary
view. We managed to extract up to 80% of the information from several critical tables
using a 'manual' method of analyzing the database contents. Later, on the basis of this
experience, Oleg Kulkov and Alexey Kovyazin, one of the authors of this book, devel-
oped the utility InterBase Surgeon which performs direct access to the database, by-
passing the InterBase engine and enables you to read directly and interpret the data
within the InterBase database in a proper way.

Using InterBase Surgeon, we have managed to detect the causes of corruption and re-
store up to 90% of absolutely unrecoverable databases, which can't be opened by In-
terBase and restored by standard methods. This program can be downloaded from the
official site www.ib-aid.com.

3

Database Objects - Database Corruption

135

3 Database Objects
InterBase/Firebird administrates the database data in database objects. These are the
fundamental building blocks of the database and include the following:

• Domains
• Tables
• Generators
• Constraints
• Indices
• Views
• Triggers
• Stored Procedures
• Exceptions
• Blob Filters
• User-defined functions (UDFs)

The database objects can be viewed, created, edited and deleted using the IBExpert
DB Explorer.

Alterations to database objects (online operation) are limited to 255 alterations per ob-
ject (see Status bar for more details). At this stage a backup and restore is necessary,
in order to perform further alterations. This limitation is due to the fact that InterBase
stores each data structure every time a record is inserted.

The IBExpert object editors all contain detailed dialogs for inserting, altering and drop-
ping individual objects. The majority of editors display a number of tabs, comprising
multiple input and display pages. Certain typical windows recur in several object edi-
tors:

3

Database Objects - Domain

136

• Dependencies: all objects, which depend on other objects or where other objects
are depending on this object, can be viewed on the object editor's Dependencies
page.

• DDL: the SQL code, resulting from the user input, is displayed.
• Performance Analysis: for stored procedures and the SQL Editor, the result set

can be started with [F9]. The performance result is displayed on a new page.
• Description: shows the description field from the InterBase/Firebird database.
• Grants: this page allows user rights to be granted for the active object directly in

the object editor dialog, without having to leave and start the Grant Manager each
time a new object is created. It is even possible to switch to other objects (i.e.
views, triggers, procedures and roles), without having to leave the editor.

These pages are explained in more detail in the Table Editor (except Performance
Analysis - details under SQL Editor / Performance Analysis).

3.1 Domain
A domain is a user-defined data type global to the database. It is used for defining the
format and range of columns, upon which actual column definitions in tables may be
based.

This is useful if columns in one or several database tables have the same properties, as
it is much simpler to describe such a column type and its behavior as a domain. The
columns can then simply be defined by specifying the domain name in the column defi-
nition. The column properties (e.g. field length, type, Not Null, constraints, arrays etc.)
only need to be defined once in the domain.

Certain attributes specified in the domain can be overwritten in the table field defini-
tion, i.e. a column can be based upon a domain; however small changes may still pos-
sibly be made for this column.

In addition to the data type, a number of conditions and checks can be defined.

A domain is a database object and is part of the database's metadata, and can be cre-
ated, modified and dropped as all other InterBase/Firebird objects in the IBExpert DB
Explorer.

When developing a normalized database, the question arises in how far domains are
necessary (multiple fields, multiple data etc.).

3

Database Objects - Domain

137

However, it does make life easier, should column alterations be necessary; e.g. zip
code alteration from 4 to 5 digits (as was the case in Germany after the reunion),
change of currency (e.g. from DM or Lire to Euro). In such cases, only the domain
needs to be altered, and not each relevant column in each table individually throughout
the database.

It should also be noted, that if user-defined domains are not explicitly defined and used
for table column definitions, InterBase/Firebird generates a new domain for every sin-
gle table column created!

3.1.1 Domain Integrity

Domain integrity ensures that a column is kept within its allowable limits. This is
achieved by keys and constraints.

3.1.2 New Domain / Domain Editor

A new domain can be created for a connected database, either by using the menu item
Database / New Domain, or using the DB Explorer right-click menu (or key combina-
tion [Ctrl + N]), when the domain heading of the relevant connected database is high-
lighted), or the New Domain icon on the New Database Object toolbar.

A New Domain dialog appears, with its own toolbar, and a pull-down menu (domain
button). The toolbar offers the following options:

• Enable direct modifying of system tables
• Compile
• Duplicate the selected domain
• Navigational buttons
• Group by either Type or Charset
• Display all domains

For those users preferring to use the old IBExpert Modal Editor, check the Use old-
style Modal Editor option in the IBExpert Options menu: Objects Editor Options / Do-
mains Editor.

A domain can also be created or selected and edited, when creating a new field is cre-
ated, or an existing field edited in a table, using the Table Editor. (Please refer to In-
sert Field for further information).

Initially a domain name is specified (1) in the first column on the first page "Domains":

3

Database Objects - Domain

138

(Illustration displays the new default Domain Editor.)

(2) Field Type: Here the data type can be specified.

(3) Size: Specifies the field size.

(4) Scale: Here the number of decimal places can be specified for all numerical fields.

(5) Not Null: This check box can be marked by double-clicking or using the space bar.
Not Null forces data to be entered in this field (i.e. the field may not be left empty).

(6) Subtype: A subtype should be specified for blob fields.

(7) Charset: A character set may be specified for individual domains. This overrides
the database default character set. Although this is seldom used, it may be necessary
should, for example, Asian, Russian or Arabic addresses need to be input and collated
in a database with a European default character set.

(8) Collate: Determines collation for a character set specified for a domain.

(9) Default Source: Here a default data entry (text or numeric, depending upon the
specified data type) can be specified, e.g. the text NOT KNOWN can be specified as a
default source, if an address field cannot be input by the user, because the information
is unavailable.

(10) Check: Each data set is examined for validity according to an expression defined
in brackets. Certain conditions can be specified (see Check Constraint) causing an
automatic database examination during data input, to ensure data consistency in the
tables and among each other.

(11) Array: Although arrays contradict all the rules of database normalization, there
are certain situations (for example storing measurement data), when they are neces-
sary.

(12) Description: Useful for database documentation. The Description page should be
used to describe the domain; the Description field for describing the field.

3

Database Objects - Domain

139

Several domains can be created simultaneously in the New Domain Editor. After creat-
ing the new domain(s), including all necessary parameters, don't forget to compile (us-
ing [Ctrl + F9] or the respective icon):

and finally committing, or should amendments be necessary, rolling back.

Tip: by clicking on the column headers (i.e. PK, FK, Field Name etc.), the fields can be
sorted into ascending or descending order based upon that column.

Double-clicking on the right edge of the column header adjusts the column width to the
ideal width.

In addition to the Domains page, there are also Description, Used By and DDL pages:

Description: this displays the description for the highlighted domain (i.e. the domain,
where the cursor is currently standing).

Used By: this displays those database objects which use or depend upon this domain.

DDL: the DDL page displays the SQL statement created by IBExpert to create all speci-
fications made by the user on the Domains page.

Domains can also be created and edited directly from the New Field Editor (please refer
to Insert Field).

Domains can, of course, also be created using DDL directly in the SQL Editor, using the
following syntax:

3

Database Objects - Domain

140

CREATE DOMAIN domain_name [AS] <data_type>
[DEFAULT {expression | NULL | USER}]
[NOT NULL] [CHECK (<domain_such_expression>)]
[COLLATE collation];

For example:

CREATE DOMAIN MATCHCODE
 AS INTEGER
 DEFAULT 999999
 NOT NULL
 CHECK (VALUE > 100000);

3.1.3 Alter Domain

A domain can be altered in the Domain Editor, opened by double-clicking on the do-
main name in the DB Explorer. Alternatively use the DB Explorer's right mouse-click
menu item Edit Domain or key combination [Ctrl + O].

CHECK instructions and default values may be added, altered or deleted. However it is
not possible to alter the basic data type (for example, from Numeric to Varchar). Nei-
ther is it possible to drop a NOT NULL constraint. To alter these the domain has to be
dropped and recreated (see Drop Domain).

Please note that if you want to change the CHECK constraint for a domain that already
has a constraint defined, the existing constraint must first be dropped and then the
new one added. ADD CHECK does not replace the current constraint with the new one.
It is also important to realize that altering a CHECK constraint does not cause existing
database rows to be revalidated; CHECK constraints are only validated when an INSERT
or UPDATE is performed. One way of overcoming this limitation is to perform an UPDATE
query using a dummy operation. If existing rows violate the new CHECK constraint, the
query fails. These rows can then be extracted by performing a SELECT.

Any changes made apply immediately to all columns using the domain definition,
unless, of course, the column's (field) definition overrides these.

The SQL syntax for this command is:

ALTER DOMAIN <domain_name>
SET DEFAULT <default_value> | NULL | USER
 DROP DEFAULT
ADD CHECK <domain_search_condition>
 DROP CONSTRAINT;

3.1.4 Drop Domain/Delete Domain

A domain may only be dropped if it is not currently being used by any of the database
tables. The Domain Editor's Used By page shows which database objects use this do-
main. The dependent objects may also be directly dropped here, if wished, using the
right-click menu on the selected object, and choosing the menu item Drop Object or
[Ctrl + Del].

3

Database Objects - Domain

141

To drop a domain use the DB Explorer right-click and select the menu item Drop Do-
main or [Ctrl + Del]. Alternatively, a domain can be dropped directly from the Domain
Editor using the pull-down menu Domains or the '-' icon in the Domain Editor toolbar.
IBExpert asks for confirmation:

before finally dropping the domain. Once dropped it cannot be retrieved; the domain
has to be recreated if a mistake has been made!

Using SQL the syntax is:

DROP DOMAIN <domain_name>;

A domain can only be dropped by its creator or the SYSDBA.

3.1.5 Duplicate Domain

It is possible to create a new domain, based on an existing domain, using the Domain
Editor's menu item Duplicate Domain, or the

icon in the Domain Editor toolbar.

An exact copy of the selected domain is made, and can then be adapted as wished. For
example a new domain, SUPPNO could be based on the CUSTNO domain in the EM-
PLOYEE database, by duplicating it and then, for example, renaming it and altering the
CHECK VALUE to > 5000.

This saves time creating several similar domains; all you need to do is copy a domain,
perform any minor alterations necessary, compile and finally commit.

The Domain Editor's DDL page displays the actual statement used to create the new
domain:

3

Database Objects - Table

142

Duplicating domains from one database to another

If you have already created a wide range of domains in one database, and would like
to duplicate them in another new database, simply take the following steps in IBEx-
pert:

• Copy the domain DDL (Data Definition Language) into the SQL Editor and execute
it.

• Drag 'n' drop the domain from the source database into the Domain Editor of the
target database.

3.2 Table
A table is a data storage object consisting of a two-dimensional matrix or grid of col-
umns and rows, theoretically known as a mathematical relation. It is a fundamental
element for data storage.

Relational databases store all their data in tables. A table consists of an unordered set
of horizontal rows (tuples). Each of these rows contains the same number of vertical
columns for the individual singular information types.

The intersection of an individual row and column is a field containing a specific, indi-
visible atomic piece of information. I.e. columns list the names of individual fields and
rows are the data sets containing the input data. Each database column may be as-
signed a different data type.

A table is a database object that is part of the database's metadata.

Tables of connected databases can be viewed and manipulated in the IBExpert DB Ex-
plorer

3

Database Objects - Table

143

We recommend restricting a table name to no more than 14 characters, so that foreign
key names (which are limited to 32 characters up until InterBase 6 and Firebird 1.5;
InterBase 7 allows 64 characters) can include both related table names in its name:

Prefix "FK" plus two separators plus both table names, e.g.

FK_Table1_Table2

Please note however that this is not an InterBase/Firebird restriction, but purely an
IBExpert recommendation to enable a clear and logical naming convention for foreign
keys.

3.2.1 Keys

A key is used to organize data logically, so that a specific row can be uniquely identi-
fied. A key should not be confused with an index. In the relational model, a key is used
to organize data logically, so that unique identification of a specific row is possible. An
index is part of the table's physical structure on-disk. It is used to speed data access
when queries are performed. Indices are therefore not a part of the relational model.

InterBase/Firebird automatically generates an index for primary and foreign key col-
umns. On primary key columns, the index actually enforces the unique constraint re-
quired by the relational model. Links between tables usually occur on primary and for-
eign keys, so having an index on these columns ensures maximum performance.

Primary Key

A primary key is a column (= simple key) or group of columns (= composite key) used
to uniquely define a data set/row in the table. A primary key should always be defined
at the time of defining a new table for each table. If you have a database that does not
contain primary keys in all tables, and need to add these subsequently, please refer to
Adding Primary Keys to Existing Tables.

3

Database Objects - Table

144

Relational theory states that a primary key should be designated for every table. It
must be unique, and therefore cannot be Null. It provides automatic protection against
storing multiple values. Each table can have only one designated primary key, although
it can have other columns that are defined as unique and Not Null.

A primary key column is nothing other that a unique constraint complemented by a
system index and the check constraint Not Null. Primary keys are always the preferred
index of the InterBase/Firebird Optimizer.

When a data set is created or changed, Firebird/InterBase immediately checks the va-
lidity of the primary key. If the number already exists, a key violation results, and the
storage process is immediately cancelled.

Unfortunately InterBase/Firebird allows tables to be created without a primary key,
which is a mistake. Data tables should always be keyed.

Existing primary keys and their system names can be viewed on the IBExpert Table
Editor / Constraints page.

It is wise to keep the primary key as short as possible to minimize the amount of disk
space required, and to improve performance. IBExpert recommends the use of an
autoincrement generator ID number, used as an internal primary key for all tables.
Composite keys are not recommended, as these always slow performance and the se-
quence of the fields concerned must be identical in all referenced tables.

3

Database Objects - Table

145

Adding primary keys to existing tables

This article was written by Melvin Cox, and provides a method of defining primary keys
on existing tables using IBExpert:

Here is a viable workaround for those of us who do not wish to spend an eternity ex-
porting data, dropping and recreating multiple tables, and finally import the data back
into those tables.

Working with a Firebird 1.5 database (dialect 1) created via ODBC export from a Micro-
soft Access database, I have successfully defined primary keys on tables by taking the
following steps:

1) Bring up the table within the IBExpert interface's Table Editor window (double-click
on the respective table in the DB Explorer or use [Ctrl. + O]). The Fields tab should
be active.

2) Double click in the Not Null box corresponding to the field that you wish to designate
as the primary key. This will call up the Edit Field dialog.

3) Within the Edit Field dialog, check Not Null and press OK. This will call up a Edit
Field dialog. Check the Not Null option and select an existing or create a new domain.

3

Database Objects - Table

146

4) Press OK and then, after checking the script produced by IBExpert, the Commit but-
ton. The field is now set to Not Null.

5) Bring up the SQL Editor. Tools -> SQL Editor (or press F12).

6) Enter the following command:

 ALTER TABLE table_name ADD PRIMARY KEY (field_name);

 For example, to define a primary key on the events table enter:

 ALTER TABLE events ADD PRIMARY KEY (event_id);

7) Press the Execute Button or [F9].

8) Close the SQL Editor. This will call up the Active Transaction Found dialog. Select
Commit.

9) Close the Table Editor window.

10) Reopen the Table Editor window [Ctrl. + O]. The newly defined primary key will
now be visible.

Foreign Key

A foreign key is composed of one or more columns that reference a primary key. Ref-
erencing meaning here that when a value is entered in a foreign key, Fire-
bird/InterBase checks that the value also exists in the referenced primary key. This is
used to maintain domain integrity.

A foreign key relationship is defined in the IBExpert Table Editor (started from the DB
Explorer) on the Constraints page. Please refer to Table Editor / Constraints for further
information.

3

Database Objects - Table

147

Foreign keys are used mainly for so-called reference tables. In a table storing, for ex-
ample, employees, it needs to be determined, which department each employee be-
longs to. Possible entries for the department number of each employee data set are
contained in the department table. As the employee table refers to the department
number as the primary key for the department table, there is a foreign key relationship
between the employee table and the department table. Foreign key relationships are
automatically checked in Firebird/InterBase, and data sets with a non-existent depart-
ment number cannot be saved.

When a primary key:foreign key relationship links to a single row in another table,
what is known as a virtual row is created. The columns in that second table provide
additional description about the primary key of the first table.

Foreign keys and their system names can be defined and viewed on the IBExpert Table
Editor / Constraints page.

A primary key does not have to reference a foreign key. However a unique index is in-
sufficient; a unique constraint needs to be defined (this definition also causes a unique
index to be automatically generated). SQL syntax:

ALTER TABLE MASTER
ADD CONSTRAINT UNQ_MASTER UNIQUE (FIELD_FOR_FK);

Foreign key names are limited to 32 characters up until InterBase 6 and Firebird 1.5;
InterBase 7 allows 64 characters. IBExpert therefore recommends limiting table names
to 14 characters, so that the foreign key name can include both related table names:

Prefix "FK" plus two separators plus both table names, e.g.

FK_Table1_Table2

Please note however that this is not an InterBase/Firebird restriction, but purely an
IBExpert recommendation to enable a clear and logical naming convention for foreign
keys.

Note: if data has already been input in a table which is to subsequently be assigned a
foreign key, this will not be allowed by InterBase/Firebird, as it violates the principle of
referential integrity. It is however possible to filter and delete the old data (where no
reference to a primary key has been made) using a SELECT statement and committing.
It is important to then disconnect and reconnect the database in IBExpert, for this to
work.

3

Database Objects - Table

148

Candidate Key

Any column or group of columns which can uniquely identify a data set, and can there-
fore be considered for use as a primary key. Is always Not Null (i.e. must not be left
undefined), and unique.

Simple Key

A simple key is composed of one column only, i.e. a single column is designated as a
table's primary key.

Composite Key

A composite key consists of two or more columns, designated together as a table's
primary key.

Unfortunately such keys have two huge disadvantages: firstly they slow the database
performance considerably, as InterBase/Firebird needs to check all contents of all col-
umns designated in such a composite key; secondly the sequence of the fields con-
cerned must be identical in all referenced tables.

Basically composite keys should be avoided! It is much preferable to use an internal ID
key (so-called artificial key) as the primary key for each table.

Unique

Unique fields are unequivocal, unambiguous, one-of-a-kind (i.e. there is no duplicate
information allowed in the data sets of a unique field). Such fields must therefore also
be Not Null.

Unique fields are given a unique index. Each unique field is a candidate key.

3

Database Objects - Table

149

Artificial Key/Surrogate Key/Alias Key

An artificial or alias or surrogate key is created by the database designer/developer if
there is no candidate key, i.e. no logical, simple field to be the primary key. An artificial
key is a short ID number used to uniquely identify a record.

Such an internal primary key ID is recommended for all tables. They should always be
invisible to the user, to prevent any potential external influence regarding their ap-
pearance and composition.

It is always wise to keep the primary key as short as possible to minimize the amount
of disk space required, and to improve performance; therefore artificial keys should
also be as short as possible. An ideal solution for the generation of an artificial key is
the use of an autoincrement generator ID number. IBExpert recommends this solution
be used as an internal primary key for all tables.

Usually such an artificial/alias/surrogate key is just an autoincrement integer field so
that each record has it's own unique integer identifier. For example:

CREATE TABLE CUSTOMERS (
 CUSTOMER_ID INTEGER NOT NULL,
 FIRST_NAME VARCHAR(20),
 MIDDLE.NAME VARCHAR(20),
 LAST_NAME VARCHAR(20);
...);

In this case CUSTOMER_ID the artificial or surrogate key.

Key violation

When a data set is created or changed, InterBase/Firebird immediately checks the va-
lidity of the primary key. If the number already exists, or the field has been left blank,
a key violation results, and the storage process is immediately cancelled.

InterBase/Firebird immediately sends an error message referring to the violation of a
unique or primary key constraint.

Referential Integrity

The relationship between a foreign key and its referenced primary key is the mecha-
nism for maintaining data consistency and integrity. Referential integrity ensures data
integrity between tables connected by foreign keys. A foreign key is one or more col-
umns that reference a primary key, i.e. when a value is entered in the foreign key, In-

3

Database Objects - Table

150

terBase/Firebird checks that this value also exists in the referenced primary key, so
maintaining referential integrity.

Referential integrity can occur in the following three cases:

1. In the master table a Data Set is deleted. For example, the deletion of a customer,
for whom there are still existing orders could lead to order data sets without a valid
customer number. This could falsify analyses and lists, as the internal relationships no
longer appear. The prevention of data set deletion in the master table, when data sets
still exist in the detail table, is called prohibited deletion. The relay of deletions to all
detail tables is called cascading deletion.

2. The primary key is changed in the master table. For example a customer is given a
new customer number, so that all orders relating to this customer need to also relate
to the new customer number. This is known as a cascading update.

3. A new data set is created, and the foreign key does not exist in the master table.
For example an order is input with a customer number, not yet allocated in the master
table. A possible solution could be the automatic generation of a new customer. This is
called a cascading insert.

Referential integrity is supported natively in InterBase/Firebird, i.e. all foreign key ba-
sic relationships are automatically taken into consideration during data alterations.
Since Version 5, InterBase supports declarative referential integrity with cascading de-
letes and updates. In older versions, this could be implemented with triggers.

Cascading Referential Integrity

Since InterBase v5/Firebird, cascading referential integrity is also supported.

When a foreign key relationship is specified, the user can define which action should be
taken following changes to, or deletion of its referenced primary key. ON UPDATE de-
fines what happens when the primary key changes and ON DELETE specifies the action
to be taken when the referenced primary key is deleted. In both cases the following
options are available:

1. NO ACTION
2. NULL - the foreign key column should be set to its default value
3. CASCADE - the foreign key column is set to the new primary key value. The CASCADE
option also deletes the foreign key row when the primary key is deleted.

3.2.2 Data

Data is the quantity of facts or information input, processed and stored in a computer.
Data can consist of one single entry in one field, a data set comprises a series of fields
or in fact, any data quantity.

3.2.3 Data Set

A data set is one complete data record, which is none other than a table Row (which
can be viewed on the IBExpert Table Editor / Data page). It encompasses a single set
of information, such as, for example, one customer address or one employee record.

3

Database Objects - Table

151

In a relational database the physical sequence of data sets is irrelevant.

Duplicate data sets or records (i.e. double rows) are not allowed in a relational data-
base, as this is, in effect, storage of redundant information (see Database Normaliza-
tion).

3.2.4 Column

A column is part of a database table, and is also known as an attribute or field. Col-
umns list the names of the individual fields in a table.

A column describes an atomic or indivisible basic piece of information in the database,
clearly differentiated from other data, e.g. zip code (and not zip code + city). Each col-
umn is assigned a certain data type, e.g. text, numeric, date or blob. The data can also
be assigned properties, such as unique, contain check constraints, autoincrements,
computed values, restricted to minimum and maximum values etc. etc.

3

Database Objects - Table

152

Columns are defined under the Field Definition in the Create Table Dialog or Table Edi-
tor, or their definition can be based on domains. They can, of course, also be defined
directly in the SQL Editor. Each defined column has the following syntax:

ColumnName <data_type>
DEFAULT < Default value > | NULL | USER NOT NULL
CONSTRAINT <constraint name> <constraint def>
COLLATE <collation sequence>;

In a relational database the physical sequence of rows and columns is irrelevant.

3.2.5 Row

A row is also called a tuple, record or data set. Each row represents an instance of
data, belonging together, composed of different columns. It encompasses a single set
of information, such as, for example, one customer address or one employee record.

3

Database Objects - Table

153

In a relational database the physical sequence of rows and columns is irrelevant.

Double rows (i.e. duplicate data sets or records) are not allowed in a relational table,
as this is, in effect, storage of redundant information (see Database Normalization).

3.2.6 Constraints

A constraint is a database examination, which ensures data consistency in the tables
and among each other. The constraint determines the range of acceptable values for a
column (or columns) or data set in a database or application. This constraint can be
executed automatically and so ensures that data contents are kept consistent by test-
ing them as they are input.

A constraint can be specified for each column (or columns) in a table, to guarantee the
mechanism described above. Constraints can be domain- or column-based and the
specified conditions must be met when new data sets are inserted, or existing data
sets are modified. They are used to verify data integrity. If a condition is not met, an
exception is raised.

InterBase/Firebird internally generates a trigger for each check condition. Constraints
can be defined as follows:

1. Primary Key/Unique - Specification of the unique option forces a unique entry in this
column (these columns) for each data set (i.e. duplicate field entries are not allowed).

3

Database Objects - Table

154

2. Foreign Key - The foreign key option determines that the column(s) is/are linked by
a referential integrity relationship to the primary key of another table (i.e. the input
data is only accepted if it already exists in the primary key column(s) in the referenced
table).

3. CHECK - the check option enables each data set to be examined for validation of an
expression specified in brackets. Check constraints in tables are identical to check con-
straints in domains.

3

Database Objects - Table

155

Only one constraint is permitted per column. If the column including a constraint is
based on a domain also containing a constraint, both constraints are active.

The specification of the keyword CONSTRAINT and the name are optional for all con-
straints. If no name is specified, InterBase/Firebird generates a name automatically. All
constraint names are stored in a system table called DB$RELATION_CONSTRAINTS.

It is only necessary to name constraints, if they are to be deactivated at a later date
using the ALTER TABLE DROP statement.

From InterBase 5 onwards, cascading referential integrity is also supported.

3.2.7 Check Constraint

A check is a database examination, which ensures data consistency in the tables
among each other. It can be executed automatically and so ensures that data contents
are kept consistent by testing them before they are stored in the database.

The check constraint option enables each data set to be examined for validation of the
expression in brackets following the check constraint. Check constraints in tables are
identical to check constraints in domains.

A check constraint can be specified for each column in a table, to guarantee the
mechanism described above. It includes an expression that must be true, so that the
data set following an insert or update can be written. The field contents must be in-
cluded in the permissible values, which can be specified in a list. It is also possible to
test the value for a minimum and maximum value. Furthermore the value can be com-
pared to values in other columns, in order to test dependencies.

3

Database Objects - Table

156

A check constraint can only examine the values in the current data set. When simulta-
neously inserting or altering multiple data sets, a check constraint can only guarantee
one data integrity at a time at data set level.

If other data sets are referenced in the check, these could have been modified by an-
other user at the time of entry, and therefore possibly have become invalid, even
though the check constraint's test approved the data set. At the time of a check con-
straint validation, other data is only read for the check. For this reason, the values for
the current operating sequence remain constant, even if another user has modified one
of the values already referenced for validation.

A check constraint can be created directly when creating a table. When creating a
check constraint, the following criteria should be taken into consideration:

• A check constraint cannot reference a domain.
• A table column can only contain one check constraint.
• A check constraint defined by a domain, cannot be overridden by a local check con-

straint. However additional constraints can be specified.

3.2.8 Index/Indices

An index can be compared to a book index enabling rapid search capabilities.

3

Database Objects - Table

157

Indices are a sorted list of pointers into tables, to speed data access. They can be best
described as an alphabetical directory with internal pointers, where what can be found.
If the indexed field is unique there is only one pointer.

An index can be ascending or descending, and can also be defined as unique if wished.

Indices should not be confused with keys. In the relational model, a key is used to or-
ganize data logically, so that specific rows can be identified. An index, however, is part
of the table's physical structure on-disk, and is used to increase the performance of ta-
bles during queries. Indices are therefore not a part of the relational model. In spite of
this indices are extremely important for relational database systems.

For columns defined with a primary key or a foreign key in a table, InterBase/Firebird
automatically generates a corresponding ascending index and enforces the uniqueness
constraint demanded by the relational model.

An index can be defined in the IBExpert Table Editor (started from the DB Explorer):

Indices are updated every time a new data set is inserted, or rather, the index-
referenced field is updated. InterBase/Firebird writes an additional second mini version
of the data set in each index table.

An index has a sequence e.g. when an ascending index is assigned to a field (default),
and a descending select on this field is requested, InterBase/Firebird does not sort us-
ing the ascending index. For this a second descending index needs to be specified for
the same field.

An index can be named as wished; consecutive numbers can even be used, as it is ex-
tremely rare that an index is named in SQL.

An index on two fields simultaneously only makes sense when both fields are to be
sorted using ORDER BY, and this should only be used on relatively small quantities of
results.

3

Database Objects - Table

158

InterBase/Firebird decides automatically which index it uses to carry out SELECT re-
quests. On the Table Editor / Indices page under Statistics, it can be seen that the in-
dex with the lowest value has a higher uniqueness, and is therefore preferred by Inter-
Base/Firebird instead of other indices with a lower level of uniqueness.

An index should only be used on fields, which are really used frequently as sorting cri-
teria (e.g. fields such as STREET and MALE/FEMALE are generally unimportant) or in a
WHERE condition. If a field is often used as a sorting criterion, a descending index
should also be considered, e.g. in particular on DATE or TIMESTAMP fields. Care should
also be taken that indexed CHAR fields are not be larger than approximately 80 charac-
ters in length (with Firebird 1.5 the limit is somewhat higher).

Indices can always be set after the database is actually in use, based on the perform-
ance requirements. For further details and examples please refer to Performance
Analysis.

Using the IBExpert menu Services / Database Statistics the index depths can be
viewed. Leaf buckets display the number of registration leaves, where Inter-
Base/Firebird can access immediately. An index depth of 2, for example, indicates that
InterBase/Firebird needs to perform two steps to obtain a result.

Normally the value should not be higher than three. Should this be the case, a data-
base backup and restore should help.

3

Database Objects - Table

159

The selectivity is only computed at the time of creation, or when the IBExpert menu
item Recompute Selectivity or Recompute All is used (found directly in the Statistic
dialog, in the Database menu, or in the right-click DB Explorer menu). Alternatively the

SET STATISTIC INDEX {INDEX_NAME}

command can be used in the SQL Editor to recompute individual indices.

This is automatically performed during a database backup and restore, as it is not the
index, but its definition that is saved, and so the index is therefore reconstructed when
the database is restored.

The SQL plan used by the InterBase/Firebird Optimizer merely shows how the server
plans to execute the query.

3

Database Objects - Table

160

If the developer wishes to override InterBase/Firebird's automatic index selection, and
determine the index search sequence himself, this must be specified in SQL.

For example, an index is created in the Employee database:

CREATE INDEX EMPLOYEE_IDX1 ON EMPLOYEE(PHONE_EXT);

Then:

SELECT * FROM EMPLOYEE
WHERE EMPLOYEE.PHONE_EXT='250'
PLAN (EMPLOYEE INDEX (EMPLOYEE_IDX1));

Each index needs to be named and entered individually.

Indices should be prudently defined in a data structure, as not every index automati-
cally leads to an acceleration in query performance. If in a table, for example, a col-
umn comprises data only with the value 0 or 1, an index could even slow performance
down. A complex index structure can however have a huge influence upon insertion
and alteration processes in the long run.

Ascending

An ascending index searches according to an ascending letter or numeric sequence,
depending upon the defined character set (or, if no character set has been specified for
the indexed field, the default character set).

Descending

A descending index searches according to a descending letter or numeric sequence,
depending upon the defined character set (or, if no character set has been specified for
the indexed field, the default character set).

3

Database Objects - Table

161

Alter Index

Once an index has been defined it is not possible to alter the following: indexed col-
umns, sort direction or uniqueness constraints. The only way to change any of this in-
formation is to drop the index and then to recreate it (see Drop Index).

However the status of an index may be altered to active or inactive. An index should
be deactivated when, for example, a large number of data sets are to be added, as an
active index would recompute the index each time a data set is input. By deactivating
the index, and then reactivating after all the data has been input, the index is only re-
computed once.

This can be done simply and directly on the Table Editor / Indices page, by checking or
unchecking the relevant boxes in the Status column, then compiling, using the respec-
tive Editor icon or [Ctrl + F9], and finally committing.

The SQL syntax is:

ALTER INDEX <index_name> ACTIVE | INACTIVE

An index can only be altered by the database creator or by the SYSDBA.

Drop Index/Delete Index

Only user-defined indices can be dropped. As the only alterations permitted on indices
are activation and deactivation, indices often need to be dropped and then subse-
quently recreated, in order to alter certain index information such as indexed columns,
sort direction or uniqueness constraints.

Indices can be dropped simply in IBExpert using the Table Editor / Indices page. Mark
the index to be dropped and then right-click and select the menu item Drop Index
<INDEXNAME> or use the DEL key:

3

Database Objects - Table

162

Finally commit or roll back.

Using SQL the syntax is:

DROP INDEX Index_Name

DROP INDEX cannot be used for system-generated indices on primary or foreign keys,
or on columns with a uniqueness constraint in the table definition.

An index can only be dropped by the database creator or by the SYSDBA.

3.2.9 New Table

A new table can be created in a connected database, either by using the menu item
Database / New Table, the respective icon in the New Database Object toolbar, or us-
ing the DB Explorer right-click menu (or key combination [Ctrl + N]), when the table
heading of the relevant connected database is highlighted. A New Table dialog appears,
with its own toolbar (Table Editor toolbar), and a pull-down menu (Table button).

When creating a table it is necessary to define a table name that is unique in the data-
base. At least one column must be specified in order to create the table successfully.

Initially a table name is specified (1) in the upper row:

All data manipulation operations such as SELECT, INSERT, UPDATE and DELETE are
carried out using this name.

Fields:
Furthermore, fields can be defined in the Table Editor. At least one field must be de-

3

Database Objects - Table

163

fined, so that the table can be committed and registered as an object in the database
(Ctrl + F9). This enables additional table definitions to be made.

An overview of the various input fields is listed below. For details regarding individual
subjects, please refer to the "See Also" list below, or use the direct text links.

Since IBExpert version 2.5.0.61 it is also possible to drag 'n' drop fields from the Data-
base Explorer tree and SQL Assistant into the Table Editor's field list, allowing field
definitions to be quickly and easily copied from one table to another.

(2) Primary & Foreign Key: In the first column PK one or more fields can be defined
as a primary key (double click). A primary key (PK) serves to uniquely identify a data
set, and also acts as an index.

(3) Field Name: Each field should be given a logical name.

(4) Field Type: Here the data type can be specified.

(5) Domain: Fields can also be based upon domains. If no domain is specified, Inter-
Base/Firebird generates a system domain for the field as specified.

(6) Size: Specifies the field size.

(7) Scale: Here the number of decimal places can be specified here for all numerical
fields.

(8) Subtype: A subtype should be specified for blob fields.

(9) Array: Although arrays contradict all the rules of normalization, there are certain
situations (for example storing measurement data), when they are necessary. For
more information, please refer to Arrays.

(10) Not Null: This check box can be marked by double-clicking or using the space
bar. Not Null forces data to be entered in this field (i.e. the field may not be left
empty).

(11) Charset: A character set may be specified for individual fields. This overrides the
database default character set. Although this is seldom used, it may be necessary
should, for example, Asian, Russian or Arabic addresses need to be input and collated
in a database with a European default character set.

(12) Collate: This determines the collation for a character set specified for a field.

(13) Description: Useful for database documentation. The Description Register (i)
should be used to describe the table; the Description field for describing the field.

(14) Autoinc: Using the space bar or double-click, a new dialog appears, allowing
autoincrements (generator, trigger or stored procedure) to be defined.

3

Database Objects - Table

164

(15) Check: Each data set is examined according to an expression defined in brackets
for validity. Here certain conditions can be specified (see Check Constraint) causing an
automatic database examination during data input, to ensure data consistency in the
tables and among each other.

(16) Computed Source: SQL input window for calculations. This can be used for
fields containing the results of calculations performed on other fields in the same or
other tables in the database.

(17) Default Source: Here a default data entry (text or numeric, depending upon the
specified data type) can be specified, e.g. the text NOT KNOWN can be entered as a
default source, so that if an address field cannot be input by the user because the in-
formation is unavailable, the entry NOT KNOWN is automatically entered. It is important
to note here, that once a default source has been defined for a field, InterBase/Firebird
cannot subsequently alter it (nor subsequently add a default source). The field needs
to be dropped, and a new field created.

However, since version 2003.11.6.1 IBExpert has found a way around this. Because
the server itself doesn't allow the default value of a field to be altered using ALTER TA-
BLE we have implemented a kind of workaround:

First, IBExpert creates the temporary field with the new DEFAULT value:

ALTER table ADD IBE$$TEMP_COLUMN column_type DEFAULT new_default

2. Secondly, IBExpert copies the RDB$DEFAULT_SOURCE and RDB$DEFAULT_VALUE values
of the newly created temporary field into RDB$DEFAULT_SOURCE and RB$DEFAULT_VALUE
of the field which should be altered:

UPDATE RDB$RELATION_FIELDS F1
SET
F1.RDB$DEFAULT_VALUE = (SELECT F2.RDB$DEFAULT_VALUE
 FROM RDB$RELATION_FIELDS F2
 WHERE (F2.RDB$RELATION_NAME = 'table')
 (F2.RDB$FIELD_NAME ='IBE$$TEMP_COLUMN')),
F1.RDB$DEFAULT_SOURCE = (SELECT F3.RDB$DEFAULT_SOURCE
 FROM RDB$RELATION_FIELDS F3
 WHERE (F3.RDB$RELATION_NAME = 'table')
 (F3.RDB$FIELD_NAME ='IBE$$TEMP_COLUMN'))

3

Database Objects - Table

165

WHERE (F1.RDB$RELATION_NAME = 'table')
 (F1.RDB$FIELD_NAME = 'column')

3. After that IBExpert drops the temporary field:

ALTER TABLE table DROP IBE$$TEMP_COLUMN

Tables can, of course, also be created using DDL directly in the SQL Editor, using the
following syntax:

CREATE TABLE TABLE_NAME (
COLUMN_NAME1 <COLUMN_DEFINITION>,
COLUMN_NAME2 <COLUMN_DEFINITION>,
...
COLUMN_NAMEn <COLUMN_DEFINITION>;
TABLE_CONSTRAINT1,TABLE_CONSTRAINT2,
...
TABLE_CONSTRAINTn);

Once the table has been created do not forget to commit.

3.2.10 Table Editor

The Table Editor can be used to analyze existing tables and their specifications, or to
add new fields, specifications etc, in fact, perform all sorts of table alterations. It can
be started directly from the DB Explorer by simply double-clicking on the relevant table
in the IBExpert DB Explorer, or using the DB Explorer right-click menu Edit Table ...
(key combination [Ctrl + O]).

The Table Editor appears:

Note: the IBExpert status car shows how many remaining changes may be made to the
table before a backup and restore is necessary. (A total of 255 changes may be made
to a database object before InterBase/Firebird demands a backup and restore).

3

Database Objects - Table

166

The Get Record Count button at the right of the Table Editor toolbar, displays the num-
ber of records in the table.

Alternatively for those competent in SQL - the SQL Editor [F12] can be used directly
for making table alterations using SQL code.

Support for the InterBase 7.5 temporary tables feature was added in IBExpert version
2004.12.12.1.

Fields

The many possible field specifications are listed under the Fields tab. The individual
columns are explained in detail under New Table. Fields can be amended by simply
overwriting the existing specification where allowed. Please note that it is not always
possible to alter certain fields once data has been entered, e.g. a field cannot be al-
tered to NOT NULL, if data has already been entered which does not conform to the
NOT NULL property (i.e. the field has been left undefined). Similarly a primary key
cannot be specified following data entries with duplicate values.

New in IBExpert version 2.5.0.61: It is possible to drag 'n' drop fields from the Data-
base Explorer tree and SQL Assistant into the Table Editor's field list, allowing you to
quickly and easily copy field definitions from one table to another.

The contents of text blob fields can even be read in the IBExpert Table Editor; simply
hold the mouse over the text field, and the full text appears.

Tip: as with all IBExpert dialogs, the fields can be sorted into ascending or descending
order based upon the column where the mouse is, simply by clicking on the column
headers (i.e. PK, FK, Field Name etc.).

By double-clicking on the right edge of the column header, the column width can be
adjusted to the ideal width.

Since IBExpert version 2003.11.6.1 the new Grid menu offers a number of options
when working in the Table Editor's Field and Data pages.

3

Database Objects - Table

167

Table Editor Right-Click Menu:

The Table Editor Fields page has its own context-sensitive menu using the right mouse
button:

This can be used to add a New Field, or edit or drop an existing highlighted field. Fields
can also be reordered using drag 'n' drop:

This can also be done using the field navigator icons in the Navigation toolbar (or key
combinations [Shift + Ctrl + Up] and [Shift + Ctrl + Down]).

A field list can also be copied to clipboard, and the pop-up Description Editor blended in
or out.

New fields can be added using the

icon (or [Ins] key), to open the Adding New Field Editor (please refer to Insert Field for
details).

In the lower part of the Table Editor the individual Field Descriptions and Field Depend-
encies can be viewed. Since IBExpert version 2003.11.6.1, the field dependencies list
also includes indices, primary and foreign keys. This new version also enables you to
alter the default value of a field.

The Table Editor comprises a number of pages, opened by clicking the tab description,
each displaying already specified properties, and allows certain specifications to be
viewed/added.

3

Database Objects - Table

168

Constraints

Constraints are used to ensure data integrity. Each constraint has its own context-
sensitive right mouse button menu, and a new toolbar is displayed offering the most
common operations as shortcuts.

The menu offers New Foreign Key [Ins], Drop Foreign Key [Del] and Autowidth.
Autowidth automatically adjusts the column widths to fit into the visible dialog width.

The following can be viewed, added or edited in the Table Editor under the Constraints
tab:

• Primary keys: A primary key can only be defined at the time of defining a new ta-
ble.

• Foreign keys: A foreign key is a link to another table and stores the primary key of
another table.

• Checks: Further conditions can be specified by the user (check constraint).
• Uniques: All fields defined as unique are also candidate keys.

New to IBExpert version 2003.11.6.1 is the added support for the Firebird feature -
user-defined constraint index names. And since IBExpert version 2005.01.12.1 the
maximum constraint name length was expanded from 27 to 31.

Indices

Indices already defined for the table can be viewed on the Indices page.

Information displayed includes key status, index name, upon which field the index has
been set, whether it is unique, the status (i.e. whether active or inactive), which sort-
ing order and the statistics (displayed in older versions under the column heading Se-
lectivity). Those indices beginning with RDB$ in red, are InterBase/Firebird system in-
dices.

Indices can be added or deleted using the right-click menu or [Ins] or [Del]. Further
options offered in the right mouse button menu are:

3

Database Objects - Table

169

• Recompute Selectivity
• Recompute All
• Show Statistics (blends the selectivity statistics in and out).

Dependencies

Here the dependencies between database objects can be viewed.

This summary can, for example, be useful if a database table should need to be de-
leted or table structures altered, or for assigning user rights to foreign key referenced
tables. It displays both those objects that are dependent upon the table (left side), and
those objects that the table depends upon (right side). The object tree can be ex-
panded or collapsed by using the mouse or [+] or [-] keys, or using the context-
sensitive right-click menu items Expand All or Collapse All.

It even shows the actions (when blended in using the right mouse button menu item
Show Actions) - S (=Select), U (=Update), I (=Insert) or D (=Drop).

The object code can be viewed and edited in the Table Editor lower panel, provided the
Inplace Objects' Editors option has been checked under Options / Environment Options
/ Tools. If this option is not checked, then the code may only be viewed in the lower
panel, and the object editor must be opened by double-clicking on the respective ob-

3

Database Objects - Table

170

ject name, in order to make any changes to it. This also applies to all triggers listed on
the Triggers page.

Triggers

Triggers are SQL scripts, which are executed automatically in the database when cer-
tain events occur.

Similar to dependencies, the triggers are listed in a tree structure according to the fol-
lowing events:

BEFORE INSERT
AFTER INSERT
BEFORE UPDATE
AFTER UPDATE
BEFORE DELETE
AFTER DELETE

The object tree can be expanded or collapsed by using the mouse or [+] or [-] keys (or
using the right-click menu).

When a trigger is highlighted, the right mouse button menu offers options to create a
new trigger, edit or drop the highlighted trigger, or set the marked trigger to inac-
tive/active.

The trigger code can be viewed and edited in the Table Editor lower panel, provided the
Inplace Objects' Editors options has been checked under Options / Environment Op-
tions / Tools. If this option is not checked, then the code may only be viewed in the
lower panel, and the Trigger Editor must be opened by double-clicking on the respec-

3

Database Objects - Table

171

tive trigger name, in order to make any changes to the trigger. This also applies to all
objects listed on the Dependencies page.

Data Grid

Here the data in the database table can be manipulated (i.e. inserted, altered or de-
leted) directly.

There are three modes of view:

1. Grid View - all data is displayed in a grid (or table form).

The data sets can be sorted according to any field in either ascending or descending
order by simply clicking on the column header.

The contents of blob and memo fields can be read by simply holding the cursor over
the respective field.

A new feature in IBExpert version 2004.10.30.1 is the OLAP and data warehouse tool,
Data Analysis, opened using the Data Analysis icon (highlighted in red in the above il-
lustration).

There are many options to be found under Options / Environment Options / 6. Grid,
which allow the user to customize this grid. Under the IBExpert menu item Register
Database or Database Registration Info there are additional options, for example, Trim
Char Fields in Grids.

Since IBExpert version 2003.11.6.1 the new Grid menu offers a number of options
when working in the Table Editor's Field and Data pages.

The Data page Grid View also has its own context-sensitive menu, opened by right-
clicking with the mouse. This includes the following options:

3

Database Objects - Table

172

• Cut, Copy and Paste functions.
• Incremental Search [Ctrl + F] allows a simple search for individual entries by

simply marking the desired column header, clicking the right mouse button menu
item Incremental Search [Ctrl + F] and then typing the relevant digits/letters, until
the required dataset(s) is/are found.

• Adjust Columns widths (or [Ctrl + '+' NUMBLOCK] adjusts all column widths in
the grid view to the ideal width.

• SET commands - set field as NULL or empty.
• Copying operations - copies all or one or more selected records to clipboard, as
INSERT or as UPDATE. Multiple records may only be selected if the Allow Multiselect
option has been checked in the Options menu: Environment Options / Grid.

• Duplicate record option.
• Reset fields order - returns the field order to the original (not available in SQL

Editor / Results).
• Reorder grid columns - simply using drag 'n' drop.
• Group/Ungroup Fields - offers an alternative visual option, whereby column

headers may be dragged 'n' dropped into the new gray bar, which appears directly
above the column headers, when this menu item is clicked, so allowing data to be
grouped. Please note that the option Allow Records Grouping must be checked in
the Options menu: Environment Options / Grid.

• Filter options - these can also be found in the data page toolbar (see below).

Both the Grid and Form Views offer a Navigation toolbar, allowing the data to be
moved, inserted, altered and deleted. Furthermore data can be filtered using the Filter
Panel toolbar. (Please refer to Filter Panel for further information.)

Since IBExpert version 2004.8.26.1 it is also possible to display data as Unicode. Sim-
ply click the relevant icon in the Navigation toolbar or use [F3] (see illustration below).
It is not possible to edit the data directly in the grid. To edit data in Unicode, use the
Form View or modal editor connected with string cell.

Since IBExpert version 2004.8.5.1 there is the added option to calculate aggregate
functions (COUNT, SUM, MIN, MAX, AVG) on numeric and datetime columns. Simply click

3

Database Objects - Table

173

Show summary footer button on the toolbar of the data view to display the summary
footer:

It is then possible to select an aggregate function for each numeric/datetime column
separately.

IMPORTANT: this feature performs all calculations on the client side, so do not use this
function on huge datasets with millions of records because IBExpert will fetch all re-
cords from the server before calculating.

2. Form View - one data set is displayed at a time in a form.

New to version 2004.8.26.1: The Form View has been completely redesigned. It now
also displays field descriptions. It is also possible to select alternative layouts (classic
or compact), the compact alternative for those who prefer a more compact and faster

3

Database Objects - Table

174

interface. Visual options now also include specification of Memo Height and Memo Word
Wrap.

3. Print Data - displays data in WYSIWYG mode (the status bar showing which page
number is currently visible and how many pages the data covers altogether). The data
can be either saved to file or printed. The Print Data view also has its own right-click
menu, enabling size adjustments (2 pages, whole page, page width, and scaling from
10% to 200%), this being also available as a pull-down list of options in the Print Pre-
view toolbar. Further toolbar options include saving the information to file, printing di-
rectly, and specifying the page set up. There is even a check option to specify whether
BLOB and MEMO values should be printed or not.

IBExpert also offers a Test Data Generator (IBExpert Tools menu), should test data be
required for testing query times etc.

Note that when deleting data, the InterBase/Firebird database becomes larger, as the
data is merely flagged as deleted, due to the rollback option, which is available until
the drop commands are committed.

Export Data

Data can be exported from the Data page in the Table Editor and from the Results
page in the SQL Editor, by simply clicking the

or using the key combination [Ctrl + E].

The first page in the Export Data dialog, Export Type, offers a wide range of formats,
which can be simply and quickly specified per mouse click (or using the directional
keys).

3

Database Objects - Table

175

The destination file name must also be specified, and check options allow you to spec-
ify whether the resulting export file should be opened following the data export or not,
and - for certain export formats - whether column headings should be omitted or not.

The Formats page is available for all export types, with the exception of XML.

Here it is possible to specify a range of numerical formats, including currency, float, in-
teger, date, time or date and time. Please note that not all of these options may be al-
tered for all export types (for example when exporting to DBF it is only possible to
specify the formats for date/time and time).

Depending upon which format has been specified, additional options my be offered on
the third page, for example:

• Excel - specification of page header and footer.
• HTML - template selection and preview, title, header and footer text as well as a

wide range of advanced options.
• CSV - Quote String check option, and user specification of CSV separator.
• XML - Encoding format may be selected from a pull-down list. There are also check

options to export String, Memo and DateTime fields as text.
• DBF - check options to export strings to DOS, long strings to Memo, and to extract

DateTime as Date.

3

Database Objects - Table

176

The export is then finally started using the Start Export button in the bottom right-
hand corner. Following a successful export, a message appears informing of the total
number of records exported.

Export Data into Script

The Export Data into Script dialog can be started using the

on the Data page in the Table Editor or the Results page in the SQL Editor.

The following options may be selected before starting the export:

• Export into: File, Clipboard or Script Executive
• Export as: INSERT statements, UPDATE statements or since version 2003.12.18.1

there is also the added possibility to export data as a set of EXECUTE PROCEDURE
statements.

• Specify the file name if exporting to file and the table name from which the data is
to be exported.

The Fields page allows the table fields to be selected.

3

Database Objects - Table

177

The Options page:

offers a number of options for date and time specification, how many records should be
exported before committing, and whether the CREATE TABLE statement should be
added into the script.

The Additional page allows additional definitions for query to be made, for example,
ORDER BY or WHERE clauses.

After completing all specifications as wished, simply click the Export button to perform
the data export.

Description

As with the majority of the IBExpert Editors, the Table Editor's Description page can be
used to insert, edit and delete text by the user as wished. It enables the database to
be simply and quickly documented.

DDL

This displays the database table definition as SQL script.

3

Database Objects - Table

178

This DDL text cannot be edited, but it can be copied to the clipboard.

Grants

Here individual users can be assigned rights to SELECT, UPDATE, DELETE and INSERT for
the current table. In some cases rights can also be assigned to individual fields.

3

Database Objects - Table

179

Using the pull-down list, grants can also be assigned for not just users and roles, but
also for views, triggers and procedures in the same database, without having to leave
the Table Editor.

For more details regarding this subject, please refer to Grant Manager.

Logging

Data manipulation can be documented here in system tables generated by IBExpert.

When this page is opened for the first time, IBExpert asks whether it should generate
certain system tables:

After confirming and committing, work can be started immediately!

3

Database Objects - Table

180

Log to script by clicking the button.

The log file name, how often should be committed and which fields should be logged
can be stipulated on the Options page. And the beginning and end of script may be
specified under Script Details if wished. The script can then simply be generated using
the respective icon or [F9].

Create View from Table (Updatable View)

It is possible to create a view directly from a table, using the Table Editor's Create View
icon:

A view default name is automatically generated by IBExpert, comprising the prefix VW_
followed by the table name. This can of course be overwritten if wished.

3

Database Objects - Table

181

The list of fields to be included in the view may be specified by simply clicking on the
check boxes to the left of the field names, or by double-clicking or using the space bar
on a selected field.

The view text is displayed in the lower window and may also be amended as wished.

One or more trigger types may be specified - whereby further tabs appear in the lower
area, allowing the pre-defined trigger code to be simply amended as wished, automati-
cally creating an updatable view - this is, in fact, an extremely quick and simple way to
create a view that is updatable, and which can otherwise only be realized with consid-
erable manual labor! These triggers are already prepared, and require little work (click
the trigger type checkbox, uncheck unnecessary fields) in order to create an updatable
view.

As with the view default name, the trigger default name is automatically generated by
IBExpert, comprising the prefix VW_ followed by the table name and ending with the
trigger-type suffix (_BI = Before Insert, _BU = Before Update, _BD = Before Delete).
This can of course be overwritten if wished.

Finally compile and commit to create the new view or updatable view.

3

Database Objects - Table

182

Create Procedure from Table

A procedure can be created directly from a table, using the Table Editor's Create Pro-
cedure icon:

 The sort of procedure to be created can be specified by checking/unchecking the
boxes in the upper area. Options include:

• SELECT
• INSERT
• UPDATE
• DELETE
• INSERT/UPDATE

with a further checkbox option to:

• Grant execute to PUBLIC after creating.

A procedure default name is automatically generated by IBExpert, comprising the table
name followed by one of the following suffixes:

• S = Select
• I = Insert
• U = Update
• D = Delete
• IU = Insert/Update

3

Database Objects - Table

183

This name can of course be overwritten or altered directly in the code if wished.

The list of fields to be included in the procedure may be specified as wished by simply
clicking on the check boxes to the left of the field names, or by double-clicking or using
the space bar on a selected field.

The procedure text is displayed in the lower window and may also be altered if wished.
Switch from one page to the next by clicking on the tabs (displayed above the fields
lists).

Finally compile and commit to create the new procedure.

Print Table

Please refer to the IBExpert Edit Menu item Print and the Table Editor Menu item Print-
ing Options.

Print Preview and Print Design

Please refer to the IBExpert Report Manager for further information.

Printing Options

The Printing Options dialog can be started using the Print Table Metadata icon or [Shift
+ Ctrl + P].

The Printing Options dialog offers different options depending upon which Editor it is
started from. For example, when started from the Table Editor:

the View Editor:

the Procedure Editor:

3

Database Objects - Table

184

the Trigger Editor:

These options include the following:

• Fields
• Constraints
• Indices
• Dependent Objects
• Depend On Objects
• Parameters
• DDL
• Description

Simply check as wished, and then click Preview (to view the report as it will be printed
- see Print Preview for further information), Design (to customize the report - refer to
Report Manager for further information) or Print to proceed to the standard Windows
Print dialog.

3.2.11 Alter Table

A table can be altered to change its defined structure. It is even possible to perform
multiple changes simultaneously.

Alterations can be made in the Table Editor, opened by double-clicking on the table
name in the DB Explorer. Alternatively use the DB Explorer's right mouse-click menu
item Edit Table or key combination [Ctrl + O].

The following operations may be performed when altering a table:

• Add fields
• Add table level constraints
• Drop fields
• Drop table level constraints
• Modify fields

When dropping fields, it is important to note that the column may not be part of the
table's primary key, have a foreign key relationship with another table, contain a
unique constraint, be part of a table constraint or part of another column's CHECK con-
straint.

3

Database Objects - Table

185

For further details please refer to Table Editor.

The Constraints page in the Table Editor lists all such fields, so that the developer can
quickly ascertain whether constraint alterations/deletions are necessary, before drop-
ping the field in question (or whether, in fact, the field should be dropped at all!).

Using SQL the syntax is:

ALTER TABLE <table_name>
ADD <field_name> <field_definition>
ADD CONSTRAINT <constraint_name> <constraint_definition>
DROP CONSTRAINT <constraint_name>
DROP <field_name>;

3.2.12 Create SIUD Procedures

By right-clicking on a table in the DB Explorer, you will find a menu item called Create
SIUD Procedures. SIUD is the abbreviation for SELECT, INSERT, UPDATE and DELETE.

If you want to prevent database users from directly manipulating data with insert, up-
date and delete statements, you can use these procedures, which can be executed.

Please refer to Create Procedure from Table for details.

3.2.13 Drop Table/Delete Table

When a table is dropped, all data, metadata and indices in this table are also deleted
from the database.

A table can only be dropped, if it is not being used at the time of execution of the
DROP command and is not referenced by any other database object, such as in a for-
eign key relationship, a computed source column or a CHECK constraint for another ta-
ble, or is a part of the definition of a view or a stored procedure or trigger.

Any existent dependencies can be easily viewed on the Table Editor / Dependencies
page. Most database objects can be dropped here directly from the Dependencies page
or the Dependencies Viewer by right-clicking on the selected object, and choosing the
menu item Drop Object or [Ctrl + Del].

To drop a table use the DB Explorer, right-click and select the menu item Drop Table or
[Ctrl + Del]. IBExpert asks for confirmation:

before finally dropping the table. Once dropped, it cannot be retrieved; the table has to
be recreated, if a mistake has been made!

Using SQL the syntax is:

3

Database Objects - Field

186

DROP TABLE <table_name>;

3.3 Field
A field can be defined as the intersection in a table where a row meets a column, con-
taining a clearly differentiated atomic piece of information.

Each data field should be unique and represent and indivisible quantity of information.

Each database field has a name, which enables the data to be accessed. A database
field can be based on a domain definition or defined individually in the IBExpert Create
Table or Table Editors, in which case InterBase/Firebird automatically creates a system
domain for the field definition.

3.3.1 Adding New Field (Insert Field) using the Field Editor

Fields can be inserted into a table at the time of table creation, using the IBExpert DB
Explorer or menu item New Table. It is however often necessary to add new fields, af-
ter the table has been created. This can be easily done in IBExpert by opening the Ta-
ble Editor (double-click on the relevant table in the IBExpert DB Explorer) or using the
DB Explorer right-click menu Edit Table ... (or key combination [Ctrl + O]), and then
inserting a field using the

Add Field icon (or [Ins] key) or the Table Editor right-click menu Insert Field, to open
the Adding New Field Editor.

3

Database Objects - Field

187

The Adding New Field Editor displays the table name, into which the field is to be in-
serted. The new field name can be specified by the user, along with the parameters
Not Null and Primary Key. Further options are to be found on the Default and Check
pages, and the usual IBExpert Desc (=Description) and DDL (= Data Definition Lan-
guage) information pages are also included.

The new field may be based upon an existing domain (which may be edited using the
Edit button) or a New Domain can be created directly from the New Field Editor. All ex-
isting domains (in the connected database) can be viewed in the "Domain" pull-down
list. The domain information can be viewed in the Editor's lower panel.

It is also possible to define certain numeric formats as standard using the Options
menu, Environment Options / Grid / Display Formats, if wished. These format stan-
dards can be overwritten in individual fields here in the Field Editor.

Of course a new field doesn't have to be based on a domain. The data type can be
specified using the pull-down list under the Raw Data type tab. However, Inter-
Base/Firebird automatically generates a system domain for all specified fields, so when
a new field is inserted, or existing field altered, InterBase/Firebird inserts or alters the
respective system domain.

Additional context-sensitive input fields appear, relevant to the data type selected (e.g.
When Varchar is selected, options for specifying Length, Charset, and Collate are of-
fered; in the case of Numeric, Precision and Scale can be specified).

3

Database Objects - Field

188

Furthermore arrays can be defined, as well as default values, check constraints, 'com-
puted by' calculations and autoincrements.

The autoincrement tab allows new generators to be created, or an existing generator
to be selected. New triggers and procedures can also be created directly here in this
Editor for this field, if desired.

As with the majority of the IBExpert Editors, the last two pages display the object De-
scription (which can be inserted, edited and deleted here by the user as wished), and
the DDL page,

3

Database Objects - Field

189

which displays the SQL code for the field as specified by the user.

3.3.2 Charset / Character Set

A character set is specified in InterBase/Firebird to define which characters are allowed
in a CHAR, VARCHAR or blob field. It also provides collation options when Inter-
Base/Firebird needs to sort a column.

Character set definition becomes increasingly important as the world of database pro-
gramming spreads more and more across national borders. Today it is often necessary
for applications to also meet the requirements of other countries. The problem of mul-
tilingual interfaces is just one aspect of internationalization. A modern application
needs to handle the particularities specific to individual countries such as, for example,
sorting order (collation). In the German language the umlauts ä, ö und ü are inte-
grated in the alphabet using the letter combinations ae, oe and ue. At the same time
there are also special characters in the French language, which are not used in the
German language such â, á and à. There are completely different problems with ver-
sions whose characters are not known in the European character sets, for example Ko-
rean or Chinese. These character sets also often contain many more characters, which
cannot be incorporated in the 8 bit character sets, as the technical upper limit lies at
256 (=28) different characters. For this reason InterBase/Firebird implements charac-
ter set support.

Important character sets are, for example, ISO8859_1, to be recommended is
Win1252 - the West European character set. Unicode_FSS is the global character set,
however there is hardly a program that can read this; Win1251 is the East European
character set.

Character sets can be defined for the database (default character set):

3

Database Objects - Field

190

or for domains and fields (where the collation can also be specified):

Overview of the main character sets

by Stefan Heymann

Character Sets are an issue every programmer has to deal with one day. This is an
overview of the most important character sets.

Name Bytes per
Character

Description Range IANA/MIME
Code

7-bit
ASCII

1 The mother of all character sets. Con-
tains 32 invisible control characters, the
Latin letters A-Z, a-z, the Arabic digits
0-9 and a bunch of punctual characters.
Code Range 0..127.

0..127 US-ASCII

Unicode-based Character Sets

Unicode,
ISO
10646

N.A. A universal code for all characters
anyone can think of. Defines char-
acters, assigns them a scalar
value, but does not define how
characters are rendered graphi-

U+0000..U+100000 N.A.

3

Database Objects - Field

191

cally or in memory.

UTF-8 1..6 A Unicode transformation format
which uses 1-Byte characters for
all 7-bit US-ASCII characters and
sequences of up to 6 bytes for all
other Unicode characters.

All Unicode charac-
ters

UTF-8

UCS-2 2 A unicode transformation format
which uses 2 Bytes (16 Bits) for
every character. This character
set is not able to render all Uni-
code scalars and is therefore ob-
solete. However, it is still used by
a lot of systems (Java, NT)

U+0000..U+FFFF ISO-
10646-
UCS-2

UTF-16 2 A unicode transformation format
which uses 2 Bytes (16 Bits) for
every character. Using the con-
cept of "Surrogate Pairs", this
format is able to render all Uni-
code characters.

All Unicode charac-
ters

UTF-16

 UCS-4,
UTF-32

4 Two unicode transformation for-
mats which use 4 Bytes (32 Bits)
for every character. UCS-4 and
UTF-32 are the only character
sets, which are able to render all
Unicode characters in equally long
words. UCS-4 and UTF-32 are
technically identical.

All Unicode charac-
ters

ISO-
10646-
UCS-4
UTF-32

Single-byte Character Sets

ISO 8859-x
1

An extension of US-ASCII using the
eighth bit.

0..127,
160..255

ISO-8859-x

Windows
125x

1

Equal to ISO 8859-x, plus additional
characters in the 128..159 range.

0..255 Windows-
125x

ISO 8859-x Character Sets

Name Covered Lan-
guages

MS Windows counterpart

ISO
8859-1

Latin-1 Windows-1252

ISO
8859-2

Latin-2 Central and East European languages
(Czech, Polish, etc.)

Windows-
1250

ISO
8859-3

Latin-3 South European, Maltese, Esperanto

3

Database Objects - Field

192

ISO
8859-4

Latin-4 North European

ISO
8859-9

Latin-5 Turkish Windows-
1254

ISO
8859-10

Latin-6 Nordic (Sami, Inuit, Icelandic)

ISO
8859-13

Latin-7 Baltic Windows-
1257

ISO
8859-14

Latin-8 Celtic

ISO
8859-15

Latin-9 Similar to ISO 8859-1, adds Euro sign
(€) and a few other characters

MS Windows Character Sets

Number Name

1250 Latin 2

1251 Cyrillic

1252 Latin 1

1253 Greek

1254 Latin 5

1255 Hebrew

1256 Arabic

1257 Baltic

1258 Viet Nam

874 Thai

Declaring character sets in XML and HTML (IANA charset defini-
tions)

by Stefan Heymann

Declaring character sets in XML

Every XML document or external parsed entity or external DTD must begin with an XML
or text declaration like this:

<?xml version="1.0" encoding="iso-8859-1" ?>

In the encoding attribute, you must declare the character set you will use for the rest
of the document. You should use the IANA/MIME-Code from Character Set Overview.

Declaring character sets in HTML

3

Database Objects - Field

193

In the head of an HTML document you should declare the character set you use for the
document:

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-
1252">
 ...
</head>

Without this declaration (and, by the way, without an additional DOCTYPE declaration),
the W3C Validator will not be able to validate your HTML document.

IANA Character Set Definitions

The Internet Assigned Numbers Authority IANA maintains a list of character sets and
codes for them. This list is:

IANA-CHARSETS Official Names for Character Sets,
http://www.iana.org/assignments/character-sets

3.3.3 Data Type

InterBase/Firebird tables are defined by the specification of columns, which accommo-
date appropriate information in each column using data types, for example, numerical
(numeric, decimal, integer), textual (char, varchar, nchar, nvarchar), date (date, time,
timestamp) or blobs.

The data type is an elemental unit when defining data, which specifies the type of data
which may be stored in tables, and which operations may be performed on this data. It
can also include permissible calculative operations and maximum data size.

The data type can be defined in IBExpert using the DB Explorer, by creating a domain
or creating a new field in the Create Table or Table Editors.

It can of course, also be defined using SQL directly in the IBExpert SQL Editor. The
syntax for the data type definition is as follows:

<data_type> = {
{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}
[<array_dim>]
| {DECIMAL | NUMERIC} [(precision [, scale])]
[<array_dim]
| DATE [<array_dim>]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}
 [(int)] [<array_dim>] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
 [VARYING] [(int)] [<array_dim>]
| BLOB [SUB_TYPE {int | subtype_name}) (SEGMENT SIZE int]
 [CHARACTER SET charname]
| BLOB [(seglen [, subtype])]
}

3

Database Objects - Field

194

The InterBase/Firebird data type definitions included in this section have been kept as
close as possible to original InterBase definitions to avoid any potential misunderstand-
ing or conflict with the data types of other database programs.

Blob – Binary Large OBject

A blob is a data type storing large binary information (Binary Large OBject).

Blobs can contain any binary or ASCII information, for example, large text files, docu-
ments for data processing, CAD program files, graphics and images, videos, music files
etc.

Blobs are defined as table columns. Their memory size is almost unlimited as they can
be stored across several pages. This assumes however that a sufficient database page
size has been specified. For example, using a 1k page, the blob may not exceed 0.5
GB, using a 4k page size, the blob size is limited to 8GB.

The ability to store such binary data in a database provides a high level of data secu-
rity, data backup, version management, categorization and access control.

The advantage of blob text fields over varchar fields (e.g. VARCHAR (32000)) is that a
network protocol transfers all 32,000 varchar characters when using an ISDN connec-
tion (analog lines compress the data to an extent). With a blob field, only the actual file
size is transferred. Although - since Borland InterBase version 6.5/7 this disadvantage
with varchar data type transfer has been solved, i.e. in these newer InterBase versions
the full varchar length including spaces is no longer transferred each time across the
network. However, even here, blobs are still more effective when working with such
large data sizes.

InterBase/Firebird supports quick and efficient algorithms for reading, writing and up-
dating blobs. The user can manipulate blob processing with blob routines - also called
blob filters. These filters are ideal tools for the compression and translation of blobs,
depending upon the application requirements.

Blobs can be specified using the IBExpert DB Explorer or the IBExpert SQL Editor.

3

Database Objects - Field

195

Blob specification includes the subtype, segment size and, if wished, the character set.

When the Data View (i.e. Data tab) in the Table Editor is selected, and the table shown
contains a blob column, IBExpert can display the blob content of a selected data set as
text (also as RTF), hex, images and web pages using the IBExpert menu item Tools /
Blob Viewer/Editor.

It is important when using blobs in a database, to consider the database page size
carefully. Blobs are created as part of a data row, but because a blob could be of
unlimited length, what is actually stored with the data row is a BlobID, the data for the
blob is stored separately on special blob pages elsewhere in the database.

The BlobID is an 8 byte value that allows InterBase/Firebird to uniquely identify a blob
and locate it. The BlobIDs can be either temporary or permanent; a temporary blob is
one which has been created, but has not yet been stored as part of a table, permanent

3

Database Objects - Field

196

blobs have been stored in a table. The first 4 bytes represent the relation ID for the
blob (like data rows, blobs are bound to a table), the second four bytes represent the
ID of the blob within the table. For temporary blobs the relation ID part is set to 0.

A blob page stores data for a blob. For large blobs, the blob page could actually be a
blob pointer page, i.e. be used to store pointers to other blob pages. For each blob that
is created a blob record is defined, the blob record contains the location of the blob
data, and some information about the blob's contents that will be useful to the engine
when it is trying to retrieve the blob. The blob data could be stored in three slightly dif-
ferent ways. The storage mechanism is determined by the size of the blob, and is iden-
tified by its level number (0, 1 or 2). All blobs are initially created as level 0, but will be
transformed to level 1 or 2 as their size increases.

A level 0 blob, is a blob that can fit on the same page as the blob header record, for a
data page of 4096 bytes, this would be a blob of approximately 4052 bytes (page
overhead - slot - blob record header).

Although the documentation states that the segment length does not affect the per-
formance of InterBase/Firebird, the actually physical size of a blob, or its segment
length can become useful in trying to improve I/O performance for the blob, especially
if you can size the segment (typically) or blob to a page.

This is especially true if you plan to manipulate the blob using certain low level Inter-
Base/Firebird blob calls. When a blob is too large to fit on a single page (level 1), and
the data will be stored on one or more blob data pages, then the initial page of the
blob record will hold a vector of blob page numbers.

A level 2 blob occurs when the initial page of the blob record is not big enough to con-
tain the vector of all the blob data page numbers. Then InterBase/Firebird will create
blob pointer pages, i.e. multiple vector pages that can be accessed from the initial blob
header record, that now point to blob data pages. The maximum size of a level 2 blob
is a product of the maximum number of pointer pages, the number of data pages per
pointer page, and the space available on each data page.

Max Blob Size:

1Kb page size => 64 Mb
2Kb page size => 512 Mb
4Kb page size => 4 Gb
8Kb page size => 32 Gb
16kb page size => Big enough :-).

We would like to thank Paul Beach of IBPhoenix, for allowing us to reproduce excerpts
of his session, Using and Understanding Blobs, held at the European Firebird Confer-
ence 2003.

Segment size

Segment sizes are specified for blob fields. This can be done using the Domain Editor
or the Table Editor (started from the IBExpert DB Explorer or Database menu).

3

Database Objects - Field

197

A blob segment size can be defined, to increase the performance when inputting and
outputting blob data. This should roughly correspond to the data type size. With a
memo field, for example, for brief descriptions which could however, in individual
cases, be considerably longer, the segment length could be defined as 100 bytes,
whereby the blob datatype is processed in 100 byte blocks.

When processing videos or large graphics in the database, a large segment length
should be selected. The maximum length is 65536 bytes. This is because all blob con-
tents are stored in blocks, and are fetched via these blocks. a typical segment size
from the old days is 80 (because 80 characters fit onto one monitor line).

When a blob is extracted, the InterBase/Firebird server reads the number of segments
that the client has requested. As the server always selects complete blocks from the
database, this value can in effect be ignored on modern powerful computers. 2048 is
recommended as a standard since version InterBase 6.

Subtype

Subtypes are specified for blobs. They are used to categorize the data type when defin-
ing blobs. A subtype is a positive or negative numerical value, which indicates the type
of blob data. The following subtypes are predefined in InterBase/Firebird:

Subtype: Meaning:

Standard blob, non-specified binary data

3

Database Objects - Field

198

1 Text blob, e.g. memo fields

Text Alternative for defining subtype 1

Positive value Reserved for InterBase

Negative value User-defined blob subtypes

Blob fields can be specified using the Domain Editor or Table Editor (started from the
IBExpert DB Explorer).

The specification of a user-defined blob subtype has no effect upon InterBase/Firebird,
as the InterBase/Firebird server treats all blob fields the same, i.e. it simply stores the
data and delivers it to the client program when required.

The definitions are however required by the client programs in order to display the blob
content correctly. For example, SUB_TYPE -200 could be defined as a subtype for GIF
images and SUB_TYPE -201 as a subtype for JPG images.

Subtype specification is optional; if nothing is specified, InterBase/Firebird assumes 0
= binary data.

Under the menu item Tools, the IBExpert Blob Viewer/Editor can display blob contents
as text, hex, images, RTF and web pages.

3

Database Objects - Field

199

CHAR and VARCHAR

InterBase/Firebird provides two basic data types to store text or character information:
char and varchar (blobs also allow character storage using the subtype text).

char and varchar are data types which can store any text information. Numbers that
are not calculated, such as zip codes, are traditionally stored in char or varchar col-
umns. The length is defined as a parameter, and can be between 1 and 32,767 bytes.
It is particularly useful for codes that typically have a fixed or predefined length, such a
the zip code for a single country.

Compared to most other databases, InterBase/Firebird only stores significant data. If a
column is defined as char(100), but only contains entries with 10 characters, the ad-
ditionally defined bytes are not used, as InterBase/Firebird stores char and varchar
types similarly, and does not fill unused spaces with blanks. Both char and varchar
are stored in memory buffer in their full, declared length; but the whole row is com-
pressed prior to storing i.e. chars, varchars, integers, dates, etc. all together.

Indeed, varchar columns require more storage than char columns, because when
storing a varchar, InterBase/Firebird adds two bytes that state just how big the var-
char actually is.

So a char will in fact be stored in a smaller space. However, when a SELECT is per-
formed on a varchar column, InterBase/Firebird strips the 2 byte padding and returns
the stored value. When a SELECT is performed on a char column, InterBase/Firebird
returns the value and the "empty spaces". Thus the two bytes saved in storage of a
char must be balanced against the subsequent need to strip the spaces on the client
side. These two bytes however are, with today's hardware, too negligible to have an
influence upon the database performance. This can however be disadvantageous when
defining short text fields.

In practical terms consider just this one rule: only use chars if strings of few charac-
ters are to be stored; the exception to the rule being when working with intermediate
tables that are required to export data to fixed length prn files. Then the fixed length
field will be a positive advantage.

This efficient storage in InterBase/Firebird can lead to considerable confusion particu-
larly when importing data, as Paradox or dBASE databases save all blank spaces, and
after importing a 10MB dBASE file into InterBase, often only 3-6 MB remain, although
all data sets were imported correctly.

For this reason columns can be defined generously in InterBase/Firebird without a
problem, whereas in other databases each defined byte influences the size of the data-
base, regardless of whether data is stored in these fields or not.

Please note however that indexed char fields should not be more than approx. 80
characters in length (with Firebird 1.5 the limit is somewhat higher).

The char data type definition can be written in two ways:

CHAR
CHARACTER

3

Database Objects - Field

200

The varchar data type definition can be written as follows:

VARCHAR
CHARACTER VARYING
CHAR VARYING

Collate

A special collation sequence can be specified for char and varchar field columns. The
collate parameter allows fields to be collated according to a certain language/group of
languages e.g. collate according to the German language when using Win1252.

In IBExpert the collation sequence can be specified when defining the character set for
a domain or field:

The collation options are offered in IBExpert in a pull-down list, after specifying the
character set.

In DDL it is specified using the keyword COLLATE and the respective character set ta-
ble, for example:

CREATE DOMAIN dom_city VARCHAR(20)
COLLATE PXW_INTL850;

CREATE DOMAIN User_Name VARCHAR(20)
CHARACTER SET DOS437
DEFAULT USER
NOT NULL
COLLATE PDOX_ASCII

The parameter sequence is important, as the collation sequence must be specified last.

NCHAR and NVARCHAR

NCHAR or NATIONALCHARACTER
NVARCHAR or NATIONAL CHAR VARYING or NATIONAL CHARACTER VARYING

nchar/nvarchar are data types, which can be defined as the char/varchar data types
with a length of 1-32,767 bytes. The only difference to the char/varchar data type is

3

Database Objects - Field

201

that nchar/nvarchar automatically defines a special character set for this table col-
umn: "CHARACTER SET ISO8859_1"

INTEGER and SMALL INTEGER (Int and SmallInt)

Integer data types are used to store whole numbers. SmallInt is the abbreviation for
small integer. Values following the decimal point are not allowed. Depending upon the
numeric area required, following integer types are supported:

Type Size Value range

SmallInt 2 bytes -32,768 to +32,767

Integer 4 bytes -2,147,483,648 to +2,147,483,647

4 bytes of data storage are required for the integer value, whereby 31 bits are for the
number and 1 bit for the sign. 2 bytes of data storage are required for the small inte-
ger value, whereby 15 bits are for the number and 1 bit for the sign. It is usually pref-
erable to use an integer data type as 2 bytes more or less are fairly irrelevant these
days.

An integer is a 15-digit number and although extremely large, is by far not as large as
the numeric(18).

Integer types are particularly suited for unique identification numbers, as Inter-
Base/Firebird contains mechanisms for the automatic generation of whole number val-
ues (please refer to generator for further information). The resulting indices for the
connection of multiple tables to each other are relatively small and offer extremely
quick access, as the highest computer performance on all computer platforms is gener-
ally found in integer operations. It is possible to specify the display format of an inte-
ger under Environment Options / Grid / Display Formats.

SmallInts can also be used for Boolean data types e.g. true/false, male/female.

FLOAT and DOUBLE PRECISION

Float data types are used to store values with significant decimals. The following float
types are supported:

Type Size Value range

Float 4 bytes 7 significant decimals;
-3.4 x 10^-38 to 3.4 x 10^38

Double Precision 8 bytes 15 significant decimals;
-1.7 x 10^-308 to 1.7 x 10^308

A column with the defined data type FLOAT can store a single-precision figure with up
to 7 significant decimals. The decimal point can float between all seven of these digits.
If a number with more than 7 decimal places needs to be saved, decimals beyond the
seventh position are truncated. Float columns require 4 bytes of storage.

3

Database Objects - Field

202

A column with the defined data type DOUBLE PRECISION can store numbers with 15
significant decimals. This uses 8 bytes of storage. As with the float column, the decimal
point can float within the column. The double precision datatype is implemented in the
majority of InterBase platforms as a 64 bit number.

Float types can be implemented for any calculative operations. They offer an optimal
performance and sufficient range of values. It is possible to specify the display format
of a float field under Environment Options / Grid / Display Formats.

The DOUBLE PRECISION data type can be written as follows:

DOUBLE PRECISION
DOUBLE

The main advantage of a DOUBLE PRECISION data type is the large number of decimal
places e.g. 1/3 in DOUBLE PRECISION would be 0,33333333333333 in NUMERIC(18,4) it
would be 0,3333. Please note: up until dialect 1 numeric and double precision were
identical i.e. an SQL with the data type NUMERIC(15,2) results in the following:

Result with dialect 1:

CREATE TABLE TEST(WERT NUMERIC(15,2));
INSERT INTO TEST(WERT) VALUES(100);
SELECT * FROM TEST; result 100
UPDATE TEST SET WERT=WERT/3;
SELECT * FROM TEST; result 33,33
UPDATE TEST SET WERT=WERT*3;
SELECT * FROM TEST; result 100

Result with dialect 3:

CREATE TABLE TEST(WERT NUMERIC(15,2));
INSERT INTO TEST(WERT) VALUES(100);
SELECT * FROM TEST; result 100
UPDATE TEST SET WERT=WERT/3;
SELECT * FROM TEST; result 33,33
UPDATE TEST SET WERT=WERT*3;
SELECT * FROM TEST; result 99,99

Since dialect 3 NUMERIC data is rounded according to commercial rounding rules; up to
dialect 1 NUMERIC data is rounded according to technical rounding rules.

NUMERIC and DECIMAL

The NUMERIC data type specifies a numeric column where the value has a fixed decimal
point, such as for currency data. NUMERIC(18) is a 64 bit integer value in SQL dialect 3
and is almost infinite. Since SQL dialect 3 numeric and decimal data types are stored
as integers of the respective size.

SQL dialect 1 offers NUMERIC(15).

Syntax:

3

Database Objects - Field

203

NUMERIC(precision, scale);

or

DECIMAL(precision, scale);

PRECISION refers to the total number of digits, and SCALE refers to the number of dig-
its to the right of the decimal point. Both numbers can be from 1 to 18 (SQL dialect 1:
1-15), but scale must be less than or equal to precision.

It is better to define NUMERIC always at its maximum length, as in this case, the 32 bit
integer value is used. Otherwise a 16 bit value is used internally, for example with NU-
MERIC(4,2), and this is not always transformed back correctly by the client program
environments (an older BDE version could, for example, transform Euro 12,40 with NU-
MERIC(4,2) into Euro 1240).

InterBase/Firebird supports a number of options for specifying or not specifying preci-
sion and scale:

1. If neither precision nor scale are specified, InterBase/Firebird defines the column as
INTEGER instead of NUMERIC and stores only the integer portion of the value.

2. If just precision is specified, InterBase/Firebird converts the column to a SMALLINT,
INTEGER or DOUBLE PRECISION data type, based on the number of significant digits be-
ing stored.

The NUMERIC data type should only be used for fields that are later to be used as part
of a calculation.

InterBase/Firebird converts the columns as follows:

Definition Datatype Created

Decimal(1)-Decimal(4) Small Integer

Decimal(5)-Decimal(9) Integer

Decimal(10)-Decimal(18) Int (64)

Note that if a DECIMAL(5)data type is specified, it is actually possible to store a value
as high as a DECIMAL(9) because InterBase/Firebird uses the smallest available data
type to hold the value. For a DECIMAL(5) column, this is an INTEGER, which can hold a
value as high as a DECIMAL(9).

DATE

The date data type stores values which represent a date. InterBase/Firebird supports a
single date-type column that requires 8 bytes of storage space. It uses 4 bytes for the
date and 4 bytes for the time. Valid dates are from January 1, 100 AD through Febru-
ary 28, 32,767 AD. Note: for DATE arithmetic purposes, DATE 0 (the integer value of
zero) as a DATE in InterBase/Firebird is November 17, 1898.

3

Database Objects - Field

204

Different date formats are supported. There are however slight differences between
SQL dialect 1 and SQL dialect 3.

SQL dialect 1: DATE also includes a time slice (equivalent to TIMESTAMP in dialect 3).
SQL dialect 3: DATE does not include any time slice.

Using SQL dialect 1 the default 'NOW' for data type date means current time and date
of the server; there is also 'TODAY' (only date; the time is always set at midnight,
'YESTERDAY', 'TOMORROW').

Example:

SELECT CAST ('NOW' AS DATE) FROM RDB$DATABASE

SELECT CAST is an SQL dialect 1 command (although it also functions in SQL dialect 3);
SELECT is used in SQL dialect 3. These values are primarily compatible to older Inter-
Base versions. When working with SQL dialect 3, the CURRENT_ constants (see below)
should be used as far as possible.

From InterBase 6 upwards and Firebird there are the following for dialect 3: CUR-
RENT_TIME, CURRENT_TIMESTAMP, CURRENT_DATE (without quotation marks and without
CAST). Example:

SELECT CURRENT_DATE-1 FROM RDB$DATABASE
Result: the date yesterday, etc.

SELECT CURRENT_TIMESTAMP-(1/24) FROM RDB$DATABASE
Result: the current time minus one hour (one twenty-fourth of a day).

It is possible to specify the display format of a date field under Environment Options /
Grid / Display Formats. For the various options available, please refer to Date Time
Format.

TIME

The TIME data type is new to InterBase v 6.0. It is an SQL dialect 3 data type. TIME is
a 32-bit field type of TIME values. The range is from 0:00 AM to 23:59:9999 PM.

It is possible to specify the display format of a date field under Environment Options /
Grid / Display Formats. For the various options available, please refer to Date Time
Format.

TIMESTAMP

TIMESTAMP is new to InterBase v 6.0. It is an SQL dialect 3 data type. TIMESTAMP is a
64-bit field type comprised of both date and time. The range is from January 1,100 AD
to February 28, 32768 AD.

It is the equivalent of DATE in SQL dialect 1.

3

Database Objects - Field

205

It is possible to specify the display format of a date field under Environment Options /
Grid / Display Formats. For the various options available, please refer to Date Time
Format.

3.3.4 Array

InterBase/Firebird allows a column to be defined as an array of elements, i.e. data in-
formation can be stored in so-called arrays. An array is a range of values determined
by setting a lower and an upper limit. An array consists of any amount of information
that can be split into different dimensions. The array can be managed as a whole, as a
series of elements in one dimension of the array, or as individual elements.

Arrays should be used with caution. Database normalization usually supplies an alter-
native format for storing such data, so that normal table structures are just as suitable,
and also preferable. There are however occasionally exceptions, for example for meas-
urement value logging, when arrays are the preferred option.

The array data type is used relatively seldom, as it is not very simple to process, and
does not really conform to the typical demands of an SQL database (usually one or
more detail tables would be created, and not an array).

Arrays can be declared as a domain or directly in the table definition following the data
type definition. Array data can be of any type except blob. Between 1 and 16 dimen-
sions can be specified; each dimension can store as many elements as can be fitted
into the database. The values are stored as a blob and are therefore almost unlimited
in scope.

The only difference compared to the normal data type definition is the specification of
the dimensions in square brackets, each dimension being separated by commas. By
default, the lower bounds ID number is 1 and the upper bounds ID number is the
maximum of that dimension. Alternate bounds IDs can be specified in place of the ar-
ray size by separating them with a colon. For example, an array with 5 measurements
with 2 dimensions starting at the default value 1 is defined as follows:

[2,5]

Counting begins at 1 and ends at the value entered by the user. In this case 2x5=10
measurements can be logged. If counting is to begin at, for example, 0, the array defi-
nition is as follows:

 [0:2, 0:5]

One-dimensional Arrays:

Definition NAME DATATYPE [LOWER_DIMENSION:UPPER_DIMENSION].
Example: LANGUAGE_REQ VARCHAR(15) [1:5]
In this field 5 data entries of the VARCHAR(15) type can be stored.
LANGUAGE_REQ[1] up to LANGUAGE_REQ[5] can be accessed.

Multi-dimensional Arrays:

3

Database Objects - Field

206

Definition NAME DATATYPE [LOWER_DIMENSION1:UPPER_DIMENSION1]
[LOWER_DIMENSION2:UPPER_DIMENSION2].
Example: DAILY_MEASUREMENTS NUMERIC(18,2) [1:24][1:365].

When using arrays, it is important to be aware of the advantages and limitations.

Advantages of arrays:

1. InterBase operations can be performed upon the total data type as a single element.
Alternatively operations can be executed on part of an array only for certain values of a
dimension. An array can also be broken down into each single element.

2. Following operations are supported:
 - SELECT statement from array data
 - Insertion of data in an array
 - Updating data in an array slice
 - Selecting data from an array slice
 - Examination of an array element in a SELECT statement

Array limitations:

1. A user-defined function can only access one element in an array.

2. The following operations are not supported:
 - Dynamically referencing array dimensions using SQL statements
 - Inserting data into an array slice
 - Setting individual array elements to null
 - Using aggregate functions such an MIN(), MAX(), SUM(), AVG() and COUNT() on
arrays
 - Referencing an array in the GROUP BY clause in a SELECT query
 - Creating a view, which selects from array slices

3. The data stored in this way cannot be selected per index; each query always ac-
cesses the fields unindexed.

3.3.5 Boolean

InterBase/Firebird does not offer a native Boolean data type. However, they can be
implemented using domains.

The first step is to define a domain (which should logically be named Boolean). The
domain can be defined in one of two ways:

1. Using a SMALLINT (16 bits), defaulting to zero, with a check constraint to ensure
only the values of zero or one are entered. i.e:

CREATE DOMAIN D_BOOLEAN AS SMALLINT DEFAULT 0
CHECK (VALUE BETWEEN 0 AND 1);

Once you have defined this domain you can forever use it as a Boolean data type with-
out further concern. It is particularly suitable from a Delphi point of view, as Pascal
Booleans work in a similar manner.

3

Database Objects - Field

207

2. Alternatively, the domain can be defined as a CHAR(1) and appropriate single char-
acter values ensured using a check constraint. If 'T' and 'F' or 'Y' and 'N' are more
meaningful for your application then use this approach.

We'd like to thank Paul Beach of IBPhoenix for this article.

3.3.6 Autoincrement

An autoincrement is an automatic counter/calculator, such as a generator, trigger or
stored procedure.

3.3.7 Not Null

NOT NULL is a parameter that does not allow a column field to be left blank. It can be
defined for a field or a domain.

It forces a value to be entered into the column. It operates in the same way for tables
as for domains. The parameter DEFAULT NULL and NOT NULL cannot be used in the
same column definition. The NOT NULL parameter must be specified if the column is to
be defined as PRIMARY KEY or UNIQUE.

3.3.8 Null

Null is the term used to describe a data field without a value, i.e. the field has been left
blank because the information is either not known or not relevant for this record/data
set. The null value can be stored in text, numeric and date data types.

3

Database Objects - Field

208

A relational database is able to store null values as data content. A null value does not
mean numerical zero. For example, a product can have zero sales () or unknown sales
(<null>).

A null value can occur for the following reasons:

• The value is not yet known, but will be added at a future date.
• The value is not yet available for some reason, e.g. the date of receipt of payment.
• The value is not important, e.g. the credit card expiry date of someone who has

paid cash.

InterBase/Firebird does not use a special byte sequence to indicate a null, but adminis-
trates this information internally. Null values can influence query contents considera-
bly, for example, when a column average is calculated. The values filled by the null
value, i.e. empty fields, are not taken into consideration. A field containing the value 0
is included in the calculation of the average.

Examples from the Firebird 1.5 Quick Start Guide:

• 1 + 2 + 3 + NULL = NULL
• not (NULL) = NULL
• 'Home ' || 'sweet ' || NULL = NULL
• if (a = b) then
 MyVariable = 'Equal';
else
 MyVariable = 'Not equal';

After executing this code, MyVariable will be 'Not equal' if both a and b are NULL.
The reason is that the expression 'a = b' yields NULL if at least one of them is NULL.
In an “if...then” context, NULL behaves like FALSE. So the 'then' block is skipped,
and the 'else' block executed.

• if (a <> b) then

 MyVariable = 'Not equal';

3

Database Objects - Field

209

else
 MyVariable = 'Equal';

Here, MyVariable will be 'Equal' if a is NULL and b isn't, or vice versa. The expla-
nation is
analogous to that of the previous example.

• FirstName || ' ' || LastName
will return NULL if either FirstName or LastName is NULL.

Think of NULL as UNKNOWN and all these strange results suddenly start to make sense! If
the value of Number is unknown, the outcome of '1 + 2 + 3 + Number' is also un-
known (and therefore NULL). If the content of MyString is unknown, then so is 'MyS-
tring || YourString' (even if YourString is non-NULL). Etcetera.

3.3.9 Alter Field

Similar to Alter Domain, only certain field attributes may be altered. For example,
CHECK instructions and default values may be added, altered or deleted. However it is
not possible to alter the basic data type (for example, from numeric to varchar). Nei-
ther is it possible to drop a NOT NULL constraint. To alter these the field has to be
dropped and recreated (see Drop Field).

Fields can be altered in the Table Editor by double-clicking on the selected field, or
right-clicking and selecting Edit Field from the menu, or pressing the [Enter] key, to
open the Field Editor:

However you will notice that you need to switch to the Domain Editor to perform any
actual changes, as even if the field is not based on a user-defined domain, Inter-
Base/Firebird automatically creates a system domain for all field definitions.

The desired alterations can however be easily made to the user-defined or system do-
main and executed and checked before finally committing.

3

Database Objects - View

210

3.3.10 Drop Field/Delete Field

Fields can be dropped directly in the Table Editor on the Fields page, by using the '-'
icon in the Table Editor toolbar, selecting from the right-click menu or using the key
combination [Shift + Del].

IBExpert asks for confirmation:

before finally dropping the field. Once dropped, it cannot be retrieved.

When dropping fields, it is important to note that the field may not be part of the ta-
ble's primary key, have a foreign key relationship with another table, contain a unique
constraint, be part of a table constraint or part of another column's CHECK constraint.

The Constraints page in the Table Editor lists all such fields, so that the developer can
quickly ascertain whether constraint alterations/deletions are necessary, before drop-
ping the field in question (or whether, in fact, the field should be dropped at all!).

Using SQL the syntax is:

ALTER TABLE <table_name>
DROP <field_name>;

3.4 View
A view is a stored SELECT of one or more tables. The rows to be returned are defined
by the SELECT statement that lists columns from the source tables. Only the view defi-
nition is stored in the database, it does not directly represent physically stored data.
The WHERE command can also be used. A view has no input parameters.

3

Database Objects - View

211

It can be likened to a virtual table. The view can be treated, in almost all respects, as if
it were a table, using it as the basis for queries and even updates in some cases. It is
possible to perform SELECT, PROJECT, JOIN and UNION operations on views as if they
were tables.

Views give end users a personalized version of the underlying tables in the database
and also simplify data access, by protecting them from the details of how information is
spread across multiple tables. They also provide security by hiding certain columns in
the table(s) from various users. InterBase/Firebird allows user rights to be granted to
the view and not the underlying table(s).

Advantage of views (and stored procedures): as these are part of InterBase or Firebird,
it is irrelevant which front end is subsequently used, be it Delphi, PHP or other.

They allow the developer to denormalize data, combining information from two or more
tables into a single virtual table. Instead of creating an actual table with duplicate data,
a view can be created using SELECT, JOIN and WHERE.

Views cannot be sorted, they merely display the result of a specified SELECT. (A view
can therefore be compared to a saved query). The ORDER BY instruction cannot be
used in a view (the data sets are displayed as determined by the optimizer, which is
not always intelligent!). In such a case, a stored procedure would have to be used
(stored procedures being more flexible in any case, and offering more control).

Views can be used, for example, for internal telephone lists, or when information from
more than one table needs to be linked, e.g. the first modular result needs to be linked
to the second result.

The underlying SELECT definition can contain all the performance features of a select
query on tables, it is however subject to the following restrictions:

1. All columns must be explicitly specified, so that the view always returns the same
columns in the correct order.

3

Database Objects - View

212

2. If reference is made to a SELECT * statement in a view, the result is returned in the
column sequence of the definition of the underlying tables, and can therefore deliver
different results should changes later be made to the table structure.

3. No ORDER BY statements may be used.

4. Indices can only be placed on the columns of the base tables, not the view columns.
When the view is generated, these indices are automatically used.

Views allow a data modularization, particularly useful with complex data quantities, as
another view can be incorporated in the view definition.

3.4.1 New View / View Editor

A new view can be created in a connected database, either by using the menu item Da-
tabase / New View, , the respective icon in the New Database Object toolbar, or using
the DB Explorer right mouse button (or key combination [Ctrl + N]), when the view
heading of the relevant connected database is highlighted. Alternatively, a new view
can be created directly in the IBExpert SQL Editor, and then saved as a view.

A New View dialog appears, with its own toolbar:

The view can be created directly in the SQL dialog, and subsequently committed using
the respective icon or [Ctrl + F9].

Please refer to the following subjects for details regarding the individual editor pages.

SQL

When creating a view it is necessary to define a view name that is unique in the data-
base.
All data manipulation operations such as SELECT, INSERT, UPDATE and DELETE are car-
ried out using this name.

The view can then be created in the SQL dialog using the following syntax:

3

Database Objects - View

213

CREATE VIEW ViewName (<List_of_field_names>)
AS
SELECT <fields_ from _table_name>
[WITH CHECK OPTION];

An example can be viewed in the InterBase/Firebird sample EMPLOYEE database:

The view name must be unique. As InterBase/Firebird only stores the view definition
(i.e. it does not copy the data from the tables into the view), views depend a lot upon
indices set in the base table, in order to locate data rapidly from the original tables. It
is therefore important to analyze views carefully, and place indices on those columns
that are used to join tables and to restrict rows.

The tables and fields can be easily inserted into the SQL script by dragging the relevant
tables and fields from the DB Explorer and SQL Assistant, and dropping them in the re-
spective position in the SQL dialog in the New View Editor. After naming the view fields
and inserting the relevant base table fields, the new view can be committed using the
respective icon or [Ctrl + F9].

The view contents result from the returns of the SELECT statement that corresponds,
with few exceptions, to the SQL SELECT command. The SELECT statement specifies
which tables, columns and rows are to be returned as part of the view.

If the view is an updateable view, the optional WITH CHECK OPTION parameter may
also be used to control data input.

The field names, as they are to appear in the view, can be optionally specified under a
different name to the field names in the base tables. If no specification is made, the
original base table column names automatically become the view field names. If col-
umn names are specified, they must be unique within the view and a name must be
specified for every column returned by the view (even if some of the view field names
correspond to the original field names). Please note that if the SELECT statement in-
cludes derived columns, column names must be specified.

If the view is to be used as part of a query, or indeed any other SQL statement, Inter-
Base/Firebird queries the original data directly. This important feature offers the flexi-
bility of being able to make alterations to the underlying database structure without af-

3

Database Objects - View

214

fecting the user's view of the data or the view of any programs, which reference the
view instead of the base tables.

Finally compile the new view using the respective toolbar icon or [F9], and, if desired,
autogrant privileges, again using the respective toolbar icon or key combination [Ctrl +
F8].

Fields

The Fields page displays the fields selected from the base table (with their new view
names, if they have been specified), along with their properties.

The individual fields may not be edited directly from this dialog; to alter fields, please
refer to the Table Editor / Fields.

These fields can however be sorted here into ascending or descending order based
upon the column where the mouse is, by clicking on the column headers (i.e. Field
Name etc.).

By double-clicking on the right edge of the column header, the column width can be
adjusted to the ideal width.

Dependencies

3

Database Objects - View

215

Please refer to Table Editor / Dependencies.

Triggers

Please refer to Table Editor / Triggers.

Data

3

Database Objects - View

216

Please refer to Table Editor / Data. Please note that data may only be manipulated in
this dialog if the view is defined as, and meets all conditions required by an updatable
view.

Description

Please refer to Table Editor / Description.

Grants

Please refer to Table Editor / Grants and Autogrant Privileges.

3

Database Objects - View

217

Autogrant Privileges

The Autogrant Privileges icon can be found in the View Editor, Procedure Editor and
Trigger Editor toolbars. Privileges can also be autogranted using the key combination
[Ctrl + F8]. It allows all privileges to be automatically granted for views, procedures
and triggers.

(This feature is unfortunately not included in the Personal Edition.)

This assigns all rights for newly created objects for all users, and helps to prevent the
frequent problem that developers often initially create multitudes of objects for their
new database, and suddenly realize that they have not assigned any rights for these
views, triggers or procedures.

For those preferring to limit the assignment of rights, please use the Grants page, of-
fered in the majority of object editors, or the IBExpert Tools / Grant Manager.

Under the IBExpert Option menu item, Environment Options / Tools the default option,
Autogrant privileges when compiling procedures, triggers and views, needs to be
checked, for this function to work. Since IBExpert version 2005.02.12.1 it is also possi-
ble to specify here whether existing privileges should first be deleted, before new ones
are granted.

DDL

3

Database Objects - View

218

Please refer to Table Editor / DDL.

Version History

The Version History page offers a unique and automatic documentation. It is available
in the View Editor, Procedure Editor and Trigger Editor. It displays different versions of
the view, procedure or trigger (if existent), and lists the dates when changes were
made, along with the person(s) responsible.

3

Database Objects - View

219

The first time the Version History is opened, IBExpert asks for confirmation, as it needs
to create certain system tables for the version history logging. This only needs to be
confirmed once. After this the Version History appears immediately in all relevant edi-
tors, and all object changes are automatically stored.

Versions listed in the Version Info panel can be marked, and deleted using the right
mouse click menu (key combinations: Delete version [Del]; Remove duplicates [Shift +
Ctrl + Del]).

The SQL scripts of the different versions can even be compared, under the Compare
Versions tab.

The pull-down list at the top of the two script panels, allows different versions to be se-
lected, without having to switch back to the Versions page. Alterations are highlighted
by colored bars, marking the line where an alteration has been made. The color code
key can be viewed in the dialog's status bar, along with a note of the number of
changes made between the two versions.

3

Database Objects - View

220

Recreate Script

The Recreate Script page displays the full SQL script for the view, beginning with the
DROP VIEW command, and then recreating the current view. This is useful should errors
arise in a view where it is almost impossible, due to the complexity of the view or the
multitude of different versions, to detect the source.

The script can even be edited directly in this dialog, and the changes committed. The
right-click menu is the same as that in the SQL Editor, allowing a number of further
operations directly on the SQL script (please refer to SQL Editor Menu).

Plan Analyzer

3

Database Objects - View

221

Please refer to SQL Editor / Plan Analyzer. Please note that the performance informa-
tion is not available here in the View Editor's Plan Analyzer.

Updatable views and read–only views

The simplest and quickest way to create an updateable view is to use the Create View
from Table option in the IBExpert Table Editor, and create a trigger (checkbox options
to create BEFORE INSERT, BEFORE UPDATE or BEFORE DELETE). Complete the trigger
text in the lower code editor window (taking into consideration the notes below), and
the updateable view is complete!

If the view is to be an updatable view, the optional parameter WITH CHECK OPTIONS
needs to be used to control data input. If this parameter is used, only those values cor-
responding to the view's SELECT statement may be input. A view needs to meet all of
the following conditions if it is to be used to update data in the base table:

• The view is based on a single table or on another updatable view. Joined tables re-
sult in a read-only view. (The same is true if a subquery is used in the SELECT
statement.)

• Any columns in the base table that are not part of the view allow nulls. This condi-
tion requires that the base table's primary key be included in the view.

• The SELECT statement does not include a DISTINCT operator. This restriction might
have the effect of removing duplicate rows, making it impossible for Inter-
Base/Firebird to determine which row to update.

• The SELECT statement does not include aggregate functions or the GROUP BY or
HAVING operators.

• The SELECT statement does not include stored procedures or user-defined func-
tions.

In a normalized database, a view is usually updatable if it is based on a single table
and if the primary key column or columns are included in the view definition.

However it is possible to input data into a view and then allocate the new data / data
changes to several individual tables by using triggers.

Specifying a view with the CHECK OPTION

If a view is updatable, INSERT, UPDATE, or DELETE operations can be made on the view
to insert new rows into the base table(s), or to modify or delete existing rows.

However, the update could potentially cause the modified row to no longer be a part of
the view, and what happens if the view is used to insert a row that does not match the
view definition?

To prevent updates or inserts that do not match the WHERE condition of the view, the
WITH CHECK OPTION needs to be specified after the view's SELECT statement. This
clause tells InterBase/Firebird to verify an UPDATE or INSERT statement against the
WHERE condition. If the modified or inserted row does not match the view definition, the
statement fails and InterBase/Firebird returns an error.

3

Database Objects - Stored Procedure

222

3.4.2 Alter View

A view can be altered in the View Editor, opened by double-clicking on the view name
in the DB Explorer. Alternatively use the DB Explorer's right mouse-click menu item
Edit View or key combination [Ctrl + O].

Alterations may be made directly in the SQL input page; fields, dependencies and trig-
gers can be examined in their respective pages before field deletion.

When altering a view, IBExpert actually does nothing other than create a new view of
the same name as the old one, replacing it after committing.

3.4.3 Drop View/Delete View

When a view is dropped it is deleted for good. A view cannot be dropped if it is used
elsewhere in the database's metadata. For example, if the view to be dropped is in-
cluded in the definition of another view, a stored procedure or any CHECK constraint,
the dependent object must first be dropped before the view can be dropped. Any exis-
tent dependencies can be viewed on the View Editor / Dependencies page. Most data-
base objects can be dropped here directly on the Dependencies page or the Dependen-
cies Viewer by using the right-click menu on the selected object, and choosing the
menu item Drop Object or [Ctrl + Del].

To drop a view, use the DB Explorer right mouse button menu item Drop View... (or
[Ctrl + Del]).

IBExpert asks for confirmation:

before finally dropping the view. Once dropped, it cannot be retrieved.

Alternatively the DROP VIEW statement can be used in IBExpert's SQL Editor. It has the
following syntax:

DROP VIEW <view_name>;

For example, to drop the PHONE_LIST view in the sample EMPLOYEE database, the fol-
lowing statement should be issued:

DROP VIEW PHONE_LIST;

Please note that a view can only be dropped by its creator or the SYSDBA.

3.5 Stored Procedure
A stored procedure is a series of SQL commands stored as a self-contained program in
the database as part of the database's metadata (also known as routine). They can be

3

Database Objects - Stored Procedure

223

started by the EXECUTE PROCEDURE command with specification of the procedure name
and a list of parameters.

It is similar to a trigger, but is not automatically executed.

It is written in InterBase procedure and trigger language. It can perform special proc-
essing on the metadata and data within the database. Program execution occurs on the
server.

Each stored procedure is a stand-alone module of code that can be executed interac-
tively or as part of a SELECT statement, from another stored procedure or from another
application environment.

They can be invoked directly from applications, or can be substituted for a table or
view in a SELECT statement; they can receive input parameters and return values to
applications.

With the Client/Server database concept, it is important that the database is not just
used to store data, but is actively involved in the data query and data manipulation
processes. As the database must also be able to guarantee data integrity, it is impor-
tant that the database can also handle more complex operations that just simple com-
parisons. InterBase/Firebird uses stored procedures as the programming environment
for integrating active processes in the database.

The stored procedure language is a language created to run in a database. For this
reason its range is limited to database operations and necessary functions.

Stored procedures provide SQL enhancements that support variables, comments, de-
clarative statements, conditional testing and looping as programming elements. They
have full access to SQL DML statements allowing a multitude of command types; they
cannot however execute DDL statements, i.e. a stored procedure cannot create a table.

Stored procedures offer the following advantages when implementing applications:

3

Database Objects - Stored Procedure

224

1. Reduction of network traffic by off-loading application processes from the client to
the server. This is particularly important for remote users using slower modem connec-
tions. And for this reason of course, they are fast.

2. Splitting up of complex tasks into smaller and more logical modules. Stored proce-
dures can be invoked by each other. Stored procedures allow a library of standardized
database routines to be constructed, that can be called in different ways.

3. They're reusable. Rather than recreate a statement on the client each time it's
needed, it's better to store it in the database. They can be shared by numerous appli-
cations using a single database. Alterations to the underlying data definitions only need
to be implemented in the stored procedure and not in the individual applications them-
selves. Readability is enhanced, and redundancy, maintenance, and documentation are
greatly reduced.

4. Full access to SQL and the database's metadata. This allows certain environments to
perform extended operations on the database that might not be possible from another
application language. The language even offers functions that are not available in SQL,
e.g. IF…WHEN…ELSE, DECLARE VARIABLE, SUSPEND, etc.

5. Enhanced security: if database operations such as INSERT, ALTER or DROP can only
be performed on a table by stored procedures, the user has no privileges to access the
table directly. The only right the user has is to execute the stored procedure.

6. As stored procedures are part of InterBase or Firebird, it is irrelevant which front
end is subsequently used, be it Delphi, PHP or other.

There are no disadvantages to using stored procedures. There are however, two limita-
tions. Firstly, any variable information must be able to be passed to the stored proce-
dure as parameters or the information must be placed in a table that the stored proce-
dure can access. Secondly, the procedure and trigger language may be too limited for
complex calculations. Stored procedures should be used under the following circum-
stances:

1. If an operation can be carried out completely on the server with no necessity to ob-
tain information from the user while the operation is in process. When invoking a
stored procedure these input parameters can be incorporated in the stored procedure.

2. If an operation requires a large quantity of data to be processed, whose transfer
across the network to the client application would cost an enormous amount of time.

3. If the operation must be performed periodically or frequently.

4. If the operation is performed in the same manner by a number of different proc-
esses, or processes within the application, or by different applications.

The stored procedure must contain all statements necessary for the database connec-
tion, creation or alteration of the stored procedure, and finally the disconnection from
the database.

3

Database Objects - Stored Procedure

225

All SQL scripts can be incorporated into a stored procedure and up to 10 SQLs in one
procedure, as well as the additional functions already mentioned, making stored proce-
dures considerably quicker and more flexible than SQL.

Stored procedures can often be used as an alternative to views (being more flexible
and offering more control) as the ORDER BY instruction cannot be used in a view (the
data sets are displayed as determined by the optimizer, which is not always intelli-
gent!). In such a case, a stored procedure should be used.

Stored procedures are almost identical to triggers, the only exception being the way
they are called. Triggers are called automatically when a change to a row in a table oc-
curs. Most of what is said about stored procedures applies to triggers as well.

3.5.1 New Procedure

There are numerous ways to approach creating a new stored procedure:

1. Using the IBExpert menu item Database / New Procedure or using the New Proce-
dure icon on the New Database Object toolbar to start the Procedure Editor.

2. From the DB Explorer by right-clicking on the highlighted procedure branch of the
relevant connected database (or key combination [Ctrl + N]) which also starts the Pro-
cedure Editor.

3. A stored procedure can also be created directly from a selected table in the DB Ex-
plorer, using the right-click pop-up menu item Create SIUD procedures.

3

Database Objects - Stored Procedure

226

4. Or created directly from the Field Editor.

5. Or created in the IBExpert SQL Editor, and then saved as a stored procedure. When
an SQL script has been successfully committed, and the results are as wished, the
script can be integrated into a stored procedure using the stored procedure button. The
stored procedure script appears, and simply needs to be named and completed.

3

Database Objects - Stored Procedure

227

The CREATE PROCEDURE statement has the following syntax:

CREATE PROCEDURE <Procedure_Name>
<Input_Parameter_List>
RETURNS
<Return_Parameter_List>
AS
<Local_Variable_Declarations>
BEGIN
<Procedure_Body>
END

The CREATE and RETURNS statements (if there is a return statement) comprise the
stored procedure’s header. Everything following the AS keyword is the procedure’s
body.

There can also be statements between the AS and BEGIN keywords that are also con-
sidered part of the body. These statements declare local variables for the stored proce-
dure, and are detailed under Stored Procedure Language.

Since IBExpert version 2005.03.12 there is added support for following Firebird 2 fea-
tures:

• DECLARE <cursor_name> CURSOR FOR ...
• OPEN <cursor_name>
• FETCH <cursor_name> INTO ...
• CLOSE <cursor_name>
• LEAVE <label>

3

Database Objects - Stored Procedure

228

• NEXT VALUE FOR <generator>

Further information explaining the necessary components can be found under the sub-
ject Procedure Editor, started using the first two menu options (i.e. Database menu
and DB Explorer right mouse button menu).

The Procedure Editor has its own toolbar (see Procedure Editor toolbar). To the right of
the toolbar, the new procedure name can be specified. The procedure name follows the
naming convention for any InterBase/Firebird object and must be unique.

The Lazy Mode icon can be used to switch the lazy mode on and off as wished:

The New Procedure Editor has four pages: (1) Edit, (2) Description, (3) Plan Analyzer
and (4) DDL, described under Procedure Editor. A new procedure is created on the
Procedure Editor / Edit page.

Stored Procedure parameters (input and output/returns)

Input parameters are a list of variables (=values) that are passed into the procedure
from the client application. These variables can be used within the procedure to modify
its behavior.

The return parameter (or output parameter) list represents values that the procedure
can pass back to the client application, such as the result of a calculation. Each list is in
the following format:

ParameterName1 ParameterType,
ParameterName2 ParameterType,
...
ParameterNameN ParameterType

ParameterType is any valid InterBase/Firebird data type except blob, domain and ar-
rays of data types.

Local variables / DECLARE VARIABLE statement

Local variables can be defined Within the procedure body. Local variables of any Inter-
Base/Firebird type can be declared within a stored procedure. As with any other struc-
tured programming environment, these variables only exist while the procedure is run-
ning, and their scope is local to the procedure. They are invisible outside the procedure
and are destroyed when the procedure finishes. There are no global variables available
with stored procedures and triggers. If values need to be shared by two or more pro-
cedures, they should either be passed as parameters or stored in a table.

Local variables are declared immediately after the AS clause, using the DECLARE VARI-
ABLE statement. For example the variable ANY_SALES is declared in the EMPLOYEE data-
base's DELETE_EMPLOYEE procedure:

DECLARE VARIABLE ANY_SALES INTEGER;

3

Database Objects - Stored Procedure

229

Each variable must be declared in its own DECLARE VARIABLE statement, as each
statement can declare only one variable.

Procedure body

The procedure body consists of a compound statement, which can be any number of
InterBase/Firebird procedure and trigger language statements. The procedure body
starts with a BEGIN statement, followed by any local variable declarations, and ends
with an END statement.

BEGIN and END must also be used to surround any block of statements that logically
belong together, such as the statements within a loop.

BEGIN and END do not need terminating characters, except for the final END within the
procedure.

Comment Procedure Body/Uncomment Procedure Body

It certain situations it may be necessary to disable certain commands or parts of SQL
text. This can be easily done temporarily, without it being necessary to delete these
commands.

Simply select the rows concerned in the SQL Editor, and select either the editor toolbar
icons:

the right mouse button menu item Comment Selected, or key combination [Ctrl + Alt
+ .]. This alters command rows to comments. The commented text can be reinstated
as SQL text by using Uncomment Procedure icon (above), the right mouse button
menu item Uncomment Selected, or [Ctrl+ Alt + ,].

Lazy Mode

Using lazy mode, the programmer does not have to worry about which input and out-
put parameters need to be considered. It can be switched between lazy mode and
classic mode using the

icon in the Procedure Editor and Trigger Editor.

The possibility to select domains as a data type for input/output parameters and vari-
ables has been added in IBExpert version 2004.8.5.1. In this case IBExpert copies in-
formation from the domain definition to the native data type of the parameter/variable.
It is now also possible to drag 'n' drop a domain from the Database Explorer.

3.5.2 Stored Procedure Editor

The Procedure Editor can be started using the Database / New Procedure menu item;
from the DB Explorer, using the right mouse-click menu or double-clicking on an exist-
ing procedure.

3

Database Objects - Stored Procedure

230

Please refer to New Procedure when creating a stored procedure for the first time.

The Procedure Editor has its own toolbar (see Procedure Editor Toolbar) and offers the
following options:

• Edit
• Description
• Dependencies
• Operations/Index Using
• Plan Analyzer
• DDL
• Grants
• Version History

Edit

The CREATE PROCEDURE statement has the following syntax:

CREATE PROCEDURE <Procedure_Name>
<Input_Parameter_List>
RETURNS
<Return_Parameter_List>
AS
<Local_Variable_Declarations>
BEGIN
<Procedure_Body>
END

A stored procedure comprises the following components:

• input parameters
• output parameters (returns)
• variables
• procedure body
• comments (optional)

If the lazy mode is switched off, the Edit dialog offers a single SQL input area, with the
procedure syntax already displayed. If the lazy mode is switched on, the Edit dialog
consists of three areas:

3

Database Objects - Stored Procedure

231

(1) The field grid, where new parameters can be specified.

(2) In the middle are three buttons specifying the parameter type, i.e. input parame-
ters, output parameters and variables. It is possible to drag 'n' drop parame-
ters/variables from the field grid onto the corresponding button to move them. For ex-
ample, click the Output Parameters button, drag a named variable from the field grid
onto the Variable button. Click the Variable button to view the new variable in the field
grid.

(3) Below this is the SQL panel for direct code input. Again the procedure syntax is al-
ready displayed to help the user.

For those who do not wish to use the basic syntax template, or wish to add certain
statements themselves to create their own standard, this can be done using the IBEx-
pert menu item Options / General Templates, and clicking on either the Standard Mode
or Lazy Mode under New Procedure.

As with all SQL input windows, the SQL Editor Menu can be called using the right
mouse button.

The basic parameters of the stored procedure are set here as SQL text for creating the
procedure. A parameter can have any InterBase/Firebird data type except blob or ar-
ray. The input parameters are set in brackets after the procedure name, the output pa-
rameters are set in brackets after the RETURNS statement, and the procedure body
written in InterBase procedure and trigger language, bracketed by BEGIN and END
statements.

New parameters can be quickly and easily specified, by clicking the respective button
(i.e. input, output or variables), and inserting field information using the respective
icon or right-click menu, in the same manner as creating a new table.

Local variables of any InterBase/Firebird type can be declared within a stored proce-
dure (please refer to local variables), after the AS keyword and before the BEGIN
(which marks the begin of the procedure body).

3

Database Objects - Stored Procedure

232

Alternatively, the required information can be entered directly in the editor's input
panel and field names can be simply dragged from the DB Explorer or SQL Assistant
into the procedure script. The code insight can be used to save time wasted searching
for correct names, and to prevent any possible spelling errors. A right mouse-click
within this area produces the SQL Editor menu.

The input parameters are set with their types in brackets after the procedure name. By
checking the Code Parameter option under Options / Editor Options / Code Insight, a
list of the necessary parameters automatically appears. Output parameters are speci-
fied in the same way after RETURNS. The operations to be performed by the procedure
are described after the BEGIN statement. Please refer to stored procedure language for
further details.

After inputting the required information, the stored procedure can be executed using
[F9] or the relevant icon. The statement window appears, where the resulting SQL
statement can be viewed before committing. If necessary the code can subsequently
be debugged using the debugging icon or [Shift + Ctrl + D]. (Please refer to Debug
Procedure for more details.).

Don't forget to finally compile the new procedure using the respective toolbar icon or
[F9], and, if desired, autogrant privileges, again using the respective toolbar icon or
key combination [Ctrl + F8].

Description

Please refer to Table Editor / Description.

Dependencies

See Table Editor / Dependencies.

Operations/Index Using

This page dissects the procedure into single operations, and examines them to see
whether they use a plan (i.e. index) or not. The ORG_CHART procedure in the sample
EMPLOYEE database displays red-marked entries, which indicates a plan NATURAL (i.e.
no indices are used). When an operation is selected, the statement for this operation is
displayed in the lower window:

3

Database Objects - Stored Procedure

233

By double-clicking on a selected operation, the SQL panel appears, highlighting the
SQL statements for this operation, enabling further analysis and amendments. For ex-
ample, should perhaps the ORDER BY be altered, or perhaps a different JOIN?

Input and output parameters and variable fields can be displayed, by clicking on the
buttons in the center of the editor. Alterations may be made directly in the SQL window
and subsequently executed and committed.

New to IBExpert v. 2.5.0.47 is the SP/Triggers/Views Analyzer in the IBExpert Tools
menu. This loads all stored procedures and triggers in the active database, and all
NATURAL operations are highlighted.

Plan Analyzer

3

Database Objects - Stored Procedure

234

Please refer to SQL Editor / Plan Analyzer.

DDL

The DDL page is new to IBExpert version 2004.6.17. It includes the CREATE PROCEDURE
statement, stored procedure and parameter descriptions and GRANT statements.

Grants

Please refer to Table Editor / Grants and autogrant privileges.

Version History

Please refer to View / Version History.

3.5.3 Executing Stored Procedures

InterBase/Firebird stored procedures are divided into two groups with respect to how
they are called. Select procedures return result values through output parameters, be-

3

Database Objects - Stored Procedure

235

cause they can be used in place of a table name in an SQL SELECT statement. Non-
select procedures do not return values.

The simplest way to execute a stored procedure is to use the EXECUTE PROCEDURE
statement. This statement can be used in one of the following ways:

• From within another stored procedure.
• From within a trigger.
• From an application.

When a procedure is executed from within an InterBase/Firebird application, such as
another procedure or a trigger, it has the following syntax:

EXECUTE PROCEDURE
<procedure_name>
<input_parameter_list>
RETURNING_VALUES
<parameter_list>

If the procedure requires input variables, or if it is to return output variables, the rele-
vant parameters need to be specified. In each case, <parameter_list> is a list of pa-
rameters, separated by commas (see stored procedure parameters for further informa-
tion).

When using IBExpert's Procedure Editor to execute a procedure, IBExpert tells you
whether input parameters need to be entered:

before displaying the return values (= output or results) on the Results page:

3

Database Objects - Stored Procedure

236

Select Procedures

It is possible to use a stored procedure in place of the table reference in a SELECT
statement. This type of procedure is known as a select procedure.

When a stored procedure is used in place of a table, the procedure should return mul-
tiple columns or rows, i.e. it assigns values to output parameters and uses SUSPEND to
return these values. This allows the SELECT statement to filter the results further by
different criteria.

The SUSPEND statement is used to suspend execution of the procedure and return the
contents of the output variables back to the calling statement. If the stored procedure
returns multiple rows, the SUSPEND statement needs to be used inside a FOR SELECT …
DO loop to return the rows one at a time.

Non–Select Procedures

Non-select procedures are procedures that do not return any results.

3.5.4 Procedure using Substring() function (Susbstr Proce-
dure)

Unfortunately Firebird 1.5 does not allow any variable parameters in the SUBSTRING()
SQL function. Although there are diverse UDF implementations, for those preferring to
use stored procedures, here is an example from Lucas Franzen:

(For those of you who may be wondering what on earth 'Donaudampfschiffahrtsgesell-
schaftskapitän' is, it is the German word for "Donau Steam Navigation Company Cap-
tain"!).

3

Database Objects - Stored Procedure

237

Call:

SELECT RESULT FROM SP_SUBSTRING
 (INPUTSTRING, STARTPOS, NO_CHAR_FROM_STARTPOS).

E.g.: SELECT RESULT FROM SP_SUBSTRING

 ('Donaudampfschiffahrtsgesellschaftskapitän', 1, 10) --> Donaudampf

E.g.: SELECT RESULT FROM SP_SUBSTRING

 ('Donaudampfschiffahrtsgesellschaftskapitän', 35, 8) --> kapitän

CREATE PROCEDURE SP_SUBSTRING (
 SRC VARCHAR (255),
 START_AT INTEGER,
 NLEN INTEGER
)
RETURNS (
 RESULT VARCHAR (255)
)
AS
 declare variable II INTEGER;
 declare variable VGL VARCHAR(255);
 declare variable PFX VARCHAR(255);
 declare variable C CHAR(1);
BEGIN

 /* Version : 1 */
 /* Author: LUC, 08.01.2003*/
 /* Description: */
 /* */

 IF (START_AT <= 0) THEN START_AT = 1;
 IF (START_AT > 255) THEN START_AT = 255;

 IF (NLEN > 255) THEN NLEN = 255;
 IF (NLEN < 1 OR NLEN IS NULL) THEN NLEN = 1;

 VGL = '';
 RESULT = '';
 PFX = '';

 IF (START_AT > 1) THEN
 BEGIN
 II = 1;
 WHILE (II < START_AT) DO
 BEGIN
 PFX = PFX || '_';
 II = II + 1;
 END
 END

3

Database Objects - Stored Procedure

238

 II = START_AT;
 WHILE (II < NLEN + START_AT) DO
 BEGIN
 /* WHAT DOES THE STRING LOOK LIKE AT THE CURRENT POSITION, I.E.
QUERY THE CURRENT CHARACTER */
 C = ' ';

 IF (SRC LIKE PFX || ' %') THEN C = ' ';
 ELSE IF (SRC LIKE PFX || 'A%') THEN C = 'A';
 ELSE IF (SRC LIKE PFX || 'B%') THEN C = 'B';
 ELSE IF (SRC LIKE PFX || 'C%') THEN C = 'C';
 ELSE IF (SRC LIKE PFX || 'D%') THEN C = 'D';
 ELSE IF (SRC LIKE PFX || 'E%') THEN C = 'E';
 ELSE IF (SRC LIKE PFX || 'F%') THEN C = 'F';
 ELSE IF (SRC LIKE PFX || 'G%') THEN C = 'G';
 ELSE IF (SRC LIKE PFX || 'H%') THEN C = 'H';
 ELSE IF (SRC LIKE PFX || 'I%') THEN C = 'I';
 ELSE IF (SRC LIKE PFX || 'J%') THEN C = 'J';
 ELSE IF (SRC LIKE PFX || 'K%') THEN C = 'K';
 ELSE IF (SRC LIKE PFX || 'L%') THEN C = 'L';
 ELSE IF (SRC LIKE PFX || 'M%') THEN C = 'M';
 ELSE IF (SRC LIKE PFX || 'N%') THEN C = 'N';
 ELSE IF (SRC LIKE PFX || 'O%') THEN C = 'O';
 ELSE IF (SRC LIKE PFX || 'P%') THEN C = 'P';
 ELSE IF (SRC LIKE PFX || 'Q%') THEN C = 'Q';
 ELSE IF (SRC LIKE PFX || 'R%') THEN C = 'R';
 ELSE IF (SRC LIKE PFX || 'S%') THEN C = 'S';
 ELSE IF (SRC LIKE PFX || 'T%') THEN C = 'T';
 ELSE IF (SRC LIKE PFX || 'U%') THEN C = 'U';
 ELSE IF (SRC LIKE PFX || 'V%') THEN C = 'V';
 ELSE IF (SRC LIKE PFX || 'W%') THEN C = 'W';
 ELSE IF (SRC LIKE PFX || 'X%') THEN C = 'X';
 ELSE IF (SRC LIKE PFX || 'Y%') THEN C = 'Y';
 ELSE IF (SRC LIKE PFX || 'Z%') THEN C = 'Z';

 ELSE IF (SRC LIKE PFX || 'a%') THEN C = 'a';
 ELSE IF (SRC LIKE PFX || 'b%') THEN C = 'b';
 ELSE IF (SRC LIKE PFX || 'c%') THEN C = 'c';
 ELSE IF (SRC LIKE PFX || 'd%') THEN C = 'd';
 ELSE IF (SRC LIKE PFX || 'e%') THEN C = 'e';
 ELSE IF (SRC LIKE PFX || 'f%') THEN C = 'f';
 ELSE IF (SRC LIKE PFX || 'g%') THEN C = 'g';
 ELSE IF (SRC LIKE PFX || 'h%') THEN C = 'h';
 ELSE IF (SRC LIKE PFX || 'i%') THEN C = 'i';
 ELSE IF (SRC LIKE PFX || 'j%') THEN C = 'j';
 ELSE IF (SRC LIKE PFX || 'k%') THEN C = 'k';
 ELSE IF (SRC LIKE PFX || 'l%') THEN C = 'l';
 ELSE IF (SRC LIKE PFX || 'm%') THEN C = 'm';
 ELSE IF (SRC LIKE PFX || 'n%') THEN C = 'n';
 ELSE IF (SRC LIKE PFX || 'o%') THEN C = 'o';
 ELSE IF (SRC LIKE PFX || 'p%') THEN C = 'p';
 ELSE IF (SRC LIKE PFX || 'q%') THEN C = 'q';

3

Database Objects - Stored Procedure

239

 ELSE IF (SRC LIKE PFX || 'r%') THEN C = 'r';
 ELSE IF (SRC LIKE PFX || 's%') THEN C = 's';
 ELSE IF (SRC LIKE PFX || 't%') THEN C = 't';
 ELSE IF (SRC LIKE PFX || 'u%') THEN C = 'u';
 ELSE IF (SRC LIKE PFX || 'v%') THEN C = 'v';
 ELSE IF (SRC LIKE PFX || 'w%') THEN C = 'w';
 ELSE IF (SRC LIKE PFX || 'x%') THEN C = 'x';
 ELSE IF (SRC LIKE PFX || 'y%') THEN C = 'y';
 ELSE IF (SRC LIKE PFX || 'z%') THEN C = 'z';

 ELSE IF (SRC LIKE PFX || '0%') THEN C = '0';
 ELSE IF (SRC LIKE PFX || '1%') THEN C = '1';
 ELSE IF (SRC LIKE PFX || '2%') THEN C = '2';
 ELSE IF (SRC LIKE PFX || '3%') THEN C = '3';
 ELSE IF (SRC LIKE PFX || '4%') THEN C = '4';
 ELSE IF (SRC LIKE PFX || '5%') THEN C = '5';
 ELSE IF (SRC LIKE PFX || '6%') THEN C = '6';
 ELSE IF (SRC LIKE PFX || '7%') THEN C = '7';
 ELSE IF (SRC LIKE PFX || '8%') THEN C = '8';
 ELSE IF (SRC LIKE PFX || '9%') THEN C = '9';

 ELSE IF (SRC LIKE PFX || 'ä%') THEN C = 'ä';
 ELSE IF (SRC LIKE PFX || 'ö%') THEN C = 'ö';
 ELSE IF (SRC LIKE PFX || 'ü%') THEN C = 'ü';
 ELSE IF (SRC LIKE PFX || 'Ä%') THEN C = 'Ä';
 ELSE IF (SRC LIKE PFX || 'Ö%') THEN C = 'Ö';
 ELSE IF (SRC LIKE PFX || 'Ü%') THEN C = 'Ü';
 ELSE IF (SRC LIKE PFX || 'ß%') THEN C = 'ß';

 ELSE IF (SRC LIKE PFX || '!%') THEN C = '!';
 ELSE IF (SRC LIKE PFX || '"%') THEN C = '"';
 ELSE IF (SRC LIKE PFX || '§%') THEN C = '§';
 ELSE IF (SRC LIKE PFX || '$%') THEN C = '$';
 ELSE IF (SRC LIKE PFX || '&%') THEN C = '&';
 ELSE IF (SRC LIKE PFX || '/%') THEN C = '/';
 ELSE IF (SRC LIKE PFX || '(%') THEN C = '(';
 ELSE IF (SRC LIKE PFX || ')%') THEN C = ')';
 ELSE IF (SRC LIKE PFX || '=%') THEN C = '=';

 ELSE IF (SRC LIKE PFX || '@%') THEN C = '@';
 ELSE IF (SRC LIKE PFX || '+%') THEN C = '+';
 ELSE IF (SRC LIKE PFX || '*%') THEN C = '*';
 ELSE IF (SRC LIKE PFX || '~%') THEN C = '~';
 ELSE IF (SRC LIKE PFX || '#%') THEN C = '#';
 ELSE IF (SRC LIKE PFX || '''%') THEN C = '''';
 ELSE IF (SRC LIKE PFX || '-%') THEN C = '-';

 ELSE IF (SRC LIKE PFX || 'Á%') THEN C = 'Á';
 ELSE IF (SRC LIKE PFX || 'É%') THEN C = 'É';
 ELSE IF (SRC LIKE PFX || 'Í%') THEN C = 'Í';
 ELSE IF (SRC LIKE PFX || 'Ó%') THEN C = 'Ó';
 ELSE IF (SRC LIKE PFX || 'Ú%') THEN C = 'Ú';

3

Database Objects - Stored Procedure

240

 ELSE IF (SRC LIKE PFX || 'á%') THEN C = 'á';
 ELSE IF (SRC LIKE PFX || 'é%') THEN C = 'é';
 ELSE IF (SRC LIKE PFX || 'í%') THEN C = 'í';
 ELSE IF (SRC LIKE PFX || 'ó%') THEN C = 'ó';
 ELSE IF (SRC LIKE PFX || 'ú%') THEN C = 'ú';

 ELSE IF (SRC LIKE PFX || 'À%') THEN C = 'À';
 ELSE IF (SRC LIKE PFX || 'È%') THEN C = 'È';
 ELSE IF (SRC LIKE PFX || 'Ì%') THEN C = 'Ì';
 ELSE IF (SRC LIKE PFX || 'Ò%') THEN C = 'Ò';
 ELSE IF (SRC LIKE PFX || 'Ù%') THEN C = 'Ù';
 ELSE IF (SRC LIKE PFX || 'à%') THEN C = 'à';
 ELSE IF (SRC LIKE PFX || 'è%') THEN C = 'è';
 ELSE IF (SRC LIKE PFX || 'ì%') THEN C = 'ì';
 ELSE IF (SRC LIKE PFX || 'ò%') THEN C = 'ò';
 ELSE IF (SRC LIKE PFX || 'ù%') THEN C = 'ù';

 ELSE IF (SRC LIKE PFX || 'Â%') THEN C = 'Â';
 ELSE IF (SRC LIKE PFX || 'Ê%') THEN C = 'Ê';
 ELSE IF (SRC LIKE PFX || 'Î%') THEN C = 'Î';
 ELSE IF (SRC LIKE PFX || 'Ô%') THEN C = 'Ô';
 ELSE IF (SRC LIKE PFX || 'Û%') THEN C = 'Û';
 ELSE IF (SRC LIKE PFX || 'â%') THEN C = 'â';
 ELSE IF (SRC LIKE PFX || 'ê%') THEN C = 'ê';
 ELSE IF (SRC LIKE PFX || 'î%') THEN C = 'î';
 ELSE IF (SRC LIKE PFX || 'ô%') THEN C = 'ô';
 ELSE IF (SRC LIKE PFX || 'û%') THEN C = 'û';

 ELSE IF (SRC LIKE PFX || '{%') THEN C = '{';
 ELSE IF (SRC LIKE PFX || '}%') THEN C = '}';
 ELSE IF (SRC LIKE PFX || '[%') THEN C = '[';
 ELSE IF (SRC LIKE PFX || ']%') THEN C = ']';

 RESULT = RESULT || :C;

 PFX = PFX || '_';
 II = II + 1;
 IF (II > 255) THEN
 BEGIN
 SUSPEND;
 EXIT;
 END
 END
 SUSPEND;
 END

3.5.5 Debug Procedure or Trigger (IBExpert Debugger)

A stored procedure or trigger can simply and quickly be debugged in IBExpert. (This
feature is unfortunately not included in the Personal Edition.)

3

Database Objects - Stored Procedure

241

Simply open the procedure or trigger in the Procedure or Trigger Editor by double-
clicking on the procedure/trigger name in the DB Explorer and click the Debug icon on
the Procedure or Trigger Editor toolbar (or [Shift + Ctrl + D]) to start the Debugger
window.

The Debug Procedure/Trigger Editor comprises 3 pages, the Debug page (described
here), Performance Analysis (please refer to SQL Editor / Performance Analysis for
more details) and SQL Editor (please refer to Tools / SQL Editor for further informa-
tion).

The upper half of this dialog displays the SQL text. The lower area displays a number
of tabs:

1. Parameters and Variables

The parameters are listed in a grid. The circular symbols to the left of the name indi-
cate whether the parameters are input (I) or output (O). Variables logically have the
key (V). Further information displayed here includes the parameter value, scope and
data type. The Watch boxes can be checked, to specify which variables should be ob-
served.

3

Database Objects - Stored Procedure

242

Since IBExpert version 2004.9.12.1 there is the added possibility to initialize parame-
ters/variables using values of any data grid. Just drag and drop a cell value from any
data grid onto the corresponding node in the parameters/variables list to initialize the
variable with the value of the data cell. It is also possible to initialize multiple vari-
ables/parameters by holding the [Ctrl] key when dropping. In this case IBExpert
searches for the corresponding parameter/variable (by name) for each field in the data
record, and if the parameter/variable is found it will be initialized with the value of the
field with the same name.

And since IBExpert version 2004.04.01.1 there is added support for default values of
input parameters (Firebird 2).

2. Watches

The Watches tab displays those parameters and variables that have been checked for
particular observation in the previous window.

3. Last Statement

Following execution, the last internal statement is displayed here, along with additional
information such as execution time:

4. Breakpoints

3

Database Objects - Stored Procedure

243

This page displays the positions where breakpoints have been specified, using the re-
spective icon in the Debug Procedure toolbar, the [F5] key, or by clicking on the blue
points in the SQL left margin.

When the procedure is executed (using the respective icon or [F9]), it always stops
automatically at these breakpoints. The procedure can thus be executed step by step,
either using [F8] (or the respective toolbar icon) to continue execution step by step
(not including the next sublevel), or [F7] (or the respective toolbar icon) to continue
step by step including the next sublevel. Please note that this Trace Into [F7] function
is new to IBExpert version 2004.04.01.1.

5. Messages

These indicate the sort of error that has occurred and where, by highlighting the rele-
vant SQL row.

6. Results

This page only appears if there are output parameters in the procedure.

3

Database Objects - Stored Procedure

244

7. SQL Editor Messages

These are displayed here when applicable.

When debugging a procedure, first take a look at the values of the parameters and
then use [F8] to go through the procedure step by step ([F9] executes fully). After
each step, all variable values can be seen. Don't forget to work with breakpoints [F5].
Of course, the Debug Procedure toolbar offers all these operations and more.

3.5.6 Alter Procedure

Procedures can be altered directly in the Procedure Editor, started by double-clicking
directly on the procedure name in the DB Explorer. Alternatively use the DB Explorer's
right mouse-click menu item Edit Procedure or key combination [Ctrl + O].

ALTER PROCEDURE has exactly the same syntax as CREATE PROCEDURE. In fact, when
procedures are altered the original procedure definition is replaced. It may seem that
ALTER PROCEDURE is therefore not necessary, as a procedure could be dropped and
then recreated to carry out any changes. However this will not work if the procedure to
be changed is called by another procedure. If procedure A calls procedure B, procedure
B cannot be dropped because procedure A depends on its existence.

The SQL syntax for this command is:

3

Database Objects - Trigger

245

ALTER PROCEDURE <procedure_name>
<revised_input_parameter_list>
RETURNS
<revised_return_parameter_list>
AS
<local_variable_declarations>
BEGIN
<procedure_body>
END

A procedure can only be altered by the original creator or by the SYSDBA user.

3.5.7 Drop Procedure/Delete Procedure

A procedure may only be dropped, if it is not being used at the time of deletion. Also it
may not be dropped if it is used by other procedures, triggers, views or SELECTs, until
this dependency is removed. The Procedure Editor / Dependencies page displays which
database objects use this procedure, and which objects this procedure uses. Most da-
tabase objects can be dropped directly on the Dependencies page or the Dependencies
Viewer by using the right-click menu on the selected object, and choosing the menu
item Drop Object or [Ctrl + Del].

To drop a procedure use the DB Explorer right mouse-click menu item Drop View... (or
[Ctrl + Del]).

IBExpert asks for confirmation:

before finally dropping the procedure. Once dropped, it cannot be retrieved; the proce-
dure has to be recreated, if a mistake has been made!

Using SQL the syntax is:

DROP PROCEDURE <procedure_name>;

A procedure can only be dropped by its creator or the SYSDBA.

3.6 Trigger
A trigger is an independent series of commands stored as a self-contained program
(SQL script) in the database. Triggers are executed automatically in the database when
certain events occur. For example, it is possible to check before an insert, whether a
primary key already exists or not, and if necessary allocate a value by a generator.
These events are table- and row-based.

3

Database Objects - Trigger

246

A trigger is a database object mainly used for integrity and security. It can include one
or more execute commands. They can also be used as an alarm (= event alerter), that
sends an event of a certain name to the InterBase/Firebird Event Manager.

The sequence in which triggers are specified is determined by the term TRIGGER POSI-
TION.

When defining a trigger, the trigger type is specified by special keywords:

• ACTIVE or INACTIVE
• INSERT or UPDATE or DELETE
• BEFORE or AFTER

Please refer to trigger types for more details.

Triggers take no input parameters and do not return values.

They can be created, edited and deleted using the IBExpert DB Explorer or directly in
the IBExpert SQL Editor.

Firebird 1.5 even offers universal triggers (which can be used simultaneously for insert
and/or update and/or delete).

An example of a trigger:

CREATE TRIGGER TEST_TRIG FOR TEST
ACTIVE BEFORE INSERT POSITION 0
AS
begin
 if(new.id is null) then
 new.id=gen_id(GLOB_ID,1);
end

Several triggers can be created for one event. The POSITION parameter determines the
sequence, with which the trigger is executed (it starts at 0; up to 254 are possible).

3

Database Objects - Trigger

247

Triggers are almost identical to stored procedures, the only exception being the way
they are called. Triggers are called automatically when a change to a row in a table
occurs. Most of what is said about stored procedures applies to triggers as well.

3.6.1 Trigger Types

Trigger types refer to the trigger status (ACTIVE or INACTIVE), the trigger position (BE-
FORE or AFTER) and the operation type (INSERT or UPDATE or DELETE).

They are specified following the definition of the table or view name, and before the
trigger body.

ACTIVE or INACTIVE

ACTIVE or INACTIVE is specified at the time a trigger is created. ACTIVE is the default
if neither of these keywords is specified. An inactive trigger does not execute.

BEFORE or AFTER

A trigger needs to be defined to fire either BEFORE or AFTER an operation. A BEFORE
INSERT trigger fires before a new row is actually inserted into the table; an AFTER IN-
SERT trigger fires after the row has been inserted.

BEFORE triggers are generally used for two purposes:

• They can be used to determine whether the operation should proceed, i.e. certain
parameters can be tested to determine whether the row should be inserted, up-
dated or deleted or not. If not, an exception can be raised and the transaction
rolled back.

• BEFORE triggers can also be used to determine whether there are linked rows that
might be affected by the operation. For example, a trigger might be used to auto-
matically reassign sales before deleting a sales employee.

AFTER triggers are generally used to update columns in linked tables that depend on
the row being inserted, updated or deleted for their values. For example, the PER-
CENT_CHANGE column in the SALARY_HISTORY table is maintained using an AFTER UP-
DATE trigger on the EMPLOYEE table.

To summarize: Use BEFORE until all data manipulation operations have been com-
pleted. The EMPLOYEE database trigger SET_CUST_NO is an example of a BEFORE IN-
SERT, as a new customer number is generated before the data set has been inserted.

When manipulation of own data has been concluded, then use an AFTER trigger. The
EMPLOYEE database trigger SAVE_SALARY_CHANGE is an example of AFTER UPDATE, as
the changes to the data have already been completed.

INSERT, UPDATE, DELETE

A trigger must be defined to fire on one of the keywords INSERT, UPDATE or DELETE.

• An INSERT trigger fires before or after a row is inserted into the table.
• An UPDATE trigger fires when a row is modified in the table.

3

Database Objects - Trigger

248

• A DELETE trigger fires when a row is deleted from the table.

If the same trigger needs to fire on more than one operation, separate triggers need to
be defined for each operation. If they share any processing, this code should be placed
in a stored procedure and the procedure called from each trigger. Although - since
Firebird 1.5 triggers are no longer restricted to either insert or update or delete ac-
tions, but only one trigger needs to be created for all of these. For example:

AS
 BEGIN
 if (new.bez<>'')
 then new.bez=upper(new.bez);
 END

The ' ' UPPER applies to INSERT and UPDATE operations.

Please note that special characters, such as German umlauts, are not recognized and
altered to upper case, as the character is treated technically as a special character, and
not an alphabetical letter.

For further information regarding NEW variables, please refer to NEW and OLD context
variables.

NEW and OLD Context Variables

In triggers (but not in stored procedures), InterBase/Firebird provides two context
variables that maintain information about the row being inserted, updated or deleted:

• OLD.columnName refers to the current or previous values in a row being updated or
deleted. It is not relevant for INSERT triggers.

• NEW.columnName refers to the new values in a row being inserted or updated. It is
not relevant for DELETE triggers.

Using the old and new values you can easily create history records, calculate the
amount or percentage of change in a numeric value, find records in another table that
match either the old or new value or do pretty well anything else you can think of.

It is possible to read to or write from these trigger variables.

3.6.2 New Trigger

There are numerous ways to create a trigger in IBExpert.

1. Using the menu item Database / New Trigger or the respective icon on the New Da-
tabase Object toolbar.

2. From the DB Explorer by right-clicking on the highlighted trigger branch of the rele-
vant connected database (or key combination [Ctrl + N]).

Both these options open the Trigger Editor:

3

Database Objects - Trigger

249

The Trigger Editor's first page allows the (1) trigger name, (2) table or view name,
(3) position, (4) active/inactive, and (5) trigger type to be specified simply and
quickly, with the aid of pull-down lists, provided the lazy mode has been switched on.
The trigger body (6) can be completed in the SQL window.

3. A trigger can also be created in the Table Editor or View Editor, on the Triggers page
by selecting the desired BEFORE/AFTER operation and using the mouse right-click menu
item New Trigger. This opens the New Trigger Editor shown above.

4. Or in the Field Editor on the Autoincrement page. For example, a trigger text for a
new generator can be simply and quickly created using the Edit Field / Autoinc, Create
Generator and then Create Trigger, .

For those preferring direct SQL input, the CREATE TRIGGER statement has the following
syntax:

CREATE TRIGGER <trigger_name>
FOR <table_name>
<keywords_for_trigger_type>
AS

3

Database Objects - Trigger

250

<local_variable_declarations>
BEGIN
<body_of_trigger>
END

The trigger name needs to be unique within the database, and follow the Inter-
Base/Firebird naming conventions used for columns, tables, views and procedures.

Triggers can only be defined for a single table or updateable view. Triggers that should
apply to multiple tables need to be called using a stored procedure. This can be done
simply by creating a stored procedure which refers to the trigger.

Triggers fire when a row-based operation takes place on the named table or view.

Position:

255 positions are allowed per table, (starting at 0, up to 254). Several triggers may
share a single position.

Trigger Types:

Trigger status: ACTIVE or INACTIVE
Trigger position: BEFORE or AFTER
Operation type: INSERT or UPDATE or DELETE

Please refer to the links for further information regarding these types.

Local Variable Declarations:

Triggers use the same extensions to SQL that InterBase/Firebird provides for stored
procedures. Therefore, the following statements are also valid for triggers:

DECLARE VARIABLE
BEGIN … END
SELECT … INTO : variable_list
Variable = Expression
/* comments */
EXECUTE PROCEDURE
FOR select DO …
IF condition THEN … ELSE …
WHILE condition DO …

As with stored procedures, the CREATE TRIGGER statement includes SQL statements
that are conceptually nested inside this statement. In order for InterBase/Firebird to
correctly parse and interpret a trigger, the database software needs a way to terminate
the CREATE TRIGGER that is different from the way the statements inside the CREATE
TRIGGER are terminated. This can be done using the SET TERM statement.

Since IBExpert version 2005.03.12 there is added support for following Firebird 2 fea-
tures:

• DECLARE <cursor_name> CURSOR FOR ...

3

Database Objects - Trigger

251

• OPEN <cursor_name>
• FETCH <cursor_name> INTO ...
• CLOSE <cursor_name>
• LEAVE <label>
• NEXT VALUE FOR <generator>

Don't forget to finally compile the new trigger using the respective toolbar icon or [F9],
and, if desired, autogrant privileges, again using the respective toolbar icon or key
combination [Ctrl + F8].

Create a trigger for a generator

Generally a generator is used to determine unique identification numbers for primary
keys. A BEFORE INSERT trigger can be defined for this to generate a new ID, increasing
the current value using the GEN_ID() function, and automatically entering it in the re-
spective table field.

The above illustrates the Field Editor, started from the Table Editor.

Create a trigger for a view

It is possible to create a trigger for a view directly in the View Editor on the Trigger
page. This is particularly interesting for read-only views.

For example, BEFORE INSERT, insert into Table1 new_fields and table2 new_data for
fields. BEFORE UPDATES and BEFORE DELETE triggers should also be added, in order to
distribute the data manipulations made in the view into the respective base tables.

3.6.3 Trigger Editor

The Trigger Editor can be started using the Database / New Trigger menu item; from
the DB Explorer, using the right mouse-click menu or double-clicking on an existing
trigger, or alternatively directly from the View or Table Editor / Triggers tab.

Please refer to New Trigger when creating a trigger for the first time.

3

Database Objects - Trigger

252

The Trigger Editor has its own toolbar (see Trigger Editor toolbar) and offers the follow-
ing options:

• Trigger
• Description
• Dependencies
• Operations/Index Using
• DDL
• Version History

Trigger

The Trigger Editor's first page allows the trigger name, table or view name, position,
active/inactive, and trigger type to be specified simply and quickly, with the aid of pull-
down lists, provided the lazy mode has been switched on:

If this is switched off, the above information all needs to be specified in the SQL win-
dow:

3

Database Objects - Trigger

253

The SQL window provides a template, for both standard (for the whole trigger) and
lazy mode, where the trigger body can be input. These templates can be altered if
wished, using the IBExpert menu item Options / General Templates / New Trigger.

As with all SQL input windows, the SQL Editor Menu can be called using the right
mouse button. The keyboard shortcuts available in the SQL Editor are also available
here.

When the trigger or trigger alterations are complete, it can be compiled using the re-
spective icon or [Ctrl + F9]. If errors are found, click YES when the Compile Anyway
query appears, to produce an SQL error script (below the trigger text), to detect the
error source.

If the problem is more complicated, the options Copy Script or Copy Info can be used
before finally rolling back the trigger.

The Trigger Editor also has its own Debug Trigger icon. For more information regarding
this, please refer to Debug Procedure or Trigger.

Description

Please refer to Table Editor / Description.

Dependencies

Please refer to Table Editor / Dependencies.

Operations/Index Using

Please refer to Procedure Editor / Operations / Index Using.

DDL

3

Database Objects - Trigger

254

Please refer to Table Editor / DDL.

Version History

Please refer to View Editor / Version History.

Comment Trigger Body/Uncomment Trigger Body

It certain situations it may be necessary to disable certain commands or parts of trig-
ger code. This can be easily done temporarily, without it being necessary to delete
these commands.

Simply select the rows concerned in the SQL Editor, and select either the editor toolbar
icons:

the right mouse button menu item Comment Selected, or key combination [Ctrl + Alt
+ .]. This alters command rows to comments. The commented text can be reinstated
as SQL text by using Uncomment Procedure icon (above), the right mouse button
menu item Uncomment Selected, or [Ctrl+ Alt + ,].

It can not only be used to add comments and documentary notes to more complex
stored procedures and triggers; but also to factor out selected parts of code during the
testing phase, or even for customer applications, where certain features are not cur-
rently needed but may be required at a future date. The code can be reinstated by
simply uncommenting as and when required.

3.6.4 Alter Trigger

Both the trigger header and the trigger body may be altered.

3

Database Objects - Trigger

255

The trigger header may be activated or deactivated, or its position changed (in relation
to other triggers).

If the trigger body needs to be altered, there is no need to make any alterations to the
header, unless you wish to of course! Although in this case, it would probably make
more sense to drop the trigger and create a new one. Any amendments to the trigger
body override the original contents.

Triggers can easily be altered in the DB Explorer's Trigger Editor, opened either by
double-clicking on the trigger name, or right-clicking and selecting Edit Trigger [Ctrl +
O]. The header information can be changed as wished using the pull-down lists to alter
position, active/non-active and type:

(Image shows lazy mode). The body text may be altered in the SQL panel as wished.

Finally the revised trigger needs to be compiled and committed, for the alterations to
become effective.

The SQL syntax for alterations to the trigger header is as follows:

ALTER TRIGGER <trigger_name> INACTIVE | ACTIVE

ALTER TRIGGER <trigger_name> POSITION n

where n is the new position number. Or to alter the trigger body:

3

Database Objects - Generator

256

ALTER TRIGGER <trigger_name>
AS
BEGIN
 <new_trigger_body>
END

A trigger can only be altered by the database owner or by the SYSDBA.

3.6.5 Drop Trigger/Delete Trigger

A trigger can only be dropped if other users are not performing any changes to any ta-
bles which may relate to the specified trigger, at the time of deletion.

In IBExpert, a trigger can be dropped from the DB Explorer by selecting the trigger to
be deleted and using the right-click menu item Drop Trigger or [Ctrl + Del].

IBExpert asks for confirmation

before finally dropping.

For those preferring to use SQL, the syntax is as follows:

DROP TRIGGER <trigger_name>

An alternative solution to dropping triggers is to alter them to the INACTIVE status.
That way they are left in the database, but disabled from firing, just in case they might
be needed after all at a later date.

A trigger can only be dropped by the database owner or the SYSDBA.

3.7 Generator
Generators are automatic sequential counters, spanning the whole database. They are
necessary because all operations in InterBase/Firebird are subject to transaction con-
trol.

A generator is a database object and is part of the database\'s metadata. It is a se-
quential number, incorporating a whole-numbered 64 bit value integer since InterBase
6/Firebird (in earlier versions a 32 bit value integer), that can automatically be inserted
into a column. It is often used to ensure a unique value in an internal primary key.

Generators are the only transaction-independent part of InterBase/Firebird. For each
operation a new number is generated, regardless whether this transaction is ultimately
committed or rolled back (this consequently leads to \"missing numbers\"). Therefore
generators are best suited for automatic internal sequential numbering for internal
primary keys.

3

Database Objects - Generator

257

Generators can be created either directly in the SQL Editor or using the DB Explorer
(refer to New Generator for details).

Generally a generator is used to determine unique identification numbers for primary
keys. A trigger can be defined for this, which increases the current value using the
GEN_ID() function, and automatically enters it in the respective table field. Please refer
to "create a trigger for a generator" for more information. A generator can also be
called from a stored procedure or an application.

A database can contain any number of generators. Although up until the most recent
InterBase version the number of generators was limited to one data page. One genera-
tor uses 8 bytes, which means approximately 115 generators fit onto one page (at 1K).
This limitation has been solved in the most recent InterBase version.

The current generator value of existing generators is not stored in a table but on its
own system data pages, as the table contents are subject to transactional changes.
The generator value is also secured when backing up.

Generators are database objects and are part of the database\'s metadata, and can be
created, modified and dropped as all other InterBase/Firebird objects in the IBExpert
DB Explorer.

3.7.1 New Generator

A new generator can be created in a connected database in a number of ways:

1. By using the menu item Database / New Generator, the respective icon in the New
Database Object toolbar, or using the DB Explorer right mouse button (or key combi-

3

Database Objects - Generator

258

nation [Ctrl + N]), when the generator heading of the relevant connected database is
highlighted, to start the New Generator Editor:

2. Alternatively, a new generator can be created in the DB Explorer Table Editor on the
Fields page by double-clicking (or using the space bar when inserting a new field) to
check the Autoinc box:

3. Or in the Field Editor under Autoincrement (started by double-clicking on an existing
INTEGER or SMALLINT field in the Table Editor).

4. Or directly in the IBExpert SQL Editor, and then saved as a generator.

Using the Generator Editor the new generator name simply needs to be specified along
with the initial generator value. Several generators can be created in the Generator
Editor and compiled simultaneously:

3

Database Objects - Generator

259

Using the Display all Generators button on the Generator Editor toolbar, all generators
for the database can be listed and an existing generator selected. (For internal num-
bering purposes, the same generator may be used on several fields, for example all in-
ternal primary key IDs, within the database.)

Using the Autoinc page in the Table and Field Editors, the Create Generator box simply
needs to be checked, and the name and starting value defined.

It is also possible to select an existing generator for the specified field here (simply
click Use Existing Generator and select from the pull-down list):

For those preferring direct SQL input, the syntax is as follows:

CREATE GENERATOR <Generator_Name>;

This statement also sets the initial generator value to zero. To establish a different
starting value, use the SET GENERATOR statement, for example:

SET GENERATOR <Generator_Name> TO n;

where n is the initial generator value. SET GENERATOR can also be used to reset an ex-
isting generator's value. This however requires care, as usually the column(s) that re-
ceives the generator value is/are defined to be unique. For example, you would not
normally reset customer IDs except under unusual and controlled circumstances.

3

Database Objects - Generator

260

To increment the generator use the STEP_VALUE parameter (can be positive or nega-
tive):

GEN_ID(<Generator_Name>, STEP_VALUE)

If this parameter is not used, the default STEP_VALUE with an increment of 1 applies.

3.7.2 Generator Editor

The Generator Editor can be started using the Database / New Generator menu item;
from the DB Explorer, using the right mouse-click menu or double-clicking on an exist-
ing generator; or directly from the Field or Table Editor / Autoincrement.

Please refer to New Generator when creating a generator for the first time.

The Generator Editor has its own toolbar (see Generator Editor toolbar) and offers the
following options:

• Generators
• Dependencies
• DDL
• Scripts

Generators

Here it is possible to create new generators, select an existing generator, and alter a
generator.

Please refer to New Generator or Alter Generator for details.

Dependencies

Please refer to Table Editor / Dependencies.

DDL

Please refer to Table Editor / DDL.

3

Database Objects - Generator

261

Scripts

Creating - displays the CREATE GENERATOR statement for the generator selected on
the Generators page. If all generators are displayed on the Generator page (Display All
Generators button), all corresponding CREATE statements appear on this page.

Setting Values - displays the SET GENERATOR statement for the generator selected on
the Generators page. Again, if all generators are displayed on the Generator page
(Display All Generators button), all SET statements appear on this page.

Full - displays the full SQL text for the generator selected on the Generators page (or
all generators).

Please note that the Scripts page is for display only. It is not possible to make any
amendments on this page.

3.7.3 Alter Generator

A generator may be altered to specify a new value. The value of a generator can be
changed as often as wished.

This can be performed in IBExpert using the DB Explorer's Generator Editor, opened ei-
ther by double-clicking on the generator name, or right-clicking and selecting Edit
Generator [Ctrl + O]. Simply enter the new figure in the Value column, compile and
commit.

The SQL syntax for altering a generator is as follows:

SET GENERATOR <generator_name> TO n

where n is the new value. This new value is immediately effective.

Please refer to the SET GENERATOR statement for further information.

3

Database Objects - Exception

262

3.7.4 Drop Generator/Delete Generator

In IBExpert, a generator can be dropped from the DB Explorer by selecting the genera-
tor to be deleted and using the '-' icon on the Generator Editor toolbar or [Shift + Del].

IBExpert asks for confirmation and displays the SQL statement:

before finally dropping when the statement is committed.

For those preferring to use SQL, the syntax is as follows:

DROP GENERATOR <generator_name>;

3.8 Exception
Exceptions are user-defined named error messages, written specifically for a database
and stored in that database for use in stored procedures and triggers.

If it is ascertained in a trigger that the value in a table is incorrect, the exception is
fired. This leads to a rollback of the total transaction that the client application is at-
tempting to commit. Exceptions can be interleaved.

3

Database Objects - Exception

263

They can be shared among the different modules of an application, and even among
different applications sharing a database. They provide a simple way to standardize the
handling of preprogrammed input errors.

Exceptions are typically used to implement program logic, for example, you do not
wish a user to sell an item in stock, which has already been reserved by another user
for their customer.

Exceptions are database objects and are part of the database\'s metadata, and can be
created, modified and dropped as all other InterBase/Firebird objects in the IBExpert
DB Explorer.

3.8.1 New Exception/Exception Editor

A new exception can be created in a connected database either by using the menu item
Database / New Exception, the respective icon in the New Database Object toolbar, or
using the DB Explorer right-click menu (or key combination [Ctrl + N]), when the ex-
ception heading of the relevant connected database is highlighted. A New Exception
dialog appears, with its own toolbar:

3

Database Objects - Exception

264

Alternatively, a new exception can be created directly in the IBExpert SQL Editor, using
the following statement:

CREATE EXCEPTION <Exception_Name>
"Exception_Text";

The Exception Editor can be opened directly from the DB Explorer by double-clicking on
any existing exception name. It can also be started directly from any procedure or
trigger containing an exception, simply by double-clicking on the exception name in the
SQL text on the Procedure Editor's Edit page, or the Trigger Editor's Triggers page.

Exceptions

The new exception name can be added to the list displaying all exceptions for the ac-
tive database, and the exception text message entered. Please be careful when using
special characters! Especially when using older versions of InterBase, it is preferable to
abstain from using any special characters. With the newer versions, there should not
be any problems, provided the correct character set has been specified.

The exception ID is automatically assigned by the database, when the exception is
committed.

Dependencies

Please refer to Table Editor / Dependencies.

DDL

Please refer to Table Editor / DDL.

3

Database Objects - Exception

265

3.8.2 Raising an Exception

The EXCEPTION statement is used to notify a calling application of an exception. The
calling application can be a trigger, a stored procedure, or another program. To raise
an exception in a trigger or stored procedure use the EXCEPTION keyword:

EXCEPTION <Exception_Name>;

When an exception is raised, the following takes place:

• The exception terminates the trigger or procedure
• Any statements in the trigger or stored procedure that follow the EXCEPTION state-

ment are not executed. In the case of a BEFORE trigger the update that fired the
trigger is aborted.

• The trigger or procedure returns an error message to the calling application.

An example of an exception raised in a procedure can be found in the EMPLOYEE data-
base. The exception REASSIGN_SALES was first created:

and then incorporated into the DELETE_EMPLOYEE procedure:

3

Database Objects - Exception

266

3.8.3 Alter Exception

Exceptions can be altered directly in the Exceptions Editor, started by double-clicking
directly on the exception name in the DB Explorer. Alternatively use the DB Explorer's
right mouse-click menu item Edit Exception or key combination [Ctrl + O].

The Exception Editor appears, where changes to the exception name and exception
text can be made as wished. Changes to exception texts may be made even if other
objects depend on them, however not the exception name.

The SQL syntax is:

ALTER EXCEPTION <exception_name>
'New Exception Text';

An exception can only be altered by the original creator or by the SYSDBA user.

3.8.4 Drop Exception/Delete Exception

An exception may not be dropped if it is used by other procedures or triggers, until the
dependency is removed. Any such dependencies are listed under the Exception Editor /
Dependencies page, where they can be directly removed, if wished.

3

Database Objects - User–Defined Function (UDF)

267

To drop an exception use the DB Explorer right mouse-click menu item Drop Excep-
tion... or [Ctrl + Del].

IBExpert asks for confirmation:

before finally dropping the exception. Once dropped, it cannot be retrieved.

Using SQL the syntax is:

DROP EXCEPTION <exception_name>;

An exception can only be dropped by its creator, the database owner or the SYSDBA.

3.9 User–Defined Function (UDF)
A user-defined function (UDF) is used to perform tasks that Firebird/InterBase can't.

It can be described as an external database function written entirely in another lan-
guage, such as C++ or Pascal, to perform data manipulation tasks not directly sup-
ported by InterBase/Firebird.

UDFs can be called from InterBase/Firebird and executed on the server. These func-
tions can exist on their own or be collected into libraries. UDFs offer the possibility to
create your own functions (such as SUBSTR) and integrate them in the database itself.
Each UDF is arranged as a function, belonging to a DLL (Linux: .SO). Thus one dynami-
cally loaded library consists of at least one function.

UDFs can be incorporated into the database using the IBExpert DB Explorer, IBExpert
SQL Editor, or IBExpert Script Executive.

The IBExpert UDF Editor displays those UDFs inserted into the list, by double-clicking
on the UDF name in the DB Explorer, or alternatively using the navigation icons in the
editor toolbar to insert single or all UDFs. The grid display can also be filtered or
grouped if wished. The grid displays key information, including name, library, entry
point, input parameters, returns, return mechanism (pull-down list of options),

3

Database Objects - User–Defined Function (UDF)

268

whether freed (checkbox), and description. Further information is displayed on the De-
scription, Dependencies and DDL pages.

UDF definitions are database dependent and not server dependent, i.e. they need to be
registered for each database individually. Since InterBase 6/Firebird, the libraries need
to be stored in the InterBase/Firebird UDF folder. This is not critical when working with
older InterBase versions.

Please refer to the DECLARE EXTERNAL FUNCTION statement for details of incorporating
UDFs in InterBase/Firebird.

It is important to note that the majority of UDFs, when used in a WHERE condition, pre-
vent indices being used during execution.

An ideal example of a UDF library is RFunc (written in C++) containing over 80 UDFs
(although some of these are only applicable for older InterBase versions or for different
SQL dialects). It is available for both Windows and Linux platforms in English and Rus-
sian and can be downloaded free of charge from www.ibexpert.com/download. Freeud-
fLib is an example of a UDF library written in Delphi, and can also be downloaded from
this link.

3.9.1 Drop External Function/Drop UDF

The DROP EXTERNAL FUNCTION command removes the declaration of the UDF, specified
by an additional parameter, from the database.

The dropped function can no longer be reached by the database, as the relevant refer-
ence to the UDF library is deleted. However the UDF still exists in the UDF library, so
that it can still be used by other databases.

In IBExpert, a UDF can be dropped from the DB Explorer by selecting the UDF to be
deleted and using the right-click menu item Drop UDF or [Ctrl + Del].

IBExpert asks for confirmation

before finally dropping.

The SQL syntax is:

DROP EXTERNAL FUNCTION <external_function_name>

The declaration of a UDF can only be dropped by the database owner or the SYSDBA.

3

Database Objects - User–Defined Function (UDF)

269

3.9.2 RFunc

RFunc is a UDF library containing over 80 UDFs (although some of these are only appli-
cable for older InterBase versions or for different SQL dialects). It is available for both
Windows and Linux platforms in English and Russian. It can be downloaded free of
charge from http://www.ibexpert.com/download/udf/. The most up-to-date version of
this library can found at http://rfunc.sourceforge.net/.

It represents a set of user\'s (UDF) string, bit, numerical functions, and can also be
used for operations with dates&time and blobs. Also contains PARSER, i.e. calculator of
expressions.

InterBase 4.2, 5.x, 6.x, 7.0 (Windows 9x, NT, 2000) and InterBase 5.x, 6.x, 7.0
(Linux) or Firebird are supported. The library is written in C++ and is delivered with
source codes.

RFunc installation

The ZIP-file should be selected (Windows or Linux; English or Russian) and
downloaded.

Windows Installation:

1. The RFUNC.DLL file needs to be copied into a folder:

Variant 1: IB_path\bin (for IB6 - IB_path\UDF), where IB_path is the path to a
folder, in which InterBase/Firebird is installed (recommended).

Variant 2: Windows\System (for Windows 9x) or WinNT\System32
(Wpath>IB_path\bin (for IB6 - IB_path\UDF), where IB_path is the path to a folder,
in which InterBase/Firebird is installed (recommended).

Variant 2: Windows\System (for Windows 9x) or WinNT\System32 (Windows NT, 2k).

2. only for IB 5.x: copy ib_util.dll file from \Lib to face="Courier New">path>\Lib
to \Bin.

If several versions of InterBase servers are installed on one computer, it is necessary
to use the RFunc library appropriate to the installed client IB (GDS32.DLL).

It is recommended before starting the InterBase/Firebird server to substitute
GDS32.DLL appropriate to the version of the server.

For Linux:

IB 5.x

Variant 1: Copy the RFunc file into directory /usr/lib.

Variant 2: Copy the RFunc file into any directory, for example, /home/rFunc. Create
the reference to the library by using the \ln -s /home/rFunc/rfunc

3

Database Objects - User–Defined Function (UDF)

270

/usr/lib/rfunc\ command. The user should own the right to create references in the
directory /usr/lib.

IB6-7 und Firebird

Copy the RFunc file into directory \UDF.

The rfuncx.sql (x = InterBase version) script should then be copied into the IBExpert
Script Executive (found in the Tools menu), and executed [F9]. A database connection
must exist, as UDF libraries need to be registered for each database (i.e. they are da-
tabase dependent and not server dependent).

It is then necessary to disconnect and reconnect to the database so that the full list of
RFunc UDFs can be viewed in the DB Explorer under the DB object branch "UDF".

3.9.3 FreeUDFLib

FreeUDFLib is a free UDF library (October 1998) containing many useful UDFs for use
with InterBase 4.2 and 5.0 under the Win32 platforms (unfortunately no UNIX support
with this). It is written entirely in Delphi and all source code is provided.

It can be downloaded free of charge from http://www.ibexpert.com/download/udf/.

Everything in this release is completely free. However, it's not a PUBLIC DOMAIN.
Please refer to the license.txt, included in the ZIP file for more information on licens-
ing.

FreeUDFLib installation

After unzipping FreeUDFLib.zip, copy FreeUDFLib.dll to the InterBase/Firebird bin
or udf directory, for example: C:\Program Files\InterBase Corp\InterBase\bin,
C:\Program Files\Borland\InterBase\udf\bin or C:\Program
Files\Firebird\udf\bin.

3

Database Objects - User–Defined Function (UDF)

271

The ext_funcs.sql script should then be copied into the IBExpert Script Executive
(found in the Tools menu), and executed using [F9]. A database connection must exist,
as UDF libraries need to be registered for each database (i.e. they are database-
dependent and not server-dependent). If necessary, use the Script Executive menu
item Add CONNECT statement to connect to the desired database, before executing.

It is then necessary to disconnect and reconnect to the database so that the full list of
FreeUDF external functions can be viewed in the DB Explorer under the DB object
branch "UDF".

3.9.4 FreeAdhocUDF

FreeAdhocUDF (copyright (c) 2004 adhoc dataservice GmbH Peter Mandrella) is a free
version of FreeUDFLib, which can be used on both Windows and Linux platforms. It
comes complete with source code. It is based on FreeUDFLibC (copyright (c) 1999
Gregory Deatz) and was altered in 2001 by ADITO Software GmbH Robert Loipfinger.

FreeAdhocUDF can be downloaded from
http://www.ibexpert.com/download/udf/FreeAdhocUDF.zip

Note: to use with dialect 3 (timestamp-field is TIMESTAMP) length of cstring = 8190
because then you can use one UDF four times in a piped string 4 x 8190 = 32760 <
32762 (32 bit - 6 bit internal use).

Modification Objectives:

1. Compatibility between Windows and Linux, allowing easy database migration by
simply performing a backup and restore. This includes the same function names as well
as the same entrypoints, and the functions deliver the same results. Under Windows
the modul_name is “FreeAdhocUDF.dll”, under Linux “FreeAdhocUDF”. In the SQL defi-
nition the modul_name is always “FreeAdhoc UDF” - Windows searches automatically
for the *.dll. Under Linux both the modul_name and the lib name are case-sensitive.

2. Corrections have also been made where Windows produced a wrong result and Linux
a correct one. These corrections are, of course, not in the “old” FreeUDFLib.dll, but
were made available in the new FreeAdhocUDF.dll.

3. New useful functions that have not previously been available in FreeUDFLib. These
become available following compilation under Windows.

4. Optimization of the C code.

Alterations to FreeUDFLibC

F_AGEINWEEKS

The previous function calculated the interval in days, divided by 7 and then rounded
up. In certain cases, for example 20.08.2004 to 21.08.2004, this led to a result of 1.

This function has now been modified to produce the same results as under Windows:
as a rule, weeks always begin on Sunday, so, if the date is 6/21/97, (a Saturday), and

3

Database Objects - User–Defined Function (UDF)

272

your date reference is 6/22/97, a Sunday, AgeInWeeks will return a 1. If the two dates
fall in the same week, then it returns 0.

New functions:

F_CDOWLONGLANG(date, language)
de = German
uk = English
us = English
fr = French
it = Italian
es = Spanish
F_CDOWSHORTLANG(date, language)
F_CMONTHLONGLANG(date, language)
F_CMONTHSHORTLANG(date, language)

Functions that still behave differently under Linux to Windows (no modifications have
been made due to reasons of compatibility):

F_CDOWLONG German language under Windows, English under Linux
F_CDOWSHORT ditto.
F_CMONTHLONG ditto.
F_CMONTHSHORT ditto.

Functions that have been removed from FreeUDFLibC because they either make no
sense or are duplicates:

F_STRPOS
F_FINDWORD
F_FINDWORDINDEX

FreeAdhocUDF installation

After unzipping FreeAdhocUDF.zip, copy FreeAdhocUDF.dll to the InterBase/Firebird
bin or udf directory, for example: C:\Program Files\InterBase
Corp\InterBase\bin, C:\Program Files\Borland\InterBase\udf\bin or
C:\Program Files\Firebird\udf\bin.

The ib_declarations8190dialect1.sql or the ib_declarations8190dialect3.sql
script should then be copied into the IBExpert Script Executive (found in the Tools
menu), and executed using [F9]. A database connection must exist, as UDF libraries
need to be registered for each database (i.e. they are database-dependent and not
server-dependent). If necessary, use the Script Executive menu item Add CONNECT
statement to connect to the desired database, before executing.

It is then necessary to disconnect and reconnect to the database so that the full list of
FreeAdhocUDF external functions can be viewed in the DB Explorer under the DB object
branch "UDF".

3

Database Objects - Blob Filter

273

3.10 Blob Filter
Blob filters are routines for blobs. They translate blob data from one type to another,
i.e. they allow the contents of blob subtype X to be displayed as subtype Y or vice
versa. These filters are ideal tools for certain binary operations such as the compres-
sion and translation of blobs, depending upon the application requirements.

A blob filter is technically similar to a UDF (user-defined function). It hangs itself in the
background onto the database engine, and is used for example to compress the blob,
or to specify the format such GIF or JPG (dependent upon use with Windows or Apple
Mac). The blob filter mechanism relies on knowing what the various subtypes are, to
provide its functionality.

Blob filters are written in the same way that UDFs are written, and are generally part of
standard libraries, just as UDFs are.

3.10.1 Declaring a blob filter

A blob filter needs to be explicitly declared in the database before it is used. This is
done using the keyword DECLARE FILTER. First it is necessary to connect to the data-
base using the blob filter, and then issue the statement. The syntax of DECLARE FIL-
TER is as follows:

DECLARE FILTER <IB/FB_Filter_Name>
<Parameter_List>
INPUT TYPE <Type>
OUPUT TYPE <Type>
ENTRY_POINT <External_Function_Name>
MODULE_NAME <Library_Name>;

3.10.2 Calling a blob filter

In the same way as UDFs, blob filters can be called from InterBase/Firebird code wher-
ever an InterBase/Firebird built-in function call is used. In order to use the blob filter,
invoke the FILTER statement when declaring a cursor. Then, whenever Inter-
Base/Firebird uses the cursor, the blob filter is automatically invoked.

3.11 Role
A role is a named group of privileges. It simplifies granting user rights as multiple us-
ers can be granted the same role. For example, in a large sales department, all those
clerks involved in processing incoming orders could belong to a role "Order Process-
ing".

Should it become necessary to alter the rights of these users, only the role has to be
changed.

3

Database Objects - Role

274

3.11.1 New Role

A new role can be created in a connected database, either by using the IBExpert menu
item Database / New Role, the respective icon in the New Database Object toolbar, or
using the DB Explorer right-click menu (or key combination [Ctrl + N]), when the role
heading of the relevant connected database is highlighted. A New Role dialog appears:

Simply enter the new role name, and click OK to compile and commit.

Note: when a role with the name SYSDBA is created, no other users (not even the
SYSDBA) can access the database.

For those preferring SQL input, the syntax is as follows:

CREATE ROLE <Role_Name>;

3

Database Objects - System Objects

275

After successfully creating one or more new roles, privileges need to be granted to the
role name(s). Please refer to Grant Manager, found in the IBExpert Tools Menu, and
GRANT statement for further information.

3.11.2 Alter Role

Users and rights may be altered for a role using the IBExpert Grant Manager. This can
be started either directly from the DB Explorer using the right-click menu item Edit
Role..., or the key combination [Ctrl + O], or using the IBExpert menu item Tools /
Grant Manager.

Please refer to Grant Manager for further details.

3.11.3 Drop Role/Delete Role

To drop a role use the DB Explorer right mouse-click menu item Drop Role... (or [Ctrl +
Del].

IBExpert asks for confirmation:

before finally dropping the role. Once dropped, it cannot be retrieved.

Using SQL the syntax is:

DROP ROLE <Role_Name>;

3.12 System Objects
InterBase/Firebird generates system database objects, and stores its own specific sys-
tem information about the database objects in system tables. System objects are dis-
played in the DB Explorer in red, if the system options have been flagged in the Data-
base Registration dialog (called using the right mouse button / Additional / DB Ex-
plorer).

3

Database Objects - Text Editor / SQL Code Editor

276

System tables and domains contain the prefix RDB$.

A newly created database is almost 0,5 MB large. This is due to the system tables that
are automatically generated by InterBase/Firebird when a database is created.

3.13 Text Editor / SQL Code Editor
All Object Editors and SQL Editors include text/SQL input windows. Please refer to the
individual subjects, for further information. For example:

• SQL Editor / Edit page,
• Plan Analyzer,
• SQL Editor / Logs,
• Description page,
• Debugger,
• DDL page,
• SQL Monitor,
• Stored Procedure.

Objects may be dragged and dropped from the DB Explorer and SQL Assistant into
many of the IBExpert Tools and Services code editor windows, for example, SQL Editor
and Query Builder. Since version 2004.2.26.1 this has been greatly improved. When an
object node(s) is dragged from the DB Explorer or SQL Assistant, IBExpert will offer
various relevant versions of text to be inserted into the Code Editor.

3

Database Objects - Text Editor / SQL Code Editor

277

The Text Editor/Code Editor has its own comprehensive right-click context-sensitive
menu, the contents of which are described in detail in the SQL Editor / SQL Editor
Menu and IBExpert Edit menu.

As with all working areas in IBExpert there are also a number of key combination
shortcuts available here in the Text Editor. To view all short cuts or specify your own,
use the Localizing Form (a complete list of all shortcuts and operations), opened using
[Ctrl + Shift + Alt + L]. For example, a selected block of text can be simply and easily
indented using [Ctrl + Shift + U] (decrease indentation using [Ctrl + Shift + I]).

4

IBExpert Edit Menu - Load from File / Save to File

279

4 IBExpert Edit Menu
The IBExpert Edit menu offers typical manipulation options found in the majority of
windows applications. It includes:

• Load and Save to File
• Cut, Copy and Paste
• Find, Search Again and Replace
• Incremental Search
• Print Preview, Print and Page Setup

4.1 Load from File / Save to File
These first two items in the IBExpert Edit menu can also be called using the SQL Editor
right-click menu (available in the SQL and Object Editors) or the key combinations [Ctrl
+ L] or [Ctrl + S] respectively. These items can also be found in the Edit toolbar.

They allow SQL scripts etc. to be loaded or saved to file.

4.2 Cut / Copy / Paste / Select All
These three items can be found in the IBExpert Edit menu and SQL Editor right-click
menu (available in the SQL and Object Editors). They can also be executed using the
key combinations:

• Cut [Ctrl + X]
• Copy [Ctrl + C]
• Paste [Ctrl + V]

These items can also be found in the Edit toolbar. They allow selected (i.e. marked)
text to be cut or copied into the clipboard, and then pasted - either directly in IBExpert
or in other applications, such as Windows Editor, Word etc.

The menu item Select All [Ctrl + A] selects a complete text (e.g. SQL script).

4.3 Find / Search Again / Replace
These three items can be found in the IBExpert Edit menu and SQL Editor right-click
menu (available in the SQL and Object Editors). They can be executed using the key
combinations:

• Find [Ctrl + F]
• Search Again [F3]
• Replace [Ctrl + R]

or the respective icons in the Edit toolbar.

They are useful for finding individual words/digits or word/digit strings in longer texts
or metadata. The Find dialog offers a number of options:

4

IBExpert Edit Menu - Find / Search Again / Replace

280

Find page:

(1) Find What: the Find dialog automatically offers the word, where the cursor is cur-
rently standing, or a selected text. This can be altered as wished. Previous Find criteria
can be selected using the pull-down list.

(2) Options: This includes Case Sensitive, Whole Words Only and Regular Expressions
(e.g. *,?).

(3) Direction: i.e. forwards or backwards.

(4) Scope: i.e. global or just the selected text.

(5) Origin: From cursor (searches from the cursor position onwards), or entire scope
(complete text).

The Find in Metadata page offers alternative options:

These include database selection (or even a Search in all active databases option using
the checkbox at the bottom of the dialog) and, in addition to the options offered on the
Find page, a check list of the database object categories to be searched.

4

IBExpert Edit Menu - Incremental Search

281

New to version 2004.08.05.1 is the checkbox option to search for text or text strings
within database object descriptions.

Replace

The Replace dialog is similar to the Find page in the Find dialog:

with the following additions:

Replace with: enter the word(s)/number(s) that are to replace the searched for text.
Previous Replace entries can be selected using the pull-down list.

The Options check list contains the additional check Prompt on Replace (default), al-
lowing the user to check that the found word/number string is correctly replaced.

4.4 Incremental Search
The Incremental Search [Ctrl + F] allows a simple search for individual entries by sim-
ply marking the desired column header, clicking the right mouse button menu item In-
cremental Search [Ctrl + F] and then typing the relevant digits/letters, until the re-
quired dataset(s) is/are found. Alternatively, the [Ctrl + Enter] keys can be used to
search for the next occurrence of a substring.

This menu item can also be found in the context-sensitive menus in the Table Editor /
Data page and in all editors containing an SQL Editor window and right-click SQL Editor
Menu.

4.5 Print Preview
This item can be found in the IBExpert Edit menu and SQL Editor right-click menu
(available in the SQL and Object Editors).

The Print Preview dialog is part of the Fast Report Manager and, when opened, displays
the current script/report. It offers a number of options:

4

IBExpert Edit Menu - Print Preview

282

It is possible to specify the view scale, using the respective icon or the right-click
menu:

Further options include opening a report/script, saving it, printing the report/script
previewed, and even searching for text within the script:

The last icon in the Print Preview toolbar allows the Print Preview window to be closed.

The right-click menu, in addition to scale specification, also offers options to add a
page (for example, for a front cover or introduction) or delete one, and also to edit the
page previewed, by opening the Report Designer.

4

IBExpert Edit Menu - Print

283

The Report Designer (part of the Report Manager) can also be automatically opened by
double-clicking on the report, enabling the user to make alterations to the layout as
wished.

4.6 Print
This item can be found in the IBExpert Edit menu and SQL Editor right-click menu
(available in the SQL and Object Editors), and as an icon on the relevant toolbars, for
printing scripts, reports or database object metadata.

It opens a standard Windows Print dialog:

including the usual options such as printer specification (and properties), page range
and number of copies.

4.7 Page Setup
This item can be found in the IBExpert Edit menu and SQL Editor right-click menu
(available in the SQL and Object Editors).

It opens a standard Windows Page Setup dialog, where the following options can be
specified:

• Paper size
• Source (i.e. printer tray specification)
• Portrait or landscape
• Margins

as well as a Printer button to specify the printer.

4.8 Convert Identifiers/Keywords
The menu item, Convert Identifiers/Keywords, can be found in the IBExpert Edit menu
or in the right-click Text Editor/Code Editor menu. It offers the following options to al-
ter the appearance of the SQL characters:

Convert keywords: allows all keywords (i.e. statements, commands etc.) in the current
SQL script to be converted completely to lower or upper case.

4

IBExpert Edit Menu - Convert Identifiers/Keywords

284

Convert identifiers: allows all identifiers (i.e. object names, field names etc.) in the
current SQL script to be converted completely to lower or upper case.

5

IBExpert Grid Menu - Apply Best Fit

285

5 IBExpert Grid Menu
The IBExpert Grid menu item is new to version 2003.11.6.1. It includes the following:

• Apply Best Fit
• Save Grid Data as
• Copy Current Record to Clipboard
• Copy All to Clipboard.

It is of course necessary to be in an active grid (e.g. Table Editor / Data page, View
Editor / Data page, SQL Editor / Results page etc.) for any of these menu items to be
effective!

5.1 Apply Best Fit
The IBExpert menu item Apply Best Fit is new to IBExpert version 2003.11.6.1 and can
be started from the Grid menu, or using the key combination [Ctrl + (NumBlock +)].

This automatically adjusts all grid columns to the ideal width.

5.2 Save Grid Data as
The IBExpert menu item Save Grid Data as is new to IBExpert version 2003.11.6.1 and
can be started from the Grid menu, or using the key combination [Shift + Ctrl + S].

It opens the Save Grid Data As... dialog:

It is possible to save grid data into TXT, XLS, HTML or XML formats. This works only
with dataset grids (field and index grids in the Table Editor, the parameters/variables
grid in the Stored Procedure Editor while working in lazy mode), and doesn't work with
SQL Assistant lists, the constraint list in the Table Editor etc.

5.3 Copy Current Record to Clipboard/Copy All
to Clipboard

The IBExpert menu items Copy Current Record to Clipboard and Copy All to Clipboard
are new to IBExpert version 2003.11.6.1 They can be started from the Grid menu, and

5

IBExpert Grid Menu - Copy Current Record to Clipboard/Copy All to Clipboard

286

used to copy either one selected record or all records (including column captions) in an
active grid to clipboard. The values are delimited with the tab character.

6

IBExpert View Menu - Copy Current Record to Clipboard/Copy All to Clipboard

287

6 IBExpert View Menu
The IBExpert View menu allows the developer to specify which, of certain options, he
wishes to have displayed on screen. This eliminates superfluous or unnecessary items
on screen. The options available can be seen in the following illustration:

The options DB Explorer, status bar and windows bar can be blended in and out simply
by clicking on the check box (alternatively using the space bar). The menu item Tool-
bar is subdivided into the four main standard toolbars: Database toolbar, Tools toolbar,
Edit toolbar, and New DB Objects toolbar.

Autohide DB Explorer is a further alternative to quickly blend the DB Explorer in and
out as wished (alternatively use the [F11] key). This option namely enables the DB Ex-
plorer to disappear automatically when any editor is opened - allowing a larger working
area. It is blended back into view simply by holding the mouse over the left-hand side
of the IBExpert main window.

7

IBExpert Options Menu - Environment Options

289

7 IBExpert Options Menu
The IBExpert Options menu enables you to organize your IBExpert working environ-
ment as you wish. It includes the following options:

• Environment Options
• Editor Options
• Visual Options
• Keyboard Templates
• General Templates
• Object Editor Options

7.1 Environment Options
Environment Options can be found in the IBExpert Options menu. It enables the user
to organize his IBExpert working environment as he wishes. It is possible, for example,
to set certain defaults for editors and specific menu items, alter colors or the system
font, etc. It includes the following options (please click the links above to read more
about the individual subjects):

• Preferences,
• Confirmations,
• Tools,
• Font,
• Transactions,
• Grid,
• Additional Help,
• Additional Tools,
• Disabled Names,
• Associations,
• IBExpert Direct,
• IBExpert Bug Track,
• IBExpert User Database.

7.1.1 Preferences

The Preferences window allows the user to specify certain general preferences or de-
faults.

7

IBExpert Options Menu - Environment Options

290

These include:

(1) User interface: the pull-down list offers the options MDI or SDI (please refer to
User Interface for more details). Please note that changes to the user interface only
take effect after IBExpert has been restarted.

(2) Interface Language: the default language is English. The pull-down list offers the
following alternative languages:

• Czech
• English
• French
• German
• Italian
• Japanese*
• Polish*
• Portuguese
• Russian
• Spanish

* These languages are available since IBExpert version 2004.04.01.1. Other language
files have also been updated with this version. In order to install these language files, it
is necessary to install the complete version (i.e.
ibec_<version_no=>2004.04.01.1>_full.zip, and not the
ibec_<version_no>_exe.zip; since September 2004 these two alternatives have been
replace with the _full version).

(3) Default Server Version: If the same database version is used for all projects, it
is advisable to set a default version here. This saves having to enter the database
server version every time a database is registered. The pull-down list offers the follow-
ing database versions:

• Unknown (default)

7

IBExpert Options Menu - Environment Options

291

• InterBase 5.x
• InterBase 6.0-6.1
• InterBase 6.5
• InterBase 7.0-7.1
• Firebird 1.0
• Firebird 1.5
• Yaffil 1.0

(4) Default Client Library: The GDS32.DLL is dependent upon the database server.
Firebird has, in addition to this, its own library, FBCLIENT.DLL. The GDS32.DLL is how-
ever also included for compatibility reasons. When working with Firebird, or different
InterBase/Firebird server versions, the DLL can be selected here, as wished; simply
click the Open File icon to the right of this field, to select the library required.

The following features can be checked or unchecked as wished:

• (5) Don't Show Splash Screen - disables the IBExpert Splash Screen displayed
whilst IBExpert is being loaded.

• (6) Disable multiple instances of IBExpert - when checked this option ensures
that IBExpert is only opened once.

• (7) Sounds enabled - switches sound on and off.
• (8) Restore desktop after connect - if this option is checked, IBExpert will re-

store all those forms left open as the last connection was ended, when it reconnects
to the database.

• (9) Maximize first child window - the first Editor/window opened is automati-
cally expanded to fill the maximum screen area. This option is only available in the
MDI version.

• (10) Autohide DB Explorer when inactive - this option autohides the DB Ex-
plorer, if it is not focused. In other words, when the mouse is held over the left
area, the DB Explorer appears; when the mouse is removed to begin work in an
editor or child window, the DB Explorer is blended out, offering a larger work area.

User Interface

The user interface is the connection between the machine and the user, i.e. the way
the software is presented to the user on-screen. The user interface enables the user to
use the program and manipulate data.

Under the IBExpert menu item Options / Environment Options, the user interface can
be defined as SDI (Single Document Interface) or MDI (Multiple Document Interface).

MDI (Multiple Document Interface)

MDI is the abbreviation for Multiple Document Interface.

It can be specified in the IBExpert menu item Options / Environment Options.

7

IBExpert Options Menu - Environment Options

292

This is the recommended interface, as all windows are contained within one main Win-
dow, similar to MS applications. There is one document per window. For all additional
objects or documents, the Windows operating system opens an additional window.

The status bar can be seen at the bottom of the screen.

When changing the interface from SDI to MDI and vice versa, IBExpert needs to be re-
started for the alterations to take effect.

SDI (Single Document Interface)

SDI

SDI is the abbreviation for Single Document Interface.

It can be specified under the IBExpert menu item Options / Environment Options.

7

IBExpert Options Menu - Environment Options

293

The windows are spread freely and somewhat haphazardly over the screen, similar to
Delphi. The status bar is part of the upper menu and toolbar panel.

Careful: it is possible to accidentally move a window totally out of view!

When altering the user interface from SDI to MDI and vice versa, IBExpert needs to be
restarted for the change to take effect.

7.1.2 Confirmations

Some users find it annoying to be constantly asked for confirmation, whether or not
they really want to carry out an operation. This window allows the user to specify,
which confirmations he considers wise.

7

IBExpert Options Menu - Environment Options

294

The following options are available:

• Confirm object (or documentation) saving - if this options is checked, IBExpert
will request confirmation before saving object modifications or descriptions.

• Confirm exit from editor (if object is changed) - if this options is checked,
IBExpert will request confirmation, if alterations have been made, before exiting
from an object editor.

• Confirm object dropping (recommended) - if this options is checked, IBExpert
will request confirmation before dropping any database object.

• Confirm exit - if this options is checked, IBExpert will request confirmation before
closing IBExpert.

• Confirm successful compilation (recommended) - if this options is checked,
IBExpert displays a dialog, showing whether compilation was successful or not..

• Confirm commit/rollback transaction (recommended) - this option determines
whether a message box appears, asking for confirmation when a user commits or
rolls back active transactions in the SQL Editor, Table Editor, View Editor or Stored
Procedure Editor.

7.1.3 Tools

7

IBExpert Options Menu - Environment Options

295

• Autogrant privileges when compiling procedures, triggers and views - this
saves the repetitive task of autogranting privileges on the Grants page of the object
editors each time a new procedure, trigger or view is created, and prevents the
problems which inevitably arise, should the assignment of rights be forgotten.

• Revoke existing privileges - this option is available since IBExpert version
2005.02.12.1. If it is enabled, existing privileges of an object (stored procedure,
trigger, view) will be deleted before granting it new privileges.

• Inplace Objects Editors - this item applies to the so-called editors within editors.

7

IBExpert Options Menu - Environment Options

296

For example, the Table Editor is active and a trigger is selected on the Trigger page: if
this option is not checked, an SQL Editor window appears automatically in the lower
part of the Table Editor, displaying the trigger code, but not allowing any changes to be
made. When this option is however checked, a simple click on a trigger automatically
opens the Trigger Editor in this lower area, enabling work to be done on this trigger,
without having to leave the Table Editor and opening the Trigger Editor.

DB Explorer

7

IBExpert Options Menu - Environment Options

297

Here it is possible to specify whether database object descriptions should be displayed
or not (only makes sense if object descriptions are entered by the user), and whether
double-click expanding (for the DB Explorer tree) is desired.

Furthermore, colors may be specified for the following:

• system objects
• database folders
• inactive triggers

SQL Editor

The following options may be user-defined for the SQL Editor:

7

IBExpert Options Menu - Environment Options

298

• Fetch All - when this option is checked, all records corresponding to the query will
be extracted from the table; as opposed to only those displayed on the Results
page, when this option is left unchecked.

• Go to Results page after executing
• Clear editor after successful execution of DDL statement - new to version

2.5.0.61.

SQL Script Options

The SQL Script Options page offers the following options which may be specified by the
user:

• Abort Script on Error - the script execution is halted the moment an error is de-
tected.

• Rollback on Abort - the script is automatically rolled back the moment an error is
detected in the script. This option is only possible, if the first item, Abort Script on
Error, is already selected.

7.1.4 Font

Here it is possible for the user to specify the system (i.e. IBExpert application) font
name and size. The Sample Text 12345 displays the specified font as it will appear in
IBExpert.

7

IBExpert Options Menu - Environment Options

299

7.1.5 Transactions

Here certain additional data and metadata transaction properties may be defined for
the server connection.

These are all InterBase/Firebird API terms, and may be checked as wished.

Data Transaction Properties:

• Snapshot
• Read Committed
• Read-Only Table Stability
• Read-Write Table Stability

7

IBExpert Options Menu - Environment Options

300

Metadata Transaction Properties:

• Snapshot
• Read Committed
• Read-Only Table Stability
• Read-Write Table Stability

7.1.6 Grid

Here a range of options are available, applicable for all data grids:

Check boxes for the following options:

• Stripy Grids - makes reading wide lines of data rows easier.
• Scrollbars tracking
• Show text blobs as memo - The memo option enables the blob to be easily read

by simply focusing the cursor over the blob field.
• Immediate editor - Enables immediate editing in the data grid by simply placing

the cursor on a field, without having to first double-click on the field, in order to
edit it.

• Allow records grouping - When this option is checked, an additional gray bar ap-
pears above the column headers over the grid. A column header simply needs to be
dragged 'n' dropped into this area, to group by the selected column. A reorganized
data view appears, where the group contents can be revealed or hidden, by clicking
on the '+' or '-' buttons. Please note that this is not the same as the data grid right-
click menu item Group Fields/Ungroup Fields.

7

IBExpert Options Menu - Environment Options

301

• Enable tooltips - when checked, this option displays the full field contents when
the cursor is held over a particular field, if the column width is not sufficient to dis-
play all information. This is useful, if tables with many columns and long field con-
tents need to be scanned.

• Enable navigation using [Tab] and [Shift + Tab] keys
• Allow multiselect - allows multiple data sets to be selected for editing (e.g. copy-

ing). If this is not checked, it is only possible to select one data set at a time. The
change of mode can be recognized by the form/shade of the arrow on the left when
pointing at a selected data set.

Furthermore it is possible to specify the exact representation of a Null field. The default
value is displayed as <null> (in red). Since version 2004.2.26.1 it is also possible to
display NOT NULL fields as bold or to highlight with color.

Colors

Here the user can specify the colors for different elements in the grids:

• Grid Background
• Current Row
• Odd Rows

7

IBExpert Options Menu - Environment Options

302

Display Formats

These options allow the user to specify the display format in grids for integer, float,
date, time and date/time fields.

Further options include a check box option for Use field scale, which allows a field
definition to override these standard definitions, and an option to specify the String
fields' width for characters.

For the various date and time formatting options available, please refer to date time
formats.

7

IBExpert Options Menu - Environment Options

303

Date Time Formats

The following format allows you to alter the way the date and time is displayed. Please
note that this does not alter the way this information is stored, only the way it is dis-
played.

Controls formatting of dates and times

Description

Date time format strings specify the formatting of date-time values (such as
TDateTime) when they are converted to strings. date time format strings are passed to
formatting methods and procedures (such as FormatDateTime), and are also used to
set certain global variables (such as ShortDateFormat).

Date time format strings are composed from specifiers that represent values to be in-
serted into the formatted string. Some specifiers (such as "d"), simply format numbers
or strings. Other specifiers (such as "/") refer to local-specific strings from global vari-
ables.

In the following table specifiers are given in lower case. Case is ignored in formats, ex-
cept for the "am/pm" and "a/p" specifiers.

Specifier Displays

• c Displays the date using the format given by the ShortDateFormat global vari-
able, followed by the time using the format given by the LongTimeFormat global
variable. The time is not displayed if the date-time value indicates midnight pre-
cisely.

• d Displays the day as a number without a leading zero (1-31).
• dd Displays the day as a number with a leading zero (01-31).
• ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the
ShortDayNames global variable.

• dddd Displays the day as a full name (Sunday-Saturday) using the strings given
by the LongDayNames global variable.

• ddddd Displays the date using the format given by the ShortDateFormat global
variable.

• dddddd Displays the date using the format given by the LongDateFormat global
variable.

• e Displays the year in the current period/era as a number without a leading zero
(Japanese, Korean and Taiwanese locales only).

• ee Displays the year in the current period/era as a number with a leading zero
(Japanese, Korean and Taiwanese locales only).

• g Displays the period/era as an abbreviation (Japanese and Taiwanese locales
only).

• gg Displays the period/era as a full name. (Japanese and Taiwanese locales only).
• m Displays the month as a number without a leading zero (1-12). If the m specifier

immediately follows an h or hh specifier, the minute rather than the month is dis-
played.

• mm Displays the month as a number with a leading zero (01-12). If the mm speci-
fier immediately follows an h or hh specifier, the minute rather than the month is
displayed.

7

IBExpert Options Menu - Environment Options

304

• mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by
the ShortMonthNames global variable.

• mmmm Displays the month as a full name (January-December) using the strings
given by the LongMonthNames global variable.

• yy Displays the year as a two-digit number (00-99).
• yyyy Displays the year as a four-digit number (0000-9999).
• h Displays the hour without a leading zero (0-23).
• hh Displays the hour with a leading zero (00-23).
• n Displays the minute without a leading zero (0-59).
• nn Displays the minute with a leading zero (00-59).
• s Displays the second without a leading zero (0-59).
• ss Displays the second with a leading zero (00-59).
• z Displays the millisecond without a leading zero (0-999).
• zzz Displays the millisecond with a leading zero (000-999).
• t Displays the time using the format given by the ShortTimeFormat global variable.
• tt Displays the time using the format given by the LongTimeFormat global variable.
• am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays
'am' for any hour before noon, and 'pm' for any hour after noon. The am/pm
specifier can use lower, upper, or mixed case, and the result is displayed accord-
ingly.

• a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a' for
any hour before noon, and 'p' for any hour after noon. The a/p specifier can use
lower, upper, or mixed case, and the result is displayed accordingly.

• ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the
contents of the TimeAMString global variable for any hour before noon, and the
contents of the TimePMString global variable for any hour after noon.

• / Displays the date separator character given by the DateSeparator global vari-
able.

• : Displays the time separator character given by the TimeSeparator global vari-
able.

• 'xx'/"xx" Characters enclosed in single or double quotes are displayed as-is, and
do not affect formatting.

Example:

To format the date as month, day, year and the time as am or pm, simply enter the
following in Display Formats (IBExpert Options Menu / Environment Options / Grid
/face="">To format the date as month, day, year and the time as am or pm, simply
enter the following in Display Formats (IBExpert Options Menu / Environment Options
/ Grid / Display Formats):

Simply alter DateTime Fields to: mm/dd/yyyy hh:mm am/pmand Time Fields to
hh:mm:ss am/pm

7

IBExpert Options Menu - Environment Options

305

7.1.7 Additional Help

The Additional Help dialog allows the user to add certain additional help files. This is
particularly useful for incorporating the help files of third party components, installed in
the PlugIn menu.

An additional menu item is automatically inserted in the IBExpert Help menu, for each
of these help files.

7.1.8 Additional Tools

The Additional Tools dialog allows the user to add certain additional third party tools.

For more details, please refer to the IBExpert PlugIns Menu.

7

IBExpert Options Menu - Environment Options

306

7.1.9 Disabled Names

This page can be used to define a list of disabled object names. IBExpert refers to this
list, when new database objects (and fields) are created, and publishes a warning if the
new name corresponds to any name in this list.

7.1.10 Associations

This dialog is important, to specify which file types IBExpert should recognize and as-
sociate with the InterBase/Firebird database. The check list includes the following suf-
fixes:

• .GDB
• .FDB
• .IB
• .SQL
• .GRC (new to version 2.5.0.61)

7.1.11 IBExpert Direct

The IBExpert Direct dialog allows the user to specify a number of options, regarding
this IBExpert menu item found in the Help menu. This window can be either started
from the IBExpert Options menu or alternatively directly from the Help menu item
IBExpert Direct using the respective icon:

7

IBExpert Options Menu - Environment Options

307

The options available include the following:

(1) Automatically poll network - this is recommendable, as IBExpert Direct is an
important news source, informing all IBExpert users of news concerning IBExpert, such
as new versions, documentation, downloads, plugins, newsgroups, as well as contact
addresses and a direct link to the IBExpert home page, http://www.ibexpert.com.

(2) The polling interval in days can be user-specified.

Check boxes allow the user to specify whether IBExpert Direct should (3) automatically
shown on refresh, or whether the network should be polled for new items, (4) each
time IBExpert is started.

(5) The Last Update field is purely a display field, showing the last time the network
was polled for new IBExpert Direct news items.

(6) It is also possible to specify a proxy server if necessary, with fields for specifica-
tion of the proxy address, port, user name and password.

(7) The last field displays the IBExpert Direct link address
http://www.ibexpert.com/ibexpert.dir

7.1.12 IBExpert Bug Track

This option allows the user to specify his signature before posting bugs in the IBExpert
Help menu item, Bug Track System.

7

IBExpert Options Menu - Environment Options

308

The IBExpert Bug Track System was introduced in IBExpert version 2.5.0.38 (on
28.04.2003). The Bug Track signature requires the following information:

• Sender Name
• Sender email
• Signature string

The option "Mark message as read after (sec)" applies to all bug messages listed in the
Bug Track System.

7.1.13 IBExpert User Database

7

IBExpert Options Menu - Editor Options

309

The complete IBExpert configuration and work is stored here in the IBExpert User Da-
tabase. We recommend using the user database as a main storage for security rea-
sons.

The IBExpert User Database dialog requires the following information, in order to cre-
ate a new user database. After checking the Allow User Database checkbox the follow-
ing fields need to be completed:

• User Database Connection String - e.g. If you're using local server the connection
string should be as follows: localhost:c:\mydata\ibexpert.fdb (for TCP/IP proto-
col) or just c:\mydata\ibexpert.fdb (for a local protocol).

• User Name (default: SYSDBA)
• Password
• Client Library File
• Check box: Store Project View Data in User Database

The user database can then created and initialized using the "Create and Init User Da-
tabase" button.

7.2 Editor Options
Editor Options can be found in the IBExpert Options menu. It opens the Editor Proper-
ties dialog, which enables the user to organize and customize IBExpert editors as he
wishes. It is possible, for example, to set certain defaults, or alter the font or colors,
customize code completion etc. It includes the following options:

• Editor Options / General,
• Editor Options / Display,
• Editor Options / Color,
• Editor Options / Code Insight.

7.2.1 General

The first page in the Editor Properties dialog is the General page, which offers the fol-
lowing options:

7

IBExpert Options Menu - Editor Options

310

• Auto Indent (default) - this automatically indents code when editing SQL script;
each new indention identical to the previous. The tab (= tabulator) length can be
specified using the lower right Tab Stops counter (default = 4 characters).

• Insert Mode (default) - inserts text at the cursor without overwriting existing text.
When disabled (i.e. when unchecked), the so-called typeover mode is activated, i.e.
the text at the cursor is overwritten. It is possible to use the [Ins] key to switch the
insert mode on and off in the code editor, without having to alter the default.

• Smart Tab - this automatically limits the tab stop lengths to the length of the pre-
vious line.

• Use Syntax Highlight (default) - enables highlighted syntax in the object editor
window. To set highlighting options, please refer to Editor Options / Color.

• Highlight Current Line - useful for orientation in long scripts.
• Find Text at Cursor (default) - searches automatically for the word, where the

cursor happens to be standing when starting the IBExpert Edit / Find menu item
(see also Search - [Strg + F]). This saves having to mark the word first, or type in
the text to be searched for each time.

• Always Show Hyperlinks (default) - displays hyperlinks in SQL script as green
underlined text (unless altered by the user under Editor Options / Color). It can be
opened by double-clicking or single-clicking (user-defined; see Open links with be-
low).

• Show Lines Number - useful when working with long scripts. This option displays
line numbers in the gutter in the editor window. A gutter is automatically inserted,
even if it has been unchecked on the Display page (please refer to Editor Options /
Display).

• Scroll past end of line (default) - when this is not checked, the cursor jumps to
the beginning of the next line automatically when it has reached the end of the
text. If this option is checked, the cursor continues to travel to the right, even after
the end of the text has been reached.

Furthermore it is possible to specify the following:

• Open links with: double click (default) or single click.
• Tab Stops - defines the tab length (see above)
• Undo limit - specifies the maximum number of keystrokes, that can be undone

(default = 50).

7

IBExpert Options Menu - Editor Options

311

7.2.2 Display

The Display page allows the user to specify certain visual editor properties.

The options available here include:

Margin (= right margin) and Gutter (= inner or left margin):
. Visible Right Margin and Gutter (check box option to blend margins in or out)
. User specification of right margin position and gutter width (in characters).
Note: checking the "Show Lines number" box on the General page automatically inserts a
gutter, even if it is not checked here.
Editor Font:
User specifications include font, size and print size (with sample text preview). The advan-
tage here is that it is possible to specify a larger or smaller display font size than the print
font size.

7.2.3 Color

The Color page allows the user to specify colors and text attributes for a range of ele-
ments:

7

IBExpert Options Menu - Editor Options

312

The range of elements includes the following:

• default,
• comments,
• strings,
• keywords,
• numbers,
• hyperlinks,
• wrong symbols,
• identifiers,
• symbols,
• selected text,
• current line,
• double-quoted string (new to IBExpert version 2003.11.6.1),
• conditional directive (new to IBExpert version 2003.11.6.1).
• IBEBlock procedure/function (new to IBExpert version 2005.02.12.1).

The following properties can be specified for the above elements:

• Foreground Color: determines the color of the selected element in the foreground
(usually text)

• Background Color: determines the color of the selected element in the back-
ground (generally used to highlight text)

• Text attributes - includes specification of bold, italic and/or underline.
• Use defaults for - allows the default to be rapidly specified for both the fore-

ground and background colors for a selected element.

The text preview panel displays the elements as they have been specified, allowing the
user to approve or alter his choice, or return to the default settings using the Use de-
faults for Foreground/Background check boxes.

7.2.4 Code Insight

The Code Insight page offers a number of options related to the IBExpert automatic
code completion:

7

IBExpert Options Menu - Editor Options

313

These include:

• Code Completion - here the user can specify, whether code completion should be
active or not.

• Disable Code Completion in Descriptions - a new feature in IBExpert version
2005.01.12.1, allowing the user to disable code completion while editing an object
description.

• Code Parameters - this is a very useful option when active. For example when
working with procedures, a list of all necessary input parameters automatically ap-
pears, and when one or more parameters have already been specified, the next pa-
rameter required appears in bold type. Since IBExpert version 2003.11.6.1 the list
of fields to be inserted is now displayed when the VALUES part of an INSERT state-
ment is typed.

• Delay in seconds, before the code completion pop-up list appears with a list of
one or more possible suggestions (default value is 1 second).

• Code Case - user specification of the words (e.g. object names, field names) in-
serted automatically by code insight: either lower (default), upper, first upper or
name case.

• Code Case and SQL Keywords Case - user specification of the SQL keywords in-
serted automatically by code insight: either lower (default), upper, first upper or
name case. There is also a check option to disable formatting of local variables
when working with stored procedures and triggers.

It is also possible to specify whether keyboard templates (for faster typing of regularly
used words or expressions) should be used, and the Custom Code Insight Items dis-
play panel displays those items, specified by the user.

7

IBExpert Options Menu - Visual Options

314

7.3 Visual Options
Visual Options can be found in the IBExpert Options menu. It opens the Visual Options
Editor, which enables users to customize the IBExpert interface. It is possible, for ex-
ample, to specify the behavior of pop-up menus, the appearance of border and button
styles, and even of splitters.

It includes the following options:

• bars and pop-up menus
• lists and trees
• edit controls
• page controls
• splitters

7.3.1 Bars and Pop–up Menus

The first tab in the Visual Options Editor is the Bars and Pop-up Menus page, which of-
fers the following options:

7

IBExpert Options Menu - Visual Options

315

• Bar Style - the options Standard, Enhanced or Flat may be selected. The visual ef-
fects of the selection is immediately visible in the sample toolbar, displayed at the
top of the Visual Options dialog.

• Show recent items first - reduces those menu items offered in the pull-down list,
to those most recently selected by the user.

• Show full menus after delay - if one of the most recent menu items is not im-
mediately selected, the full range of menu items is displayed.

• Multiline toolbars - allows toolbars to cover more than a single row (which may
eventually lead to icons running off the right-hand side of the screen, if too many
toolbars are active).

7.3.2 Lists and Trees

The Lists and Trees page offers the following options:

7

IBExpert Options Menu - Visual Options

316

Lists and trees may be displayed in a Standard, Flat or Ultraflat format. The visual ef-
fects of the selection can immediately be seen in the example field grid, displayed to
the right of the pull-down list.

7.3.3 Edit Controls

The third tab in the Visual Options Editor is the Edit Controls page, which offers the fol-
lowing options:

• Border Style - options offered include None, Single, Thick, Flat and 3D. The visual
effects of the selection is immediately visible in the sample controls panel in the
lower area of the window.

• Button Style - the options offered here include Default, 3D, Flat Simple, HotFlat.
This changes the style of displaying application buttons. The effect can be pre-
viewed in the sample controls (observe the combo box and check box).

• Button Transparence - here the options include None, Inactive, Always Hide and
Inactive. This alters the appearance of transparent buttons. The effects can be
viewed in the sample controls (observe the combo box).

• Hot Track - activating this option causes boxes and buttons to be highlighted with
a 3D effect, when the mouse is focused over it. The effect only be previewed on all
sample controls, if the Border Style None has been selected. Otherwise this effect
can only be observed on the combo box.

• Shadow - this option places a shadow effect around boxes. The sample controls
preview shows the effect of this.

The sample controls panel displays a preview of how a pull-down list (combo box), edit
field, memo panel/window and check box appear, as specified by the user.

7.3.4 Page Controls

7

IBExpert Options Menu - Visual Options

317

• Backcolor delta - this option alters the contrast shade of those page tabs cur-
rently in the background. The default value is 20; any changes to this value can be
previewed immediately by observing the Visual Options Editor's own page tabs.

• Multiline page controls - when checked, this options allows page tabs (or page
controls) to be placed over more than one line. This saves the user the necessity of
sliding from left to right, in order to find the page he needs. The effect of this op-
tion can most easily be viewed in the DB Explorer. Usually the DB Explorer width is
limited, in order to allow sufficient space in the main working window. It is there-
fore often the case that only a small number of the DB Explorer page tabs are visi-
ble, and it is necessary to move from left to right before opening, for example, the
Windows page. Using this option, the page tabs are displayed over two rows, ena-
bling the user to simply click on the page he needs.

7.3.5 Splitters

A splitter is a moveable line, dividing a child window or editor into two panels.

The Splitters page enables the user to specify the appearance of all IBExpert splitters:

7

IBExpert Options Menu - Keyboard Templates

318

Available options include the following:

• Splitter Style - the options offered here include Standard and Netscape. The Net-
scape style includes a centered strip (if the splitter width is sufficient, directional ar-
rows are visible). The user simply needs to click on this strip to move the splitter up
or down (or left or right if the splitter is vertical), thereby reducing the size of one
panel or window and simultaneously increasing the size of the second panel or win-
dow. It is also possible to manually adjust the splitter position using drag 'n' drop.
When using the standard style the only way to move the splitter is by using drag 'n'
drop.

• Resize Style - the options offered here include None, Line, Update and Pattern.
The effects of these options can be viewed by dragging and dropping the sample
splitter.

• Splitter Width/Height - the effects of any alterations here can be viewed imme-
diately on the sample splitter, displayed in the lower half of this page.

7.4 Keyboard Templates
This can be found under the IBExpert Options menu. It can be used to customize and
standardize typing abbreviations for frequently used typical statements, thus increas-
ing efficiency.

7

IBExpert Options Menu - General Templates

319

For example using the ADD button, enter the shortcut name IFE. The full phrase
should then be defined in the Expansion panel, in the case of our example, IF THEN
ELSE (see above).

After confirming the shortcut entry go back to the SQL Editor Edit page, type "ife" and
press the space bar. It is automatically expanded to an "if ... then ... else ..." state-
ment.

Templates can be added or selected templates edited and deleted as wished. Tem-
plates can also be simply deactivated (instead of deleted), by clicking on the flagged
checkbox to the left of the template name. To reactivate a deactivated template, sim-
ply check the box again.

Further attributes such as Templates Case can also be specified in this editor. Available
options include As Is, Uppercase, Lowercase, Namecase, and NameCase.

A further feature allows the user to insert author, date and time fields automatically
and rapidly, with a simple button click. For example, the abbreviation ME, with the ex-
pansion /* #author #date */ results in an simple documentation comment at the
beginning of all SQLs listing author and date (i.e. /* SYSDBA 08/07/2003 */) simply
by typing ME!

7.5 General Templates
General Templates can be found under the IBExpert menu Options. This can be used to
standardize and automate the naming conventions of new database objects, and in
some cases, to edit SQL code templates for creating some of these objects.

7

IBExpert Options Menu - General Templates

320

Below are a couple of illustrations of such templates.

7

IBExpert Options Menu - Object Editor Options

321

Templates for data logging triggers were added in version 2004.6.17. Please refer to
Log Manager for further information.

7.6 Object Editor Options
Object Editor Options can be found in the IBExpert Options menu. It opens an Objects
Editors Options dialog, which enables users to customize certain database object edi-
tors. It is possible, for example, to specify which page should be active, when the Table
Editor or View Editor is opened, or specify the standard editor mode in the Procedure
Editor or Trigger Editor, and more.

It includes options for the following Editors:

• domains,
• tables,
• views,
• procedures,
• triggers.

7.6.1 Domains Editor Options

The Domains Editor Options page offers the following two options:

7

IBExpert Options Menu - Object Editor Options

322

• Use old-styled modal editor - when checked, this replaces the current Domain
Editor with the old-style editor from earlier versions of IBExpert:

• Enable direct modification of system tables - for reasons of security, it is wise
not to check this item, unless the SYSDBA, administrator or database owner really
need to make changes to any of the system tables.

7.6.2 Tables Editor Options

The Tables Editor Options page offers the following options:

• Restore last active page when editor reopened - checking this options results
in the last active page remaining the active page, when the editor is reopened.

• Active page - offers a choice of all available pages in the Table Editor, i.e. Fields,
Constraints, Indices, Dependencies, Triggers, Data, Description, DDL, Grants. This
option does not function if the "Restore last active page when editor reopened" op-
tion is checked.

• Use RDB$DB_KEY instead of PK for modifying and deleting records -
RDB$DB_KEY is an internal system field. Every single data set in the database has
one of these system keys (a binary column is inserted by InterBase/Firebird for this
purpose into each table). It is always unique, and can - in certain cases be very
useful. For example, if a developer has created tables in his database, with no pri-
mary key, and a particular table column contains the name Miller twice, it is only
possible, using SQL, to delete either both data sets or none. RDB$DB_KEY is a possi-

7

IBExpert Options Menu - Object Editor Options

323

bility to clearly identify individual data sets, and prevent multiple data records acci-
dentally being deleted.

• Sort records on server - records may be sorted in the client memory, by simply
clicking on a table column header, without running a new SELECT. If the data is to
be sorted on the server, a new SELECT statement is required. This is often neces-
sary with large data quantities as the client memory is insufficient.

• Order data by primary key if exists - a further sorting option for data.

7.6.3 Views Editor Options

The Views Editor Options page offers the following options:

Restore last active page when editor reopened - checking this options results in
the last active page remaining the active page, when the editor is reopened.

Active page - offers a choice of all available pages in the View Editor, i.e. SQL, Fields,
Dependencies, Triggers, Data, Description, Grants, DDL, Version History, Recreate
Script, Plan Analyzer. This option does not function if the "Restore active page when
editor reopened " option is checked.

7.6.4 Procedures Editor Options

The Procedures Editor Options page offers the following options:

• Editor Mode - a default editor mode can be specified here; either Lazy Mode or
Standard.

7

IBExpert Options Menu - Object Editor Options

324

• Check Syntax before compiling - here the syntax is first checked locally for any
errors, before sending the SQL to the server. This is quicker than sending every-
thing to the server, which will then need to stop and return any eventual errors.

A number of Recompiling Dependencies are also offered:

• Recompile dependent procedures and triggers request - this option provides
a reminder, asking whether procedures depending upon the amended procedure,
should also be recompiled.

• First recompile procedures with empty bodies - this option compiles the pro-
cedure body source code after the procedure has been compiled, in order to avoid
invalid references within the procedures. As soon as one stored procedure has been
made dependent on another, procedures are automatically compiled in this way.

• Commit after each statement - allows procedures to be compiled step by step,
in order to determine where exactly an error lies.

7.6.5 Triggers Editor Options

The Triggers Editor Options page offers the following options:

• Editor Mode - a default editor mode can be specified here; either Lazy Mode or
Standard.

• Variables in grid - when working in lazy mode, all variables are displayed in a ta-
ble.

• Check Syntax before compiling - here the syntax is first checked locally for any
errors, before sending the SQL to the server. This is quicker than sending every-
thing to the server, which will then need to stop and return any eventual errors.

• Notice about triggers with same position - if two triggers are both specified the
same position, InterBase/Firebird allows this. However InterBase/Firebird chooses
which trigger comes first purely by chance. This is therefore a useful warning, just
in case two triggers have accidentally been given the same position number.

8

IBExpert Tools Menu - SQL Editor

325

8 IBExpert Tools Menu
The IBExpert Tools menu offers an extensive range of tools to aid database administra-
tion, maintenance and manipulation.

8.1 SQL Editor
The SQL Editor is an IBExpert tool which simplifies the input of SQL commands. It is
used to create and execute SQL queries and view and analyze the results.

The SQL Editor is a vital part of IBExpert. As a rule, all work on a database is per-
formed using SQL. The SQL Editor allows you to execute DML and DDL statements,
analyze query plans and query performance, move data between databases, export
query results into many formats, create views and stored procedures from SELECT etc.

The SQL Editor can be started by selecting the IBExpert Tools menu item, SQL Editor,
clicking the respective icon in the Tools toolbar, or using [F12]. This cleans the active
SQL window for new input. An additional SQL Editor can be opened using Tools / New
SQL Editor or [Shift + F12].

When creating stored procedures or triggers using the DB Explorer menu item New
Procedure or New Trigger, an SQL Editor window is also generated. As these editors of-
fer certain additional features (such as lazy mode, debugger), please refer to stored
procedure or trigger for specific details.

The SQL Editor can be used together with the DB Explorer (e.g. table fields can be
marked and moved from the SQL Assistant into the SQL Editor using drag 'n' drop).

The SQL Editor is intended for the execution of single commands. The Script Executive
should be used for more complex scripts.

More than seven tables should not be incorporated into an SQL, as InterBase/Firebird
would need too much time to analyze the indices to determine the most efficient solu-
tion. Therefore the database server simply starts somewhere, which leads to slow and

8

IBExpert Tools Menu - SQL Editor

326

lengthy queries. Since Firebird 1.5 the optimizer has been considerable improved when
working with several tables.

Ten SQLs can be incorporated into a stored procedure.

A stored procedure or view can be created from the current query directly in the SQL
Editor, using the respective icons.

The Tools / SQL Editor option includes the following:

• Edit window (& Results)
• History
• Plan Analyzer
• Performance Analysis
• Logs
• Visual Query Builder

The Edit window is the main input window for all SQL transactions. The History page
lists previous queries. The Plan Analyzer provides information in the lower panel in a
tree structure with statistics. For details see Plan Analyzer.

The Performance Analysis shows how much effort was required by InterBase/Firebird
to carry out this query. For details see Performance Analysis.

For those not yet competent in SQL, the Visual Query Builder is there to make life eas-
ier! It is ideal for the beginner, although somewhat limited for more advanced work;
more complex queries would need to be performed in the SQL Editor or perhaps even
the Script Executive.

To customize the SQL Editor according to your wishes, please refer to Options / Editor
Options and Environment Options / SQL Editor.

8.1.1 Query

A query is a qualified search for information held in the data sets stored in the data-
base. The qualification can determine which tables should be searched, which range of
values for specified columns should be included, etc. etc.

For an overview of the conditions that are available in SQL, please refer to Comparison
Operators.

SUM (total), MIN (minimum), MAX (maximum), AVG (average), and COUNT are aggre-
gates that can also be used, for example, when the sales department needs to know
how many orders are still open or the minimum/maximum or average order value in
the past year.

A query on one or more tables produces a set of rows that is itself a table, subject to
all the rules for tables in a relational database. This is known as Closure. Inter-
Base/Firebird fully supports closure.

Regularly performed queries, such as a list of all unpaid invoices, or a list of all delivery
notes that have gone out in the last week, can be stored as procedures.

8

IBExpert Tools Menu - SQL Editor

327

Queries are optimized by InterBase/Firebird. The optimizer chooses which indices
should be used, in order to perform the query as quickly and simply as possible.

8.1.2 SQL Structured Query Language

SQL is the abbreviation for Structured Query Language. It is used to communicate with
a relational database. According to ANSI (American National Standards Institute), it is
the standard language for relational database management systems. It serves to de-
fine, manipulate, find and fetch data in a database.

InterBase and Firebird conform to the international industrial standards SQL '92.

Furthermore InterBase and Firebird offer a series of additional SQL enhancements,
such as generators, triggers and stored procedures, allowing a more extensive model-
ing and manipulation of data. These enhancements are either based on the ANSI SQL2
Standard or already comply with the outline of the ANSI/ISO SQL3 standards.

8.1.3 SQL Editor Menu

In addition to the icons in the SQL Editor toolbar, the SQL Editor has its own menu,
opened using the right mouse button:

The most important menu items are detailed in this section or can be found in the
IBExpert Edit menu.

Bookmark

Bookmarks are useful for flagging sections of long SQL scripts. They are purely an aid
for the user and have no influence upon the SQL script or database whatsoever.

Bookmarks can be set in the SQL Editor, and in the SQL window in the Stored Proce-
dure and Trigger Editors, using the mouse right-click menu item Toggle Bookmarks. Al-
ternatively they can also be specified using the key combination [Ctrl + Shift + 0-9].

8

IBExpert Tools Menu - SQL Editor

328

The bookmarks themselves can be seen in the left margin of the SQL script. They can
be numbered as wished.

The mouse right-click menu item Go To Bookmarks can be used to spring from book-
mark to bookmark. Alternatively the key combination [Ctrl + 0-9] can be used.

Bookmarks can be removed by simply unchecking those bookmarks listed in the Toggle
Bookmarks menu.

Copy Text as RTF

In order to copy a script, including the text formats (color, bold, indent etc.), select the
script or script parts to be copied, right-click and choose the menu item Copy Text as
RTF (or [Ctrl + W]).

This feature is ideal, for example, for documentation purposes.

Comment Selected/Uncomment Selected

In certain situations it may be necessary to disable certain commands or parts thereof.
This can be easily done without it being necessary to delete these commands. Simply
select the rows concerned in the SQL Editor, right-click and select the menu item
Comment Selected (or using [Ctrl + Alt + .]). This alters command rows to comments.

The commented text can be reinstated as SQL text by using the right mouse key menu
item Uncomment Select (or using [Ctrl+ Alt + ,]).

8

IBExpert Tools Menu - SQL Editor

329

This is particularly useful, when attempting to discover error sources or performing
parts of standard selects.

Convert Charcase

The mouse right-click menu item Convert Charcase offers the following options to alter
the appearance of the SQL characters:

1. Convert to lower case [Alt + Down]: allows the selected text to be converted
completely to lower case.

2. Convert to upper case [Alt + Up]: allows the selected text to be converted com-
pletely to upper case.

3. Convert to name case: allows the selected text to be converted completely to
name case, i.e. the initial character of each word is written in upper case, the remain-
ing characters in lower case.

8

IBExpert Tools Menu - SQL Editor

330

4. Invert case: switches between upper and lower case.

5. Toggle case [Shift + F3]: switches between upper, lower and name case.

8.1.4 (1) Edit

The Edit page appears as the active window when the SQL Editor is opened. It is the
main input window for SQL commands.

8

IBExpert Tools Menu - SQL Editor

331

The SQL Editor toolbar and right mouse button menu (SQL Editor menu) offer a wide
range of operations.

The lower status bar displays the number of open queries, allowing these to be quickly
loaded in the active editing window by clicking on the respective buttons. Alternatively
[Ctrl + N] can be used to load the next statement or a new window can be loaded us-
ing [Shift + F12] (menu item New SQL Editor).

The SQL Editor allows you to prepare statements and get a statement plan without
executing it by using [Ctrl+F9]. It is also possible to prepare only a part of the state-
ment. Just select the corresponding part of the statement and press [Ctrl+F9] or click
the Prepare button on the SQL Editor toolbar.

It is also possible to execute a part of statement. Just select the corresponding part of
the statement and use [F9] or the corresponding icon

It is so easy to execute and analyze statements (or parts of them) before finally com-
mitting. Since version 2.5.0.61 there is the added possibility to quickly change the
Transaction Isolation Level (TIL) for a separate SQL Editor. There is a corresponding
button on the SQL Editor toolbar which allows you to choose one of the following isola-
tion levels: Snapshot, Read Committed, Read-Only Table Stability and Read-Write Ta-
ble Stability.

8

IBExpert Tools Menu - SQL Editor

332

Objects and fields can be simply and quickly dragged and dropped from the DB Ex-
plorer and SQL Assistant into the Edit input page. Since version 2004.2.26.1 this has
been greatly improved. When an object node(s) is dragged from the DB Explorer or
SQL Assistant, IBExpert will offer various versions of text to be inserted into the code
editor. It is also now possible to customize the highlighting of variables. Use Options /
Editor Options / Colors to choose color and font style for variables.

A Code Insight system is included to simplify command input, i.e. when the first word
characters are typed in the SQL text editor, alternatives for word completion are of-
fered in a pop-up list. Database objects are underlined for easy recognition.

There is also a wide range of keyboard shortcuts available in the SQL Editor, e.g. [Ctrl
+ Alt + R] produces a list of all triggers which can be selected using the mouse or di-
rectional keys (insert using the [Tab] key). To view the full list call the Localizing Form
using [Ctrl + Shift + Alt + L].

Hyperlinks allow you to quickly reference database objects if necessary.

IBExpert version 2004.04.01.1 includes added support for the EXECUTE BLOCK state-
ment (Firebird 2). And since IBExpert version 2005.02.12.1 there is added support for
the INSERTEX command (for importing data from a comma-separated values file).

A results page appears after query execution [F9], displaying the returned data.

Code Insight

A Code Insight system is included in the IBExpert SQL Editors to simplify command in-
put. When the first word characters are typed in the SQL text editor, alternatives for
word completion are offered in a pop-up list. Simply click the required word, or alterna-
tively select the word using the directional keys and insert using the [Tab] key.

Alternatively the key combination [Ctrl + space bar] can be used to explicitly activate
the Code Insight dialog. Database objects are underlined for easy recognition. If you

8

IBExpert Tools Menu - SQL Editor

333

wish to view a list of parameters/variables, use the key combination [Ctrl + Alt + L].
This solution has been offered as it would otherwise be necessary to parse the editor
each time before the Code Insight list appears.

Using the IBExpert menu item Options / Editor Options / Code Insight, this can be indi-
vidually adapted as wished.

Further abbreviations and definitions can be defined by the user if wished, using the
IBExpert menu option Options / Keyboard Templates.

Hyperlinks

As with all IBExpert editors, the SQL Editor even offers hyperlinks. When an object
name is written on the Edit page, the respective object editor can be opened.

A hyperlink is an element in an electronic application or document that links to another
place in the same application/editor/text or to an entirely different editor/text. Typi-
cally, you click on the hyperlink to follow the link. Hyperlinks are the most essential in-
gredient of all hypertext systems, including the World Wide Web.

8

IBExpert Tools Menu - SQL Editor

334

To switch off the automatic hyperlink option, or to change its appearance, please refer
to Environment Options / Editor Options.

Create view or procedure from SELECT

If you wish to create a view or procedure from a valid SELECT statement in the SQL
Editor, simply use the relevant icon to the right of the toolbar. It is possible to create a
view or a procedure from an SQL statement without typing all variables and parame-
ters.

When creating a procedure from a select, it is necesary to specify whether to select
into return parameters or local variables.

Create temp tables

If you want to store the result of an SQL statement in a new table, just type

Insert into New_Table Select * from Old_Table

The new table is automatically created if it does not already exist.

Copy data from one database to another

If you want to copy data from a Source_Alias to a Destination_Alias, simply open
an SQL Editor in the Source_Alias and type:

Insert into [Destination_Alias].NEW_Table select * from Old_Table

8.1.5 (2) Results

The results page is automatically generated as soon as a query is executed. There are
three modes of view:

1. Grid View - all data is displayed in a grid (or table form). By clicking on the column
header the result set can be sorted (in ascending or descending order) according to
that column.

There are many options to be found under Options / Environment Options / Grid, which
allow the user to customize this grid view. Under the IBExpert menu item Register Da-
tabase or Database Registration Info there are additional options, for example, Trim
Char Fields in Grids.

8

IBExpert Tools Menu - SQL Editor

335

Results can only be edited in the Grid View if it is a live result set. Since version
2003.12.18.1 it is possible to copy selected record(s) to clipboard as UPDATE state-
ment(s). This will only work if there is a live query with a primary key. Since version
2004.1.22.1 mandatory (NOT NULL) fields are now highlighted while working with live
queries. Captions of NOT NULL fields are in bold.

A new feature in IBExpert version 2004.10.30.1 is the OLAP and data warehouse tool,
Data Analysis, opened using the Data Analysis icon (highlighted in red in the above il-
lustration).

Since IBExpert version 2004.8.5.1 there is the added option to calculate aggregate
functions (COUNT, SUM, MIN, MAX, AVG) on numeric and datetime columns. Simply
click "Show summary footer" button on the toolbar of the data view to display the
summary footer:

8

IBExpert Tools Menu - SQL Editor

336

Then simply select the aggregate function from the pull-down list for each nu-
meric/datetime column as required.

IMPORTANT: all calculations are done on the client side so do not use this feature on
huge data sets with millions of records because IBExpert will fetch all records from the
server to the client in order to calculate aggregates.

Since IBExpert version 2004.8.26.1 it is also possible to display data as Unicode. Sim-
ply click the relevant icon or use [F3] (see illustration below). It is not possible to edit
the data directly in the grid. To edit data in unicode, use the Form View or modal editor
connected with string cell.

2. Form View - one data set is displayed at a time in a form.

8

IBExpert Tools Menu - SQL Editor

337

New to version 2004.8.26.1: The Form View has been completely redesigned. It now
also displays field descriptions. It is also possible to select alternative layouts (classic
or compact), the compact alternative for those who prefer a more compact and faster
interface. Visual options now also include specification of Memo Height and Memo Word
Wrap.

3. Print Data - displays data in WYSIWYG mode, the data can be either saved to file
as a simple report or printed.

8

IBExpert Tools Menu - SQL Editor

338

The results page also has its own right-click menu, which can be used to perform nu-
merous operations upon the resulting data (please refer to Table Editor / Data for more
information).

Filter Panel

In the SQL Editor Results dialog and in the Table Editor Data (grid and form view) dia-
log it is possible to work with filters, enabling the developer to add/delete criteria and
filters directly in the data sets resulting from the executed SQL.

The Filter Panel is opened using the Show Filter Panel icon:

8

IBExpert Tools Menu - SQL Editor

339

or [Ctrl + Alt + F]. A new two-part window appears. This can be split horizontally or
vertically as the user wishes by clicking on the Vertical Layout icon or using the key
combination [Shift + Ctrl + L].

New filter criteria can be added by placing the cursor on the field, where a filter is to be
inserted and using the +-button or [Ins] key. For the deletion of filters use the - button
or [Ctrl + Del] key combination. Select the comparison operator from the pull-down list
adjacent to the list of field names and specify the desired value(s).

When a second field is marked and a new filter for this field is added, the AND column
is automatically filled (default is AND, may be altered to OR if wished, using the space
bar or mouse click).

The two right-hand columns provide check box options, to specify whether a filter
should be active or not (column A), and to specify whether case-sensitivity is of impor-
tance (CS column).

The second panel displays the WHERE clause that has just been specified.

Since IBExpert version 2005.02.12.1 there is now the possibility to recalculate the
number of filtered records automatically when the filter condition is changed.

The filter area can be deactivated by re-clicking the Show Filter Panel icon or [Ctrl +
Alt + F].

Export Data

The results can be exported using [Ctrl + E] or the respective SQL Editor toolbar icon,
which opens the Data Export dialog:

8

IBExpert Tools Menu - SQL Editor

340

Supported formats are Excel, MS Word, RTF, HTML, Text, CSV, DIF, SYLK, LaTex, SML,
Clipboard and DBF. Depending on the format, further options can be specified on the
second or third pages, Formats and Options, specific to the export type. If you want to
open the file directly after creating, use a typical file extension such as *.xls, and check
the Open File After Export box.

The Format page can be used to specify the following formats:

• currency,
• float,
• integer,
• date time,
• date,
• time.

Using the right-hand icon in the SQL Editor toolbar or Table Editor toolbar (Export data
into script) the data can be exported into an insert SQL script (without the blob fields).

Export Data into Script

Please refer to Export Data into Script (see Table Editor / Data for further information).

8.1.6 (3) Statements History

The History page can be found in the SQL Editor, and lists previous SQL queries that
have been executed and produced a result (not necessarily committed), along with
their performance statistics. This saves having to reenter recurring commands, and of-
fers a concise overview of the individual SQL performances for comparison. All state-
ments are only visible when the same alias is in use.

The middle panel displays the script and the lower panel the SQL plan or error mes-
sages.

The filter (directly above the statement list) can be used to display only those objects
containing the character string entered in the filter, e.g. Find all SQLs containing a
SELECT or all SQLs containing the EMPLOYEE table.

8

IBExpert Tools Menu - SQL Editor

341

The SQL History lists a record of the last 100 statements. This default quantity of 100
stored statements can be altered by using the IBExpert menu item Database or the DB
Explorer right mouse button menu: Database Registration Info / Additional / SQL Edi-
tor, where the SQL Editor History Count can be specified as wished.

The SQL History list can be streamlined, as and when required, by deleting individual
list entries, using the right mouse button.

8

IBExpert Tools Menu - SQL Editor

342

This menu also allows single statements (or all) to be copied to clipboard.

8.1.7 (4) Plan Analyzer

The SQL Editor Plan Analyzer (also a part of the Procedure Editor and Trigger Editor)
shows how Firebird/InterBase approaches a query, e.g. with SORTS, JOINS etc, which
tables and indices are used. This information is displayed in a tree structure: firstly
what and which data quantities, and secondly what is carried out with this data and
how.

The plan is an InterBase/Firebird description, showing how the optimizer uses tables
and indices to obtain the result set. If the word SORT is displayed, you should check
whether improvements upon the query or the indices are possible.

The Plan Analyzer provides information in the lower panel in a tree structure with sta-
tistics.

8.1.8 (5) Performance Analysis

The Performance Analysis is part of the SQL Builder, Visual Query Builder and Stored
Procedure Editors. It displays information showing how much effort was required by In-
terBase/Firebird to carry out an executed query or procedure. The analysis is per-
formed after a SELECT statement is opened or a stored procedure started.

8

IBExpert Tools Menu - SQL Editor

343

It is possible to deactivate the Performance Analysis, by checking the Disable Perform-
ance Analysis option, found under Database / Register Database or Database Registra-
tion Info / Additional. This may be desirable, when working remotely with a slow mo-
dem connection.

It is however often interesting to know what exactly a procedure or query does and
how; and all this can be viewed in the Performance Analysis.

The main advantage here is, of course, the possibility to compare the performance of
different queries and procedures.

The performance can be viewed in 6 different ways:

1. Graphical summary
 i) indexed reads
 ii) non-indexed reads
 iii) updates
 iv) deletes
 v) inserts
2. Reads (graphical representation)
3. Updates (graphical representation)
4. Deletes (graphical representation)
5. Inserts (graphical representation)
6. Additional
 i) Enhanced Info
 ii) Query Time
 iii) Memory
 iv) Operations

SELECT statements will only have a result on the Reads page, but some stored proce-
dures will have results on all pages.

In the SQL Editor the lower panel displays the query plan, along with a summary of the
performance information included under 6. Additional. For further information regard-
ing the query plan, please refer to the Plan Analyzer.

8

IBExpert Tools Menu - SQL Editor

344

The analysis displayed in 6. Additional can also be documented using the Copy Analysis
to Clipboard button.

Graphical Summary

This provides a graphical overview, broken down by the tables involved, of the number
of operations performed by the query/procedure, including reads (indexed and non-
indexed), updates, deletes and inserts. It shows whether indices have been used indi-
cating the efficiency of the database's indices. The figures displayed refer to the num-
ber of data sets.

The x-axis lists the names of the tables consulted by the query/procedure, with the
number of operations displayed graphically. The color key can be seen below the
graphic. The operation types are as follows:

• Non-indexed reads
• Indexed reads
• Updates: The number and type of updating operations.
• Deletes: The number and type of deleting operations.
• Inserts: The number and type of inserting operations.

The graphical information displayed here can also be viewed in tabular format under 6.
Additional.

Reads

8

IBExpert Tools Menu - SQL Editor

345

This displays the number and type of reading operations in an executed
query/procedure. The figures displayed refer to the number of data sets and are bro-
ken down by table into the categories indexed and non-indexed reads.

Those database indices used to perform an SQL query can be viewed in the SQL Editor
in the Performance Analysis query plan.

This information can be used to evaluate the efficiency of the database\'s indices.

Indexed Read

Indexed reads are displayed in the Performance Analysis, which can be found in the
SQL Editor, Visual Query Builder and Stored Procedure Editors.

An indexed read indicates that the data was selected by the InterBase/Firebird server
using one or more indices (named in the SQL Editor query plan in the lower panel).
This results in many cases in a significantly lower number of data sets being consulted
than with a non-indexed read, saving both time and memory.

8

IBExpert Tools Menu - SQL Editor

346

Non–Indexed Read

Non-indexed reads are displayed in the Performance Analysis, which can be found in
the SQL Editor, Visual Query Builder and Stored Procedure Editors.

A non-indexed reads indicates that the data was read without the aid of an index. In
most situations this can be both time- and memory-consuming. Non-indexed reads al-
ways include a large number of data sets, as the server needs to search through the
whole table(s) to find the relevant information. All data pages from the corresponding
table(s) need to be loaded.

The SQL Editor's query plan shows which tables were read without an index using the
term NATURAL.

For further information regarding the use of indices, please refer to index.

Updates

8

IBExpert Tools Menu - SQL Editor

347

This displays the number and type of updating operations in an executed
query/procedure. The figures displayed refer to the number of data sets, broken down
by table.

Deletes

This displays the number and type of deleting operations in an executed
query/procedure. The figures displayed refer to the number of data sets, broken down
by table.

Inserts

8

IBExpert Tools Menu - SQL Editor

348

This displays the number and type of inserting operations in an executed
query/procedure. The figures displayed refer to the number of data sets, broken down
by table.

Additional

This displays a statistical report. The Enhanced Info displays a statistical summary of
the information shown in 1. Graphical Summary. Certain additional information, such
as query time, memory and operations, is also included in this section.

There is furthermore a Copy Analysis to Clipboard button, to document the statistics if
wished.

Enhanced Info

The Enhanced Info displays a statistical summary of the information shown in 1.
Graphical summary.

8

IBExpert Tools Menu - SQL Editor

349

The names of tables consulted during execution of the query/procedure are listed in
the first column, with the number of data sets listed according to the following criteria:

• IR = Indexed Read
• NIR = Non-Indexed Read
• UPD = Updates
• DEL = Deletes
• INS = Inserts

The information can be copied to clipboard, if wished, using the Copy Analysis to Clip-
board button.

Query Time

Query time shows the time needed to prepare for the execution of the
query/procedure, along with the execution time and average fetch time.

8

IBExpert Tools Menu - SQL Editor

350

Prepare:

This measures the preparation time required by InterBase/Firebird to plan and prepare
the query/procedure execution, i.e. from the moment when the source text is sent to
the server and is compiled on the server in binary form (decides which indices, tables
etc. need to be used to perform the query/procedure).

When a query/procedure is executed a second time, the query time is usually 0 ms, as
it has already been prepared.

Execute:

This measures the direct execution time of the command.

Avg fetch time:

This shows the average fetch time pro data set. This figure is calculated based only on
those data sets that can be seen in the returns and does not include those that are not
yet visible. An optimal analysis can be attained when the query/procedure is executed
using [Shift + F9] = Execute and Fetch all.

Memory

This shows the memory development during and following execution of the proce-
dure/query.

Current:

This displays the current memory used by the server.

Max.:

This displays the maximum memory used by the server during execution of the
query/procedure.

8

IBExpert Tools Menu - SQL Editor

351

Buffers:

This displays the number of data pages that are being held as cache on the server
(from InterBase 6 onwards the standard is 2,048). This can be found in the corre-
sponding configuration file: since Firebird 1.5 it is called FIREBIRDCONFIG; in older
Firebird versions or InterBase, it is called IBCONFIG, found in the main InterBase
folder.

This can be altered for the current database if wished, using the IBExpert menu item
Services / Database Properties / Buffers. The total KB is calculated according to the
current database page size. For an alteration to become effective, it is therefore neces-
sary for all users to disconnect from the database and then reconnect. Buffers are only
reserved if they are really necessary for pages loaded from the database file.

Operations

Operations displays the number of data pages that were read from the database file to
the memory, written and fetched, while executing the query/procedure.

Reads:

This displays the number of pages read for the executed query/procedure. This is nec-
essary when data sets have to be loaded, that are not already in the memory.

Writes:

This displays the number of pages written while executing the query/procedure. If the
total cache buffers are too small to load subsequent pages, it may be necessary for the
server to save altered pages to the hard drive, in order to make room for further pages
to be loaded. If these values are very high, it may be wise to increase the buffers, pro-
viding of course, that physical memory is sufficient.

Fetches:

8

IBExpert Tools Menu - SQL Editor

352

When a query/procedure is started, the command (or series of commands) is sent to
the database server. To obtain results, numerous data sets/pages need to be referred
to (= fetch), in order to perform the operation. Fetches are, in other words, internal
operations performed by InterBase/Firebird in order to successfully execute a
query/procedure. This indicates, for example, if deleted data sets in a SELECT are rec-
ognized as deleted, they will still appear here in the number of fetches, as the server
also searches through those data sets that have been marked as deleted. This can
however offer an advantage over the number of indexed and non-indexed reads, as
these only display operations on undeleted data sets. If the query is executed again,
the result is quicker if the garbage collection is running simultaneously.

Using the Performance Analysis, the number of fetches in data pages could possibly in-
dicate why one query is quicker than another with an equal number of data sets and
the same index plan.

Copy Analysis to Clipboard

The Copy Analysis to Clipboard button copies all information included in the Additional
page, including both the grid contents (= Enhanced Info) and the statistics listed in the
left-hand panel (= query time, memory and operations).

The Copy Analysis to Clipboard button can be found in the bottom left corner of the 6.
Additional dialog in the Performance Analysis. Should this not be visible, it is probably
because the windows in IBExpert are set to Cascading. This can be easily solved by
clicking the SQL/Procedure Editor dialog window to full-size (right-hand blue icon in the
dialog title bar).

8.1.9 (6) Logs

The Log page can be found in the SQL Editor and displays a list of qualified error mes-
sages etc. It shows what Firebird/InterBase did and when in each respective SQL win-
dow.

8

IBExpert Tools Menu - SQL Editor

353

8.1.10 Optimizing an SQL statement

If a lot of non-indexed reads (the red ones) appear in the Performance Analysis, it is
often helpful to create some indices, reopen the query and check if it has been of help.

Analyze the reads, writes and fetches! Reads and writes are typically 0 when Inter-
Base/Firebird can operate in the cache. Fetches are the internal operations in Inter-
Base/Firebird, so when one query is slower than the other, it may not be visible di-
rectly in the graphical view, for example when InterBase/Firebird creates external tem-
porary sort files.

Use the Plan Analyzer to analyze how the optimizer uses tables and indices to obtain
the result set. If the word SORT is displayed, you should check whether improvements
to the query or the indices are possible.

8.1.11 Special features

The IBExpert SQL Editor has two special features that allow you to:

• Create a table from query results and populate it with data.
• Move data between two registered databases.

Creating a table from query results

As everyone knows it is possible to insert data into any table by executing the INSERT
statement:

INSERT INTO TARGET_TABLE
 SELECT FIELD_1, FIELD_2 FROM SOURCE_TABLE
 WHERE SOMETHING_FIELD <> 5

8

IBExpert Tools Menu - SQL Editor

354

However this will only work if the table TARGET_TABLE already exists in the database.

IBExpert enables execution of this kind of statement even if the TARGET_TABLE does
not exist in the database. First IBExpert notifies the user that TARGET_TABLE doesn't
exist in the database and offers to create this table using query structure. If confirmed,
IBExpert creates the TARGET_TABLE and then populates it with data from SELECT.

 A small example illustrates how this works, based on a SOURCE_TABLE with the follow-
ing structure:

CREATE TABLE SOURCE_TABLE (
 ID INTEGER,
 SOME_TEXT VARCHAR(50),
 SOME_PRICE NUMERIC(15,4),
 SOME_DATE DATE);

When the following statement is executed:

INSERT INTO TARGET_TABLE
 SELECT * FROM SOURCE_TABLE

and there is no TARGET_TABLE in the database, IBExpert will create TARGET_TABLE as:

CREATE TABLE TARGET_TABLE (
 ID INTEGER,
 SOME_TEXT VARCHAR(50),
 SOME_PRICE NUMERIC(15,4),
 SOME_DATE DATE);

and after that inserts into this table records retrieved with the SELECT part.

Of course, it is possible to write different INSERT statements. For example:

INSERT INTO [TARGET_DATABASE].TARGET_TABLE
 SELECT ID, SOME_DATE FROM TEST_TABLE

In this case IBExpert will create table TARGET_TABLE as

CREATE TABLE TARGET_TABLE (
 ID INTEGER,
 SOME_DATE DATE);

Moving data between databases

IBExpert allows you to move data from one database to another by executing special
statement in SQL Editor.

Syntax:

INSERT INTO <database_alias>.<table_name>
 [(<columns_list>)]

8

IBExpert Tools Menu - New SQL Editor

355

 <select_statement>

Argument Description

database_alias Alias of a registered database. This must be enclosed in square
brackets. This argument is case-insensitive so aliases "My
alias" and "MY ALIAS" are equivalent.

table_name Name of the table to be populated with data..

columns_list List of columns in target table. This argument is not obligatory.

select_statement Any SELECT statement.

Examples

The following statement moves data from SOURCE_TABLE of the current database into
TARGET_TABLE of the database with the alias "My test DB":

INSERT INTO [My test DB].TARGET_TABLE
 SELECT * FROM SOURCE_TABLE

If the table TARGET_TABLE doesn't exist in the target database, IBExpert will create it
after your confirmation with the structure of the SOURCE_TABLE.

8.2 New SQL Editor
An additional SQL Editor can be opened using Tools / New SQL Editor, the respective
icon in the Tools toolbar, or [Shift + F12].

The use of multiple SQL Editor windows does not affect the list of previous SQLs found
on the History page, as this list is database dependent and not window dependent.

8.3 Query Builder
For those not yet competent in SQL, the Visual Query Builder is there to make life eas-
ier! It allows you to create and edit queries with multiple tables without previous
knowledge of SQL, as well as prepare and execute queries, and view the results. This
feature is unfortunately not included in the Personal Edition.

The IBExpert Query Builder is started using the menu item Tools / Query Builder. It
can also be started directly from the SQL Editor using [Ctrl + Shift + Alt + B] or the

icon.

A query can be built by simply moving the database objects (e.g. by dragging the de-
sired table) from the right panel over to the left editing area. Objects may also be
dragged and dropped from the DB Explorer and SQL Assistant into the code editor win-
dow. Since version 2004.2.26.1 this has been greatly improved. When an object
node(s) is dragged from the DB Explorer or SQL Assistant, IBExpert will offer various

8

IBExpert Tools Menu - Query Builder

356

versions of text to be inserted into the code editor. It is also now possible to customize
the highlighting of variables. Use Options / Editor Options / Colors to choose color and
font style for variables.

The required fields can be selected using the mouse. By clicking on the circle to the left
of the table name, all fields are automatically highlighted. Tables can be linked, e.g. by
key relationships, joins etc., using the mouse (click on the desired field in the first ta-
ble and drag it across to the desired field in the second table). This creates a JOIN.

By double-clicking on the lines connecting two tables the option Link Properties, ap-
pears, and the developer can specify from which table all of the information should be
fetched (see JOIN for more information about joins).

Alternatively, a small context-sensitive menu appears when right-clicking on a line, of-
fering not only the above mentioned option, but also the option to insert or delete
point or to delete the link.

Check every field which is important for the result set and use [F9] or the respective
icon to execute and view the results. For information regarding the Results page,
please refer to SQL Editor / Results.

Conditions can be specified in the lower part of the Query Builder dialog using the op-
tions listed under the following tabs:

(1) Criteria

8

IBExpert Tools Menu - Query Builder

357

A simple condition string contains three fields: an argument, a condition and a second
argument - if required for the condition. By clicking on the word ALL of All of following
are met, it is possible to change this condition to ALL, ANY, NONE, or NOT ALL. By
clicking on the ring to the left of All of following are met, it is possible to add a condi-
tion. Using [Shift + Enter] or right-clicking, fields can be selected from the specified
tables. Alternatively a value can be manually entered. By clicking on the '=' sign a list
of available conditions appears.

If you wish to view the SQL statement at any time, simply switch to the Edit page.

(2) Selection

An aggregate (SUM, MIN, MAX, AVG and COUNT) can be specified for individual fields if
wished. For example, if a minimum or maximum order value needs to be determined;
or the number of unpaid invoices. By double-clicking on a field in the builder area, the
field source is automatically inserted. An output field name may be specified by double-
clicking (or using the [Enter] key) on the first input field. The Aggregate pull-down list
can be viewed by double-clicking or using the [Enter] key and downward arrow key,
and an option selected.

8

IBExpert Tools Menu - Query Builder

358

The Include only unique records checkbox eliminates duplicate records when checked.

(3) Grouping criteria

Again ALL, ANY, NONE, or NOT ALL of the specified conditions can be met. Here com-
bined criteria can be determined, i.e. aggregate and comparative selection criteria.

(4) Sorting

Here the results can be sorted in ascending or descending order by one or more fields
in order of priority. Simply move the field(s) to be used as the sorting criteria from the
list on the left to the right-hand window, by selecting and clicking the Add button or
using drag 'n' drop. Use the A.Z -Z.A button to specify ascending or descending order,
and use the Up and Down buttons (when sorting by multiple fields) to specify sorting
priority (i.e. which field should be sorted first).

When the query preparation is complete, it can be prepared [Ctrl + F9] and analyzed,
and/or executed [F9] before finally committing.

In addition to the main Builder window, there is also an Edit page, displaying the
query, resulting from the drag 'n' drop and condition specification in the main builder
window, as SQL text. This is, in effect, the same as the SQL Editor's main Edit window.
It can be edited directly, if wished, and all changes are displayed on the other Query
Builder pages.

A Results page appears following query execution, displaying the returned data re-
sulting from the query. A filter panel can also be blended into the dialog to aid data
navigation and allow further filtering. For more information, please refer to SQL Editor
/ Edit and Filter Panel.

The Plan Analyzer is displayed following query execution and shows how Fire-
bird/InterBase approaches a query, e.g. with SORTS, JOINS etc, which tables and indi-
ces are used. The information is shown in the lower panel in a tree structure with sta-
tistics.

The Performance Analysis displays information showing much effort was required by
InterBase/Firebird to carry out an executed query or procedure. For more information
please refer to SQL Editor / Performance Analysis.

8

IBExpert Tools Menu - Data Analysis

359

Visual Query Builder is ideal for the beginner, although somewhat limited for more ad-
vanced work; complex queries should be performed in the SQL Editor.

8.4 Data Analysis
The IBExpert Tools menu item, Data Analysis, is new to IBExpert version
2004.10.30.1.

It is an ideal OLAP and data warehouse component, for analyzing data in the database
quickly and easily. This sophisticated module can be used to build cubes, manage di-
mensions and measures, the technology being based on the building of multidimen-
sional data sets - so-called OLAP cubes. It includes a powerful filtering system, ena-
bling not only dimensions but also measures to be filtered.

The PivotCubeForm can be opened using the IBExpert Tools menu, or started directly
from the SQL Editor / Results page, the Table Editor / Data page or the View Editor /
Data page, using the Data Analysis icon:

We will illustrate the functionalities and options available in the Pivot Cube, using the
following simple SELECT command, executed in the SQL Editor:

SELECT * FROM SALES;

By clicking the Data Analysis icon on the SQL Editor / Results page, the PivotCubeForm
is opened:

The PivotCubeForm has its own toolbar (please refer to Data Analysis toolbar for fur-
ther information), and contains two pages: Cube Structure and Cube.

Cube Structure:

The first page has three main areas:

8

IBExpert Tools Menu - Data Analysis

360

• All Fields - This automatically displays all data set fields displayed on the SQL Edi-
tor's Results page.

• Dimensions - what is to be analyzed and displayed. The field order is at this stage
irrelevant.

• Measures - which values are to be analyzed and displayed. IBExpert Data Analysis
permits use of any data types as measures; the only restriction being that non-
numeric data types can only use the ctCount aggregate type.

As with all IBExpert grids, columns can be sorted in ascending and descending order by
simply clicking on the column headers.

Fields can be selected from the All Fields panel and dragged 'n' dropped into the Di-
mensions panel. For example, CUST_NO, SALES_REP and SHIP_DATE, the shipping date
also being grouped by month. The Alias names and Display Names can be manually al-
tered as wished, and the Forecast Method and Wrap To periods can be selected from
the pull-down lists. (Simply click on the field where a selection is to be made, and click
the black downward arrow on the right of the field to open the list of available options.)

The TOTAL_VALUE field can be dragged 'n' dropped from the All Fields panel into the
Measures area. Again select Calculation Type from the options offered in the pull-
down list; the numeric Format can be manually altered if desired:

And then the cube can be generated using the Build Cube icon or [F9] (see illustration
above) and displayed on the Cube Page:

8

IBExpert Tools Menu - Data Analysis

361

Cube:

The second page in the PivotCube Form displays the cube itself in the third of four ar-
eas, so-called toolbars:

• Dimensions
• Columns
• Main display area
• Measures - the order of the items here determines how the data is displayed in the

pivot grid.

These areas can all be opened or closed, by clicking on the small square buttons in the
upper left-hand corner of each area (see rectangular marked symbols in the illustration
below). The arrow buttons can be used to adjust the size of the expanded areas, and
display/hide the filter, which allows values to be searched and viewed for individual
data sets.

The toggle toolbars on/off icon (see circled icon below) can be used to remove these
areas completely leaving just the main blue display area, or blending them in again.

It is now possible to generate a summary, for example, which customer or which sales
representative has generated which sales revenue. Or even which representative (col-
umn) has generated which revenue in which month:

8

IBExpert Tools Menu - Data Analysis

362

The data can be displayed graphically with a simple mouse click. Simply click on the
desired graphics icon to the left of the Measures (here: Representative or Shipping
Date (mth)):

The Graphics window has its own mini toolbar, with the following options:

allowing the graph type to be altered, the legend and notes to be blended in or out,
and enabling the graph to be printed.

There are numerous options to add functional values and formulae. Please refer to:

• Cube Manager,
• Calculated Measures Manager,

8

IBExpert Tools Menu - Data Analysis

363

for further information.

The data and analyses generated, can be saved as *.CUB files, or exported to Excel
(OLE), HTML or metafile. Simply click the small black arrow directly to the right of the
Export icon, and select from the list:

They can even be quickly and easily printed - simply click the printer icon (or [Ctrl +
P]), to go to the Print Preview, where the page layout and appearance may be modified
before finally printing.

In fact, IBExpert's Data Analysis offers innumerable possibilities to define reports
quickly and easily, or to simply collate the data material. And in order to pass these
analyses on to others, a free runtime version is currently being planned, enabling the
*.cub files (cube files) to be viewed without IBExpert having to be installed, so that
other users can view those dimensions stored in the file, and can distribute them
across rows or columns. It will also be possible to export the information to Excel etc.
with this runtime version or print out the analysis.

8.4.1 Data Analysis Cube Manager

The Cube Manager can be opened using the PivotCube Form icon, or by clicking the
Sum button in the bottom left hand corner of the Measures toolbar on the Cube page.
This can be used to include certain alternative additional values. For example, alter the
view to percentage column values

8

IBExpert Tools Menu - Data Analysis

364

Click the Apply icon to view the results:

Depending on what you wish to see, it is possible to specify an ascending or descend-
ing order by simply clicking on the column headers.

8.4.2 Data Analysis Calculated Measures Manager

It is possible to integrate certain function values by clicking on the Function button in
the bottom left hand corner of the Measures toolbar on the Cube page, to open the
Calculated Measures Manager.

8

IBExpert Tools Menu - Script Executive

365

You can add new measures and edit or delete existing measures.

A new measure name can be added by clicking the Add New Measure button and in-
serting a name. A template automatically appears in the Calculation Formula input
area. This can be completed manually, the Available Measures (bottom left-hand list)
and Available Views (bottom right-hand list) can be inserted simply by double-clicking
on the measure name, or clicking the [upward arrow +] button to the right of the
Available Measures or Available Views headings.

When you are satisfied with your specifications, simply click the

button. You will now see both the original evaluation and the new calculated measure
name displayed in the status bar. By clicking the black arrow to the right of these
names, the Cube Manager is automatically opened, displaying the specifications made
for the selected measure.

Simply re-click the Function button to reopen the Calculated Measures Manager, to
make additional alterations, insertions or deletions as required.

8.5 Script Executive
The Script Executive can be used to view, edit and execute SQL scripts. It can be
started from the IBExpert Tools menu, using the respective icon in the Tools toolbar or
using [Ctrl + F12]. It is used for SQLs covering several rows. The Script Executive can
both read and execute scripts.

Although InterBase/Firebird can also process such procedure definitions in the SQL Edi-
tor, it is recommended to use the Script Executive for more complex work, as it can do
much more than the SQL Editor.

8

IBExpert Tools Menu - Script Executive

366

The main advantage of the Script Executive is that it displays all DDL and DML scripts
of a connected database.

The Script Explorer (the left-hand panel) displays all database objects used in the cur-
rent script in a tree structure. It even allows you to find a script part rapidly by clicking
on the object in the tree. The Script Explorer can be blended in and out using the re-
spective icon on the Script Executive toolbar. SQL scripts can be loaded from and
saved to file if wished.

Objects may be dragged and dropped from the DB Explorer and SQL Assistant into the
code editor window. And since version 2004.2.26.1 this has been greatly improved.
When an object node(s) is dragged from the DB Explorer or SQL Assistant, IBExpert
will offer various versions of text to be inserted into the code editor. It is also now pos-
sible to customize the highlighting of variables. Use Options / Editor Options / Colors to
choose color and font style for variables.

Complete scripts can be transferred from the SQL Editor or extracted directly from the
Extract Metadata Editor into the Script Executive using the relevant menu items
(please refer directly to these subjects for further details).

The Script Type may be selected from the Script Executive toolbar pull-down list (op-
tions include InterBase/Firebird or MySQL).

The Script page includes other features, such as code completion (please refer to Code
Insight for details) - familiar from the SQL Editor. The SQL Editor menu can be called
by right-clicking in the script area. Following statement execution, the Script page dis-
plays any errors highlighted in red. Using the

8

IBExpert Tools Menu - Script Executive

367

icon, the script can be executed step by step.

Any errors appearing in the lower Messages box may be saved to file if wished, using
the right-click menu item Save Messages Log ...

The Statements page displays a list of individual statements in grid form:

These statements may be removed from the script simply by unchecking the left-hand
boxes. One, several or all statements may be checked or unchecked using the right-
click menu. Breakpoints can be specified or removed simply by clicking (or using the
space bar) to the left of the selected statement in the BP column.

IBExpert version 2004.04.01.1 includes added support for the EXECUTE BLOCK state-
ment (Firebird 2).

The following features were introduced in IBExpert version 2005.03.12.1:

• Executing of INSERT/UPDATE/EXECUTE PROCEDURE statements WITHOUT parameters
is up to 10 times faster now.

• Added support for the following Firebird 2 features:
• CREATE SEQUENCE
• DROP SEQUENCE
• ALTER SEQUENCE

8

IBExpert Tools Menu - Script Executive

368

• Extended syntax of OUTPUT command. Please refer to OUTPUT for futher information
and examples.

8.5.1 Executing multiple scripts from a single script

Simply use the following syntax:

connect 'server:c:\my_db.gdb' ...;

input 'c:\my_scripts\f2.sql';
input 'c:\my_scripts\f1.sql';
input 'c:\my_scripts\f3.sql';

8.5.2 Create multiple CSV files from a script

The following is an example illustrating the creation of multiple csv files from a script:

shell del C:\list.dat nowait; --deleting the old file
shell del C:*.csv nowait; --deleting the old csv files

connect 'localhost:C:\employee.fdb' user 'SYSDBA' password 'masterke'; -
-connect to employee example database
output 'C:\list.dat'; --record the following result as a simple text
file, based on each unique employee, we create a new output ...;select
... ;output; line in the dat file

SELECT distinct
'OUTPUT C:\'||EMPLOYEE.last_name||'.csv delimiter '';'';'||
'SELECT distinct EMPLOYEE.last_name, customer.customer,customer.phone_no
'||
'FROM SALES INNER JOIN CUSTOMER ON (SALES.CUST_NO = CUSTOMER.CUST_NO) '||
'INNER JOIN EMPLOYEE ON (SALES.SALES_REP = EMPLOYEE.EMP_NO) where EM-
PLOYEE.last_name='''||EMPLOYEE.last_name||''';'||
'OUTPUT;'
FROM SALES INNER JOIN CUSTOMER ON (SALES.CUST_NO = CUSTOMER.CUST_NO) IN-
NER JOIN EMPLOYEE ON

(SALES.SALES_REP = EMPLOYEE.EMP_NO);

output; --close the dat file
input 'C:\list.dat'; --execute them

The dat file is created automatically.

The outer query gets one record for each employee, in the inner select, all phone num-
bers for the employees’ customers are selected.

8.5.3 Script Language Extensions

Script language extensions are unique to IBExpert, and offer the developer a number
of additional language options. These include, among others, conditional directives, DE-
SCRIBE database objects, as well as SET, SHELL, INSERTEX, OUTPUT and RECONNECT.

8

IBExpert Tools Menu - Script Executive

369

Conditional Directives

Conditional directives control conditional execution of parts of the script. Four types of
conditional directives are supported:

• $IFEXISTS,
• $IFNOTEXISTS (or $IFNEXISTS),
• $ELSE,
• $ENDIF.

$IFEXISTS

This tests the existence of the specified database object or data and executes the fol-
lowing block of the script if the object or data do exist in the database.

Syntax:

 1. {$IFEXISTS DOMAIN|TABLE|VIEW|TRIGGER|PROCEDURE|
 EXCEPTION|GENERATOR|UDF|ROLE object_name}

 2. {$IFEXISTS select_statement}

Example:

The following script drops the exception InvalidUserID if it exists in the database:

 {$IFEXISTS EXCEPTION "InvalidUserID"}

 DROP EXCEPTION "InvalidUserID";

 {$ENDIF}

The next script alters a procedure:

 {$IFEXISTS SELECT RDB$PROCEDURE_NAME
 FROM RDB$PROCEDURES
 WHERE RDB$PROCEDURE_NAME = 'GETDBVER'}

 ALTER PROCEDURE GETDBVER
 RETURNS (
 VER INTEGER)
 AS
 begin
 ver = 2;
 suspend;
 end;

 {$ENDIF}

8

IBExpert Tools Menu - Script Executive

370

$IFNOTEXISTS ($IFNEXISTS)

This tests the existence of the specified database object or data and executes the fol-
lowing block of the script if the object or data does not exist in the database.

Syntax:

 1. {$IFNOTEXISTS DOMAIN|TABLE|VIEW|TRIGGER|PROCEDURE|
 EXCEPTION|GENERATOR|UDF|ROLE object_name}

 2. {$IFNOTEXISTS select_statement}

Example:

The following script creates a table CUSTOMERS if there is no such table in the database:

 {$IFNOTEXISTS TABLE CUSTOMERS}

 CREATE TABLE CUSTOMERS (
 ID INTEGER NOT NULL PRIMARY KEY,
 FIRST_NAME VARCHAR(30),
 MIDDLE_NAME VARCHAR(30),
 LAST_NAME VARCHAR(30));

 {$ENDIF}

The next script creates an exception:

 {$IFNOTEXISTS SELECT RDB$EXCEPTION_NAME
 FROM RDB$EXCEPTIONS
 WHERE RDB$EXCEPTION_NAME = 'InvalidUserID'}

 CREATE EXCEPTION "InvalidUserID" 'Invalid User Identifier!';

 {$ENDIF}

$ELSE

Switches between executing and ignoring the script part are delimited by the previous
{$IFEXISTS} or {$IFNOTEXISTS} and the next {$ENDIF}.

Syntax:

 {$ELSE}

Example:

The following script tests the existence of domain DOM_BOOL in the database. If domain
DOM_BOOL cannot be found in the database it will be created. If domain DOM_BOOL al-
ready exists in the database it will be altered.

8

IBExpert Tools Menu - Script Executive

371

 {$IFEXISTS DOMAIN DOM_BOOL}

 ALTER DOMAIN DOM_BOOL
 ADD CHECK (VALUE IN (0,1));

 {$ELSE}

 CREATE DOMAIN DOM_BOOL AS SMALLINT
 DEFAULT 0 CHECK (VALUE IN (0,1));

 {$ENDIF}

$ENDIF

Ends the conditional execution initiated by the last {$IFEXISTS} or {$IFNOTEXISTS}
directive.

Syntax:

 {$ENDIF}

Example:

The following script creates a generator:

 {$IFNOTEXISTS GENERATOR "GenUserID"}

 CREATE GENERATOR "GenUserID";

 {$ENDIF}

Conditional Directives – the complete example

This example illustrates the use of conditional directives for upgrading databases.
Let's assume there is an initial version of your database (version 1):

 CREATE TABLE FIRST_TABLE (
 ID INTEGER NOT NULL,
 DATA VARCHAR(100));

 CREATE PROCEDURE GETDBVER
 RETURNS (
 VER INTEGER)
 AS
 begin
 ver = 1;
 suspend;
 end;

The next script will upgrade a database of any version < 4 to version 4.

8

IBExpert Tools Menu - Script Executive

372

 /***** Upgrade to version 2 *****/
 {$IfNotExists select ver from GetDBVer where ver > 1}

 ALTER TABLE FIRST_TABLE
 ADD CONSTRAINT PK_FIRST_TABLE
 PRIMARY KEY (ID);

 ALTER PROCEDURE GETDBVER
 RETURNS (
 VER INTEGER)
 AS
 begin
 ver = 2;
 suspend;
 end;

 {$endif}

 /***** Upgrade to version 3 *****/
 {$IfNotExists select ver from GetDBVer where ver > 2}

 CREATE GENERATOR GEN_FIRST_TABLE_ID;

 CREATE TRIGGER FIRST_TABLE_BI0 FOR FIRST_TABLE
 ACTIVE BEFORE INSERT POSITION 0
 AS
 begin
 new.id = gen_id(gen_first_table_id, 1);
 end;

 ALTER PROCEDURE GETDBVER
 RETURNS (
 VER INTEGER)
 AS
 begin
 ver = 3;
 suspend;
 end;

 {$endif}

 /***** Upgrade to version 4 *****/
 {$IfNotExists select ver from GetDBVer where ver > 3}

 CREATE EXCEPTION DELETION_NOT_ALLOWED 'You cannot delete records!';

 CREATE TRIGGER FIRST_TABLE_BD0 FOR FIRST_TABLE
 ACTIVE BEFORE DELETE POSITION 0
 AS
 begin

8

IBExpert Tools Menu - Script Executive

373

 exception deletion_not_allowed;
 end;

 ALTER PROCEDURE GETDBVER
 RETURNS (
 VER INTEGER)
 AS
 begin
 ver = 4;
 suspend;
 end;

 {$endif}

DESCRIBE DOMAIN

This changes a domain description.

Syntax:

DESCRIBE DOMAIN domain_name 'description';

Argument Description

domain_name Name of an existing domain

'description' Quoted string containing a domain description

DESCRIBE DOMAIN changes the description of an existing domain domain_name. When
the IBExpert Script Executive executes this statement it modifies the value of the
RDB$DESCRIPTION column in RDB$FIELDS connected with the specified domain name.

Actually the following statement is executed:

 UPDATE RDB$FIELDS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$FIELD_NAME = 'domain_name'

where DESC parameter is filled with the description.

Example:

 DESCRIBE DOMAIN DOM_BOOL
 'Boolean value:
 0 - FALSE
 1 - TRUE';

DESCRIBE EXCEPTION

This changes an exception's description.

8

IBExpert Tools Menu - Script Executive

374

Syntax:

DESCRIBE EXCEPTION exception_name 'description';

Argument Description

exception_name Name of an existing exception

'description' Quoted string containing a new description of specified exception

Description:

DESCRIBE EXCEPTION changes the description of an existing exception excep-
tion_name. When the IBExpert Script Executive executes this statement it modifies the
value of the RDB$DESCRIPTION column in RDB$EXCEPTIONS connected with the specified
exception. Actually the following statement is executed:

 UPDATE RDB$EXCEPTIONS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$EXCEPTION_NAME = 'exception_name'

where DESC parameter is filled with the description.

Example:

 DESCRIBE EXCEPTION MISSING_USER
 'There is no such user!';

DESCRIBE FIELD

 This changes a column description.

Syntax:

 DESCRIBE FIELD column_name TABLE table_name 'description';

Argument Description

column_name Name of an existing column of table table_name

table Name of an existing table

'description' Quoted string containing a column description

Description:

DESCRIBE FIELD changes the description of an existing column column_name of table
table_name. When the IBExpert Script Executive executes this statement it modifies
the value of the RDB$DESCRIPTION column in RDB$RELATION_FIELDS connected with the
specified column and table names. Actually the following statement is executed:

8

IBExpert Tools Menu - Script Executive

375

 UPDATE RDB$RELATION_FIELDS
 SET RDB$DESCRIPTION = :DESC
 WHERE (RDB$RELATION_NAME = 'table_name') AND
 (RDB$FIELD_NAME = 'column_name')

where the DESC parameter is filled with the description.

Example:

 DESCRIBE FIELD FULL_USER_NAME TABLE USERS
 'Full user name.
 Computed, concatenation of FIRST_NAME, MIDDLE_NAME and LAST_NAME';

DESCRIBE FUNCTION

This changes an UDF description.

Syntax:

 DESCRIBE FUNCTION function_name 'description';

Argument Description

function_name Name of an existing user-defined function

'description' Quoted string containing an UDF description

DESCRIBE FUNCTION changes the description of an existing user-defined function func-
tion_name. When the IBExpert Script Executive executes this statement it modifies the
value of the RDB$DESCRIPTION column in RDB$FUNCTIONS connected with the specified
function. Actually the following statement is executed:

 UPDATE RDB$FUNCTIONS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$FUNCTION_NAME = 'function_name'

where the DESC parameter is filled with the description.

Example:

 DESCRIBE FUNCTION COMPARE_BLOBS
 'Compares two blob values and returns 1
 if both values are equal. In other case returns 0';

DESCRIBE PARAMETER

This changes a procedure parameter description.

Syntax:

8

IBExpert Tools Menu - Script Executive

376

DESCRIBE PARAMETER parameter_name PROCEDURE procedure_name 'description';

Argument Description

parameter_name Name of an existing parameter of stored procedure

procedure_name Name of an existing stored procedure

'description' Quoted string containing a parameter description

Description:

DESCRIBE PARAMETER changes the description of an existing parameter parame-
ter_name of a specified stored procedure procedure_name. When the IBExpert Script
Executive executes this statement it modifies the value of the RDB$DESCRIPTION col-
umn in RDB$PROCEDURE_PARAMETERS connected with the specified parameter and pro-
cedure names. Actually the following statement is executed:

 UPDATE RDB$PROCEDURE_PARAMETERS
 SET RDB$DESCRIPTION = :DESC
 WHERE (RDB$PROCEDURE_NAME = 'procedure_name') AND
 (RDB$PARAMETER_NAME = 'parameter_name')

where the DESC parameter is filled with the description.

Example:

 DESCRIBE PARAMETER USER_ID PROCEDURE CALC_TRAFFIC
 'User ID';

DESCRIBE PROCEDURE

This changes a stored procedure description.

Syntax:

 DESCRIBE PROCEDURE procedure_name 'description';

Argument Description

procedure_name Name of an existing stored procedure

'description' Quoted string containing a procedure description

Description:

DESCRIBE PROCEDURE changes the description of an existing stored procedure proce-
dure_name. When the IBExpert Script Executive executes this statement it modifies
the value of the RDB$DESCRIPTION column in RDB$PROCEDURES connected with the
specified procedure. Actually the following statement is executed:

8

IBExpert Tools Menu - Script Executive

377

 UPDATE RDB$PROCEDURES
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$PROCEDURE_NAME = 'procedure_name'

where the DESC parameter is filled with the description.

Example:

 DESCRIBE PROCEDURE CALC_TRAFFIC
 'Calculates the summary traffic';

DESCRIBE TABLE

This changes a table description

Syntax:

 DESCRIBE TABLE table_name 'description';

Argument Description

table_name Name of an existing table

'description' Quoted string containing a table description

Description:

DESCRIBE TABLE changes the description of an existing table table_name. When the
IBExpert Script Executive executes this statement it modifies the value of the
RDB$DESCRIPTION column in RDB$RELATIONS connected with the specified table. Actu-
ally following statement is executed:

 UPDATE RDB$RELATIONS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$RELATION_NAME = 'table_name'

where the DESC parameter is filled with the description.

Example:

 DESCRIBE TABLE CUSTOMERS
 'Customers of our excellent application';

DESCRIBE TRIGGER

This changes a trigger description

Syntax:

 DESCRIBE TRIGGER trigger_name 'description';

8

IBExpert Tools Menu - Script Executive

378

Argument Description

trigger_name Name of an existing trigger

'description' Quoted string containing a trigger description

 Description:

DESCRIBE TRIGGER changes the description of an existing trigger trigger_name. When
the IBExpert Script Executive executes this statement it modifies the value of the
RDB$DESCRIPTION column of RDB$TRIGGERS connected with the specified table. Actually
the following statement is executed:

 UPDATE RDB$TRIGGERS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$TRIGGER_NAME = 'trigger_name'

where the DESC parameter is filled with the description.

Example:

 DESCRIBE TRIGGER USERS_BI
 'Generates an unique identifier';

DESCRIBE VIEW

This changes a view description

Syntax:

 DESCRIBE VIEW view_name 'description';

Argument Description

view_name Name of an existing view

'description' Quoted string containing a view description

Description:

DESCRIBE VIEW changes the description of an existing view view_name. When the
IBExpert Script Executive executes this statement it modifies the value of the
RDB$DESCRIPTION column of RDB$RELATIONS connected with the specified view. Actu-
ally the following statement is executed:

 UPDATE RDB$RELATIONS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$RELATION_NAME = 'view_name'

where the DESC parameter is filled with the description.

Example:

8

IBExpert Tools Menu - Script Executive

379

 DESCRIBE VIEW ALL_USERS
 'Just all users...:)';

INSERTEX (CSV file import)

This imports data from a CSV-file into a database table.

Syntax:

 INSERTEX INTO table_name [(columns_list)]
 FROM CSV file_name
 [SKIP n]
 [DELIMITER delimiter_char]

Argument Description

table_name Name of a table into which to insert data

columns_list List of columns into which to insert data

file_name Name of CSV-file from which to import data

SKIP n Allows the first n lines of CSV-file to be skipped while import-
ing data

DELIMITER delim-
iter_char

Allows a delimiter to be specified, which will be used for
parsing data values. If this argument isn't specified IBExpert
will use a colon as a delimiter.

Description:

INSERTEX imports data from a CSV-file into a database table. Values within the CSV-file
must be separated with a colon CHAR or any other char. In the latter case it is neces-
sary to specify a delimiter CHAR using the DELIMITER argument. It is also possible to
specify non-print characters as a delimiter. For example, if values are separated with
tab char (ASCII value $09) it may be specified as DELIMITER #9 or DELIMITER $9.

If a table table_name is missing in the database, it will be created automatically. In
this case the number of columns in the newly created table will be equal to the number
of values in the first line of the CSV-file. Columns will be named F_1, F_2 etc. The data
type of each column is VARCHAR(255).

If the columns_list isn't specified IBExpert will insert data from the very first column.
Otherwise data will only be inserted into specified columns.

It is possible to skip the first several lines of the CSV-file using the SKIP argument.
This may be useful if the first line contains column captions or is empty.

Since IBExpert version 2005.02.12.1 it is possible to use the INSERTEX command in the
SQL Editor.

Examples:

8

IBExpert Tools Menu - Script Executive

380

Let's consider the use of INSERTEX in the following examples. Assume there is a CSV-
file with the following data, delimited with a colon:

 C:\Mydata.csv
 ===
 ID:FIRST_NAME:LAST_NAME:SEX
 1:John:Doe:M
 2:Bill:Gates:M
 3:Sharon:Stone:F
 4:Stephen:King:M
 ===

The following INSERTEX statement creates a table PEOPLE (if it doesn't already exist)
and fills it with data from C:\Mydata.csv:

 INSERTEX INTO PEOPLE FROM CSV 'C:\Mydata.csv' DELIMITER ':';

The structure and contents of PEOPLE after the data import are shown below:

F_1 (VAR-
CHAR(255))

F_2 (VAR-
CHAR(255))

F_3 (VAR-
CHAR(255))

F_4 (VAR-
CHAR(255))

ID FIRST_NAME LAST_NAME SEX

1 John Doe M

2 Bill Gates M

3 Sharon Stone F

4 Stephen King M

The following INSERTEX statement is almost identical to the one above, but here the
first line of the CSV-file has been skipped:

 INSERTEX INTO PEOPLE FROM CSV 'C:\Mydata.csv' DELIMITER ':' SKIP 1;

The structure and content of the PEOPLE table after import is shown below:

F_1 (VAR-
CHAR(255))

F_2 (VAR-
CHAR(255))

F_3 (VAR-
CHAR(255))

F_4 (VAR-
CHAR(255))

1 John Doe M

2 Bill Gates M

3 Sharon Stone F

4 Stephen King M

In the next example the PEOPLE table is created first, and then subsequently populated
with the data from C:\Mydata.csv:

 CREATE TABLE PEOPLE (
 ID INTEGER NOT NULL,

8

IBExpert Tools Menu - Script Executive

381

 FIRST_NAME VARCHAR(30),
 LAST_NAME VARCHAR(30),
 SEX CHAR(1));

 INSERTEX INTO PEOPLE FROM CSV 'C:\Mydata.csv' DELIMITER ':' SKIP 1;

Below the structure and content of the PEOPLE table after import:

ID (INTE-
GER)

FIRST_NAME (VAR-
CHAR(30))

LAST_NAME (VAR-
CHAR(30))

SEX
(CHAR(1))

1 John Doe M

2 Bill Gates M

3 Sharon Stone F

4 Stephen King M

In the next example only three columns (ID, FIRST_NAME and LAST_NAME) are affected:

 CREATE TABLE PEOPLE (
 ID INTEGER NOT NULL,
 FIRST_NAME VARCHAR(30),
 LAST_NAME VARCHAR(30),
 SEX CHAR(1));

 INSERTEX INTO PEOPLE (ID, FIRST_NAME, LAST_NAME)
 FROM CSV 'C:\Mydata.csv'
 DELIMITER ':' SKIP 1;

The structure and content of the PEOPLE table after import can be seen below:

ID (INTE-
GER)

FIRST_NAME (VAR-
CHAR(30))

LAST_NAME (VAR-
CHAR(30))

SEX
(CHAR(1))

1 John Doe NULL

2 Bill Gates NULL

3 Sharon Stone NULL

4 Stephen King NULL

OUTPUT

This redirects the output of SELECT statements to a named file.

Syntax:

 OUTPUT [filename [DELIMITER delim_char]
 [QUOTECHAR 'quote_char']
 [TIMEFORMAT 'time_format']
 [DATEFORMAT 'date_format']

8

IBExpert Tools Menu - Script Executive

382

 [DECIMALSEPARATOR 'dec_sep']
 [NULLS]
 [FIELDNAMES]
 [ASINSERT [INTO table]]]

Argument Description

filename Name of the file in which to save output.

DELIMITER de-
lim_char

Determines a delimiter character which is used for separat-
ing field values. If the delimiter is not specified, or the
empty string is specified as a delimiter, outswapping of the
data will be carried out in the format with the fixed positions
of fields.
It is also possible to specify a delimiter character as a deci-
mal or hexadecimal value of the character code. For exam-
ple, to set the tab character (ASCII value $09) as a delim-
iter, simply specify DELIMITER #9 or DELIMITER $9.

QUOTECHAR
'quote_char'

Defines the character which will be used for quoting string
values. If this argument is not specified or an empty string
is specified, string values will not be quoted.

TIMEFORMAT
'time_format'

Defines the string which will be used for formatting the
values of time fields and the time slice of datetime values. If
the argument is not defined, time values will be unloaded in
the native InterBase format (for example, 17:15:45).

DATEFORMAT
'date_format'

Defines the string which will be used for formatting values of
date fields and the date part of datetime values. If the ar-
gument is not defined, date values will be unloaded in the
native InterBase format (for example, 17-FEB-2001).

DECIMALSEPARATOR
'dec_sep'

Defines the decimal separator which is used when outswap-
ping the data. If this argument is not defined, the system
decimal separator is used.

NULLS Defines how NULL values will be output. If the argument is
not specified, NULLs are output as an empty string. Other-
wise NULLs will be unloaded as the string "<null>".

FIELDNAMES If this argument is specified, the first line in the resulting file
will be a line with names of SELECT columns.

ASINSERT This argument allows data to be unloaded as a set of INSERT
operators, i.e. to get a usual SQL script.

INTO table It is used together with ASINSERT for redefining the name of
the table in INSERT operators. If the argument is not given,
the name of the first table in the record set will be used.

Description:

The OUTPUT operator is intended for redirecting the output of SELECT statements in an
external file. With the help of the given operator it is possible to export the data easily
into a file with separators or with a fixed column position.

8

IBExpert Tools Menu - Script Executive

383

OUTPUT without parameters closes the file which was opened with the previous OUTPUT
command, and resets all export customizations to default.

If ASINSERT is not specified, blob fields are ignored when outswapping the data. Using
ASINSERT even blob values are exported, i.e. an additional file with the extension "lob"
is created, in which all blob fields are stored.

While outputting into SQL script (ASINSERT is specified) DELIMITER, QUOTECHAR, NULLS
and FIELDNAMES arguments are ignored.

Examples:

The following script creates a MyData.txt file in the current directory and outputs the
data of the SELECT into it, with a fixed column position format. If MyData.txt file al-
ready exists in the current directory, the data will be appended to it.

 OUTPUT MyData.txt;

 SELECT * FROM MY_TABLE;
 OUTPUT;
In the next example the data will be exported in the comma-separated values (CSV)
format:

 OUTPUT 'C:\MyData\MyData.csv' DELIMITER ';'

 FIELDNAMES
 QUOTECHAR '"'
 DECIMALSEPARATOR '.';
 SELECT * FROM MY_TABLE;
 OUTPUT;
In the following script the data will be exported into SQL script as a set of INSERT op-
erators:

 OUTPUT 'C:\MyScripts\Data.sql' ASINSERT INTO "MyTable";

 SELECT * FROM MY_TABLE;
 OUTPUT;
The next example illustrates usage of the OUTPUT statement together with SHELL.

 /* First create a folder C:\MyData*/
 SHELL MKDIR C:\MyData;

 /* Try to delete mydata.csv */
 SHELL DEL C:\MyData\mydata.csv;

 /* Redirect output of SELECTs into mydata.csv */
 OUTPUT C:\MyData\mydata.csv DELIMITER ';'
 DATEFORMAT 'MMMM-dd-yyyy'
 TIMEFORMAT 'hh:nn:ss.zzz'
 QUOTECHAR '"';

 SELECT * FROM MY_TABLE;

8

IBExpert Tools Menu - Script Executive

384

 /* Close C:\MyData\mydata.csv */
 OUTPUT;

 /* Try to open just created CSV-file with Windows Notepad */
 SHELL notepad.exe C:\MyData\mydata.csv NOWAIT;

 /* Try to open C:\MyData\mydata.csv with the application
 associated with CSV files */
 SHELL C:\MyData\mydata.csv NOWAIT;

New in IBExpert version 2.5.0.61:

1. The NOFIELDNAMES option is obsolete now. This means that there will be no column
captions in the output file by default. If you wish to include column captions use
FIELDNAMES option.

2. Added possibility to customize delimiter char for INSERTEX command (DELIMITER
option). If the DELIMITER option is missing a comma will be used as the delimiter char.

New in IBExpert version 2005.03.12:

Extended syntax of OUTPUT command:

 1.
 output 'E:\data.sql'
 as insert into mytable commit after 1000;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

 2.
 output 'E:\data.sql'
 as reinsert into mytable
 commit after 2000;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

 3.
 output 'E:\data.sql'
 as execute procedure myproc;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

 ASINSERT option is available for compatibility.

RECONNECT

RECONNECT closes the current connection and creates a new one with the same pa-
rameters (database, user name, password etc.).

Syntax:

 RECONNECT;

8

IBExpert Tools Menu - Script Executive

385

REINSERT

IBExpert has introduced the new REINSERT statement. Directly following an INSERT it is
possible to perform further INSERTs with new contents.

SET BLOBFILE

IBExpert uses an original mechanism to extract values of blob fields into a script. This
allows you to store the entire database (metadata and data) into script files and exe-
cute these scripts with IBExpert. A small example illustrates the method used to ex-
tract blob values.

For example, your database has a table named COMMENTS:

CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

This table has three records:

COMMENT_ID COMMENT_TEXT

1 First comment

2 NULL

3 Another comment

 If the Extract BLOBs option is not checked, you will receive the following script:

CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

INSERT INTO COMMENTS (COMMENT_ID) VALUES (1);
INSERT INTO COMMENTS (COMMENT_ID) VALUES (2);
INSERT INTO COMMENTS (COMMENT_ID) VALUES (3);

... and, of course, you will lose your comments if you restore your database from this
script.

But if the Extract BLOBs option is checked IBExpert will generate quite a different
script:

SET BLOBFILE 'C:\MY_SCRIPTS\RESULT.LOB';

CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (1,
h0000000_0000000D);
INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (2, NULL);

8

IBExpert Tools Menu - Script Executive

386

INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (3,
h000000D_0000000F);

Also IBExpert generates a special file with the extension LOB where blob values are
stored. In the current example result.lob will be 28 bytes long and its contents will
be First commentAnother comment.

SET BLOBFILE is a special extension of script language that allows IBExpert's Script
Executive to execute scripts containing references to blob field values.

SET CLIENTLIB

This defines the client library to be used while executing a script.

Syntax:

 SET CLIENTLIB file_name;

Argument Description

file_name Client library file name

Description:

SET CLIENTLIB defines client library which will be used while executing a script. The
default client library is gds32.dll.

Example:

 SET CLIENTLIB 'C:\Program Files\Firebird\Bin\fbclient.dll';

SET PARAMFILE

PARAM file is an ini-file with param values.

For example, if your script contains some parameterized INSERT/UPDATE/DELETE
statements you can define parameter values in an external file (params file):

param1=12-FEB-2003
param2=John Doe
param3=35
...

When IBEScript finds a query with parameters it looks for the values of these parame-
ters in the specified params file.

SHELL

This allows execution of an operating system command.

Syntax:

8

IBExpert Tools Menu - Script Executive

387

 SHELL os_command [NOWAIT];

Argument Description

os_command An operating system command

NOWAIT Optional argument. If specified, execution of a script will be continued
right after creation of the process executing the command of operat-
ing system, not waiting its completion.

Description:

The SHELL operator tries to execute the command os_command. If NOWAIT is not speci-
fied, the further execution of a script stops before completion of the process created by
SHELL operator. Otherwise script execution will be continued immediately after begin-
ning the execution of the command os_command.

Examples:

The following script tries to create a folder MyFolder in the current directory:

 SHELL mkdir MyFolder;

The following example shows the use of the SHELL command to start Notepad.exe and
the loading of C:\MyTexts\Shedule.txt file in it. It is necessary to use NOWAIT here,
otherwise it is not possible to execute the script further, and it will be impossible to re-
sume work in IBExpert until the Notepad is closed.

 SHELL "notepad.exe C:\MyTexts\Shedule.txt" NOWAIT;

The next example illustrates the use of the SHELL statement together with OUTPUT.

 /* First create a folder C:\MyData*/
 SHELL MKDIR C:\MyData;

 /* Try to delete mydata.csv */
 SHELL DEL C:\MyData\mydata.csv;

 /* Redirect output of SELECTs into mydata.csv */
 OUTPUT C:\MyData\mydata.csv DELIMITER ';'
 DATEFORMAT 'MMMM-dd-yyyy'
 TIMEFORMAT 'hh:nn:ss.zzz'
 QUOTECHAR '"';

 SELECT * FROM MY_TABLE;

 /* Close C:\MyData\mydata.csv */
 OUTPUT;

 /* Try to open just created CSV-file with Windows Notepad */
 SHELL notepad.exe C:\MyData\mydata.csv NOWAIT;

8

IBExpert Tools Menu - SQL Monitor

388

 /* Try to open C:\MyData\mydata.csv with the application
 associated with CSV files */
 SHELL C:\MyData\mydata.csv NOWAIT;

8.6 SQL Monitor
The SQL Monitor can be started in the IBExpert Tools menu, using the respective icon
in the Tools toolbar or using the key combination [Ctrl + M].

The SQL Monitor can be used if a detailed protocol is required. Once opened, it logs
everything performed in IBExpert, allowing the user to view all actions as SQL code.

It provides detailed background information, for those wishing to learn and analyze the
way IBExpert works. It is also an ideal tool for analyzing certain problems or error
messages that can otherwise not easily be solved.

The SQL Monitor always includes a timestamp, regardless of whether this option is
checked in the Database Registration Info / Log Files or not.

The SQL code cannot be edited directly; it can however be copied to clipboard, saved
to file or printed, using the right-click SQL Editor menu. Further operations, such as In-
cremental Search, are explained under SQL Editor Menu.

Please note that the SQL Monitor is not able to log all SQL calls to the database
server; it only logs IBExpert calls.

Please refer to SQL Monitor Options for details of customization.

8

IBExpert Tools Menu - Dependencies Viewer

389

8.6.1 SQL Monitor Options

The Monitor Options icon:

• Connect/Disconnect - whether the database connection should also be proto-
colled.

• Prepare / Execute / Fetch - which phases of the SQL queries should be moni-
tored.

• Transactions - whether each individual transaction should be monitored.
• Services - monitoring of the individual commands at API level
• API calls - direct InterBase/Firebird calls (ICE files). This option may really only be

of interest to hardcore C programmers!

8.7 Dependencies Viewer
The IBExpert Dependencies Viewer is an ideal tool for ascertaining any dependencies
upon an object or an object's dependency upon other objects - particularly important
before deleting objects!

It can be found in the IBExpert Tools menu.

8

IBExpert Tools Menu - Dependencies Viewer

390

Database objects can be simply moved from the DB Explorer into the Viewer using
drag 'n' drop.

The Reference By page displays which objects reference the selected object, i.e. the
higher-ranking objects (in the above illustration EMPLOYEE) are referenced by the sub-
ordinate objects (in the above example: DEPARTMENT, PROJECT, EMPLOYEE_PROJECT,
SALARY_HISTORY, EMPLOYEE (references itself = direct recursion), SET_EMP_NO and
SALES).

The References page:

shows which objects are used by the selected object. In the above example, this in-
cludes, among others, the EMPLOYEE and DEPARTMENT tables.

It is possible to specify whether domains should be displayed or not, by simply check-
ing the Don't Show Domains box in the toolbar. As it is possible for domains to refer-
ence other domains, and each table field is based either on a user-defined or system
domain, this may slow work with the Dependencies Viewer if it is not checked.

Further object display criteria are offered by the icons in the toolbar (please refer to
Dependencies Viewer toolbar for details).

• Direct recursion indicates that an object references itself.
• Indirect recursion indicates that an object references itself indirectly via one or

more other objects, for example EMPLOYEE references itself indirectly via DEPART-
MENT (each employee belongs to a department; each department has a manager,
who is an employee).

Double-clicking on any of the objects in the Viewer opens the respective object dialog.

8

IBExpert Tools Menu - SP/Triggers/Views Analyzer

391

8.8 SP/Triggers/Views Analyzer
The Stored Procedure/Trigger/Views Analyzer is new to IBExpert version 2.5.0.47 and
can be found in the Tools menu. (This feature is unfortunately not included in the Per-
sonal Edition.)

It allows the user to view and analyze how the database performs the individual opera-
tions/statements in a stored procedure, trigger or view. For example, certain indices
may not be used by the database server, as the statistics are too high; this can be
solved simply by using the IBExpert Database menu item Recompute selectivity of all
indices. Or when backing up an older InterBase version and restoring to a new Inter-
Base/Firebird version, the procedures and triggers appear not to work, as it is often
necessary to first recompute selectivity of all stored procedures and triggers (found in
the IBExpert Database menu).

The database to be analyzed can be selected from the pull-down list of all connected
databases (first toolbar item). By clicking on the Start Analyzing icon, it loads all stored
procedures and triggers for the active database.

They are all automatically analyzed, i.e. each procedure/trigger is split up into the indi-
vidual statements (the first SQL row is displayed in the Statement column; the full
code is displayed in the lower Statement window). The indices used for each operation
are displayed in the right-hand Expected Plan column; details may be viewed in the
lower Expected Plan window. Those not using indices (i.e. NATURAL) are highlighted.

As with all IBExpert editors the contents can be sorted by clicking on the desired col-
umn header (e.g. sort according to Name, Table/View, statement etc.). By clicking on
the left-hand column header, the red highlighted objects (i.e. those including a NATU-
RAL plan) are grouped together.

8

IBExpert Tools Menu - SP/Triggers/Views Analyzer

392

The Procedure, Trigger, Table or View editors can be quickly started by double-clicking
on a selected field, allowing the user for example, to quickly and easily insert an index.

Column headers can also be dragged to the gray area below the toolbar, to group by
the column selected:

The above illustration displays all stored procedures and triggers grouped by the pro-
cedure or trigger name. By clicking '+' or '-', or double-clicking on the list name, the
individual operations can be easily blended in or out.

It is also possible to group by more than one criteria:

8

IBExpert Tools Menu - SP/Triggers/Views Analyzer

393

A filter function is soon to be incorporated, so that it is possible, for example, to display
only those object using a NATURAL plan.

The lower window displays the SQL text for a selected operation on the Statement
page, in the lower half of the window. The statements can easily be copied and in-
serted into a text editor or the IBExpert SQL Editor, using the context-sensitive right-
click menu (please refer to SQL Editor Menu for further details).

The Expected Plan page displays the plan in a tree form:

In case it is of interest, the SP/Triggers/Views Analyzer was realized using the Devel-
oper Express component.

8

IBExpert Tools Menu - Database Comparer

394

8.9 Database Comparer
The IBExpert Database Comparer can be found in the Tools menu. This tool is new to
IBExpert version 2.5.0.47. This feature is unfortunately not included in the Personal
Edition.

It allows developers to compare database versions or database SQL scripts. This is par-
ticularly useful for example, before installing an updated client application, which con-
tains new tables, procedures, exceptions, etc. etc., as it is possible to compare the da-
tabases, and - by analyzing the resulting script, view both the changes to the software,
as well as those data changes made by the client, erasing any irrelevant alterations,
and applying those which are relevant, by executing the script.

On the Options page, first select the Master or Reference Database or SQL script, by
clicking the icons to the right of the path/file input area. This is the reference database,
to which the second database is to be compared. Then select the Comparative or Tar-
get Database, i.e. the database which needs to be assessed and altered in order to
conform with the reference database.

Since IBExpert version 2004.04.01.1 scripts can also be selected and compared. It is
also possible to store into or load from an external file (using the toolbar icons), and
use this together with IBECompare (IBExpert command-line tool).

There are a number of options, which can be checked if they should be included in the
comparison. These include:

• Objects to compare:
domains
tables
views
procedures (see stored procedure for further information)
triggers

8

IBExpert Tools Menu - Database Comparer

395

generators
exceptions
UDFs
roles
indices (see index for further information)

• grants (see Grant Manager for further information)
descriptions (see Description page for further information)

• Keys and constraints:
primary keys
foreign keys
uniques
checks (see check constraint for further information)

• verbose: this displays each step that IBExpert performs and when, allowing a de-
tailed comparison.

Click the Compare icon to start the comparison.

The Log page logs the comparison, which can be halted and restarted at any time by
using the Stop and Compare icons. The results are automatically loaded in the Script
Executive. Here it is easy to see which operations need to be performed, in order to
make the comparative database identical to the reference database. Using the State-
ments page:

8

IBExpert Tools Menu - Table Data Comparer

396

It is simple to unselect or select individual statements using point and click. Please re-
fer to Script Executive for further details. By executing all SQL statements the com-
parative database becomes identical to the master database.

Please note that certain alterations may cause serious problems with your database,
due to restrictions and limitations in Firebird/InterBase. For example, changing a data
type from CHAR to INT.

We at IBExpert are aiming to generate comments for all such items that cannot be
modified. Please mail us (see below) if you incur problems, which are not yet reported
by IBExpert.

Firebird also seems to have problems with certain dependencies. For example, when
dropping a view with dependent procedures, the Firebird server removes records from
RDB$DEPENDENCIES and doesn't recreate them when the view is recreated.

As the Database Comparer is a new feature in IBExpert, we would like to hear from
anyone who may have discovered an example of a database comparison, which does
not function one hundred per cent. Please mail details (with the database, if it is not
too large!) to support@ibexpert.com.

8.10 Table Data Comparer
The Table Data Comparer is new to IBExpert version 2004.2.26.1 and can be found in
the Tools menu. It allows you to compare data of two tables in different databases and
obtain a script detailing all discrepancies which includes corresponding INSERT, UPDATE
and DELETE statements. This feature is unfortunately not included in the Personal Edi-
tion.

8

IBExpert Tools Menu - Table Data Comparer

397

On the Options page, first specify the Master or Reference Database from the pull-
down list of all registered databases, followed by the Master Table, which is to be used
as the basis for the comparison. This is the reference table, to which the second table
is to be compared. Then select the Target Database and Target Table, i.e. the database
and table which needs to be assessed and altered in order to conform with the refer-
ence database and table. The databases and tables must already exist. The tables may
have different names but they must have the same structure. Since IBExpert version
2004.8.5.1 an error is raised if there is no primary key defined for the reference table.

The default File Name for the resulting script may be altered if wished.

Finally check whether the records should be processed for INSERT, UPDATE or DELETE,
before clicking the Compare button (green arrow) or [F9].

The resulting log:

displays whether the database connections were successful, records searched, time
taken and the number of discrepancies found.

The resulting script file may then be loaded into the Script Executive if wished.

8

IBExpert Tools Menu - Log Manager

398

Since IBExpert version 2005.03.12 the speed of the Table Data Comparer has been
considerable increased (up to five times faster!).

8.11 Log Manager
The IBExpert Log Manager can be found in the Tools menu. This tool is new to IBExpert
version 2.5.0.47. This feature is unfortunately not included in the Personal Edition.

Select the database to be logged from the pull-down list of registered databases. When
initially opened, the Log Actions page displays check options for logging INSERT, UP-
DATE and DELETE actions,

below which the selected table's fields and field types are displayed. The logging op-
tions, for example which INSERT, UPDATE and DELETE actions on which tables, can be
checked individually or alternatively, the Log Manager pull-down menu can be used to
either Prepare All Tables or to Unprepare All Tables. Although it should be taken into
consideration, that when all actions on all tables are to be logged, this could slow the
database performance somewhat.

Once the actions have been selected, the Log Actions page displays the SQL code:

8

IBExpert Tools Menu - Log Manager

399

which can be copied to clipboard, if wished, using the right-click SQL Editor Menu.

New in version 2004.6.17 - templates have been added for data logging triggers.
Please refer to Options / General Templates / Data Logging Triggers for more details.

The Log Data page displays the new and old values:

In IBExpert version 2004.12.12.1 a new feature was added, allowing you to generate a
log script for several tables simultaneously. Simply select the required tables using the
[Ctrl + Shift] keys. And since IBExpert version 2005.02.12.1 64-bit IDs are now used
when working with SQL Dialect 3 databases.

If a system error message appears when clicking on this page, stating that an IBExpert
system table is missing, open any table from the DB Explorer and click on the Logging
page in the Table Editor. You will then be automatically asked, whether IBExpert
should generate certain system tables. After confirming and committing, you should
have no further problems!

The following can be user-specified: Start Date, End Date (both with timestamp), indi-
vidual or all users and individual or all actions. The specified log can also be logged to
file if wished, by clicking on the Log to Script button, which produces a new dialog box:

8

IBExpert Tools Menu - Log Manager

400

where the Script File Name can be specified, and on the Options page, the Target Ta-
ble, Commit Interval, and user specification of which fields are to be extracted into the
script. The Script Details page allows the user to write his own Start of Script and End
of Script.

This Log file can even be used as a sort of replication. This is because, as opposed to
the logging specified in the Database Registration, which only logs all IBExpert actions,
the Log Manager logs all actions and operations on the database itself, including those
of all users.

Back to the Log Manager Editor, the Options page:

allows the user to specify the following options:

• Immediately compile after Prepare or Unprepare
• Autogrant privileges when compiling (generally this should be activated).
• Allow comparing BLOBS in AFTER UPDATE trigger (new to version 2004.1.22.1)

8

IBExpert Tools Menu - Search in Metadata

401

8.12 Search in Metadata
The Search in Metadata option can be found in the IBExpert Tools menu, using the re-
spective icon in the Tools toolbar, or started using the key combination [Shift + Alt +
F]. It is identical to the Edit menu's Find option - Find in Metadata page.

This option is useful for finding individual words/digits or word/digit strings in metadata
(and since IBExpert version 2004.8.5 also in object descriptions). It even searches for
and displays field names, as opposed to the DB Explorer Filter, which only searches for
object names. The Find Metadata dialog offers a number of options:

Here the user can specify what he is looking for; the pull-down list displays previous
search criteria. A single active database may be selected from the second pull-down
list; alternatively the Search in all Active Database option can be checked, in the bot-
tom left-hand corner of the dialog.

Further Search options include:

• Options:
• Case sensitive - differentiates between upper and lower case
• Whole words only - as opposed to whole or parts of words
• Regular Expression - recognizes regular expressions in the search string.
• Search in: determines which object types should be searched - domains, tables,

views, stored procedures, triggers, exceptions, UDFs.

After clicking on the Find button, a new Search dialog is opened:

8

IBExpert Tools Menu - Extract Metadata

402

The Search Options button in the toolbar can be used to restart the Find dialog, in or-
der to specify new Search conditions. The arrow to the right of this produces a drop-
down overview of the search criteria specified.

The results of the Metadata Search are displayed in the usual IBExpert tree form,
sorted by database object type. By clicking on an object, the object editor is opened in
the Search in Metadata dialog, and can be edited as wished. Alternatively, a double-
click on the tree object opens the object editor.

8.13 Extract Metadata
The Extract Metadata menu item can be found in the IBExpert Tools menu, or started
using the respective icon in the Tools toolbar.

The Extract Metadata module can be used to generate a partial or full database meta-
data script, including table data, privileges and objects descriptions if wished. It allows
the user to extract metadata to file or clipboard. It is even possible to extract blob
data.

And since version 2004.1.22.1, it is also possible to extract date/timestamp/time val-
ues with ANSI-prefixes:

 INSERT INTO MY_TABLE (DATE_FIELD, TIME_FIELD, TIMESTAMP_FIELD)
 VALUES (date '01.01.2004', time '12:15:45',timestamp '01.01.2004
12:15:45');

8

IBExpert Tools Menu - Extract Metadata

403

Since IBExpert version 2004.04.01.1 it is possible to extract table data into separate
files (TABLE_1.sql, TABLE_2.sql, TABLE_3.sql etc.). This version also includes sup-
port for default values of input parameters (Firebird 2).

Support for the InterBase 7.5 temporary tables feature was added in IBExpert version
2004.12.12.1.

First a database needs to be selected from the toolbar's pull-down list of all registered
databases. The toolbar's Extract to options include:

• File
• Clipboard
• Script Executive (default)
• VCS Files (previously, before IBExpert version 2004.9.12.1, named "Separate

Files")
• Separate Files (new to IBExpert version 2004.9.12.1)

The Separate Files mode extracts metadata (and data if specified) into a set of files:
two files with metadata (_ibe$start_.sql and _ibe$finish_.sql), files containing
table data (one or more files for each database table) and a runme.sql file, that con-
sists of a number of INPUT <file_name> statements in the correct order.

If either the File, VCS Files or Separate Files options are chosen, it is of course neces-
sary to specify a file path and name (*.sql or Metadata Extract Configuration *.mec).

Meta Objects Page:

The first dialog page Meta Objects displays the Select Objects Tree (please refer to this
subject for further information).

Data Tables Page:

8

IBExpert Tools Menu - Extract Metadata

404

The Data Tables page can be used to specify whether data should also be extracted.
This allows both user-defined and system tables to be selected - either all or individu-
ally:

again using the <, >>, > or >> buttons, drag 'n' dropping or double-clicking.

By selecting one of the tables in the Selected Tables list, it is possible to add a WHERE
clause, if wished.

Extract Metadata Options Page:

The Extract Metadata Options page offers a wide range of further options:

8

IBExpert Tools Menu - Extract Metadata

405

These include:

General Options:

• Generate 'CREATE DATABASE' statement - this determines whether a CREATE
DATABASE statement should be included at the beginning of the generated script. If
this option is unchecked, the CONNECT statement will be included instead.

• Include password into 'CONNECT' and 'CREATE DATABASE' statements -
this determines whether the password should be included into the CREATE DATA-
BASE or the CONNECT statement in the resulting SQL script.

• A Limit File Size option was added in IBExpert version 2004.9.12.1. This defines
the maximum file size of the resulting script(s). When this option is specified and
the maximum file size is reached, IBExpert automatically creates the next file with
suffixes 0001, 0002 etc.

Metadata Options:

• Set Generators - If this option is checked, the SET GENERATOR statement for each
generator will be included into the resulting script.

• Include object descriptions - this determines whether database objects descrip-
tions should be included into the generated script. See "How does IBExpert extract
objects descriptions?" for more details.

8

IBExpert Tools Menu - Extract Metadata

406

• Extract COMPUTED BY fields separately - this option can be used to specify
whether computed fields should be extracted separately (useful if there are bugs in
the database; realistically however this option is seldom used).

• Always include the CHARACTER SET for domains/fields/parameters.
• Since version 2004.2.26.1 there is also the added option Decode domains. If en-

abled, the domain types will be inserted as comments just after domain names. For
example:

CREATE TABLE Z (
 B BOOL /* INTEGER DEFAULT 0 CHECK (VALUE IN(0,1)) */
);

Data Options:

• Date Format - this can be used to specify the date format and datetime format,
with options to use an ANSI prefix for date/time values and to set the specified
format as default.

• Extract Blobs - IBExpert cannot "read" blobs; it therefore uses a detour to make a
reference to a separate database file containing such blobs. Only IBExpert has been
able to do this so far. Other products only extract the definition of the blobs, and
not the contents themselves.

• Use REINSERT instead of repeated INSERTs - uses the IBExpert REINSERT
command, to insert multiple data records.

• Insert 'COMMIT WORK' after number of (records) – this option defines the
number of records before inserting the COMMIT statement into the script. The de-
fault value is 500, i.e. 500 Insert commands are performed and then committed.

Grants:

• Extract privileges - for all or only for selected objects.

Finally, if wished, use the toolbar icon Save Configuration to File or the key combina-
tion [Ctrl + S] to save this configuration as a template for future use. The next time
round, the template can be quickly and easily loaded using the Load Configuration icon
(or [Ctrl + L]); the template specifications amended if necessary, and the extract
started!

Once all objects have been selected, and all options specified, the extract can be
started using the green > button or [F9].

Output Page:

The Output page displays the IBExpert log during the extraction. Following completion,
if a file was specified, IBExpert asks whether the file should be loaded into the script
editor.

8

IBExpert Tools Menu - Extract Metadata

407

If the Script Executive has been specified as the output option, the Script Executive is
automatically loaded.

The object tree on the left-hand side can be opened to display the individual state-
ments relating to an object. By clicking on any of these statements, IBExpert springs to
that part of SQL code, which is displayed on the right:

8

IBExpert Tools Menu - Extract Metadata

408

The statements display what IBExpert is doing and in which order. The script displays
the creation of all objects, and then the subsequent insertion of the content data, using
the ALTER command.

Extract Metadata is a great tool, and can be useful in a variety of situations. For exam-
ple, it can be used to perform an incremental backup, should it be necessary for exam-
ple, to back up just the EMPLOYEE table every evening.

8.13.1 Metadata

Metadata includes the definition of the database and database objects such as do-
mains, generators, tables, constraints, indices, views, triggers, stored procedures,
user-defined functions (UDFs), blob filters.

Metadata is stored in system tables, which are themselves part of every Inter-
Base/Firebird database.

Metadata includes all those SQL statements necessary to recreate the database object.
It includes the following elements:

• CREATE DATABASE statement
• CREATE DOMAIN statements
• CREATE TABLE statements

8

IBExpert Tools Menu - Extract Metadata

409

• declarative referential integrity using the ALTER TABLE statement
• CREATE GENERATOR statements
• CREATE VIEW statements
• check constraints using ALTER TABLE statements
• CREATE EXCEPTION statements
• procedure definitions using CREATE PROCEDURE or ALTER PROCEDURE
• trigger definitions using CREATE TRIGGER statements
• granting of user authorizations for tables, views and stored procedures.

Metadata for a table includes all domains and generators used by these tables plus the
CREATE TABLE statement.

It does not include any referential integrity definitions from this table to other tables or
from other tables to this table.

Metadata for a view only includes the CREATE VIEW statement.

The current metadata definitions can be viewed on the DDL page in the individual ob-
ject editors.

8

IBExpert Tools Menu - Extract Metadata

410

The IBExpert menu item Tools - Extract Metadata can be used to extract all metadata
for a database. The resulting script can be used to create a new empty database. When
the Options Data Tables and Options - Extract Blobs are used, the script contains the
complete database with all data.

8.13.2 Select Objects Tree

The Select Objects Tree dialog can be found in the following editors:

• Extract Metadata Editor on the first page, Meta Objects,
• Generate HTML Documentation Editor, also on the Objects page, ,
• Print Metadata dialog.

8

IBExpert Tools Menu - Extract Metadata

411

The Select Objects Tree feature offers the user the choice whether to extract all data-
base objects (check option), or specify individual objects, (using the < or > buttons,
drag 'n' dropping the object names or double-clicking on them), or object groups (us-
ing the << or >> buttons, drag 'n' dropping the object headings or double-clicking on
them).

Multiple objects can be selected using the [Ctrl] or [Shift] keys. There is even the op-
tion to Add Related Objects by using the button above the Selected Objects window.

8.13.3 How does IBExpert extract objects descriptions?

IBExpert uses a special extension of script language that enables it to extract objects'
descriptions into script and then execute one using the Script Executive.

8.13.4 How does IBExpert extract blobs?

IBExpert uses an original mechanism to extract values of blob fields into a script. This
allows you to store an entire database (metadata and data) in script files and execute
these scripts with IBExpert. The following small example illustrates out method to ex-
tract blob values.

For example, a database has a table named COMMENTS:

CREATE TABLE COMMENTS (COMMENT_ID INTEGER NOT NULL PRIMARY KEY, COM-
MENT_TEXT BLOB SUBTYPE TEXT);

This table has three records:

COMMENT_ID COMMENT_TEXT

1 First comment

2 NULL

3 Another comment

 If the Extract BLOBs option is unchecked you will get following script:

CREATE TABLE COMMENTS (COMMENT_ID INTEGER NOT NULL PRIMARY KEY, COM-
MENT_TEXT BLOB SUBTYPE TEXT);

INSERT INTO COMMENTS (COMMENT_ID) VALUES (1);
INSERT INTO COMMENTS (COMMENT_ID) VALUES (2);
INSERT INTO COMMENTS (COMMENT_ID) VALUES (3);

... and, of course, you will lose your comments if you restore your database from this
script.

But if the Extract BLOBs option is checked, IBExpert will generate a somewhat different
script:

SET BLOBFILE 'C:\MY_SCRIPTS\RESULT.LOB';

8

IBExpert Tools Menu - Print Metadata

412

CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (1,
h0000000_0000000D);
INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (2, NULL);
INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (3,
h000000D_0000000F);

IBExpert also generates a special file with the extension LOB, where blob values are
stored. In the current example result.lob will be 28 bytes long and its contents will
be First commentAnother comment.

SET BLOBFILE is a special extension of script language that allows the IBExpert Script
Executive to execute scripts containing references to blob field values.

8.13.5 Obtain current generator values

There are two methods to obtain the current generator values in a database. The first
is using the IBExpert menu item Tools / Extract Metadata, where there is an option to
set generators on the Options Page.

In Firebird this can also be done using a stored procedure:

CREATE PROCEDURE GET_GENERATORS
RETURNS (
 GENERATOR_NAME CHAR(31),
 CURR_VAL BIGINT)
AS
declare variable sql varchar(100);
BEGIN
 FOR
 select r.rdb$generator_name generator_name, cast(0 as bigint)
curr_val from rdb$generators r
 where r.rdb$generator_name not containing '$'
 INTO :GENERATOR_NAME,
 :CURR_VAL
 DO
 BEGIN
 sql='Select gen_id('||GENERATOR_NAME||',0) from rdb$database';
 execute statement :sql into :curr_val;
 SUSPEND;
 END
END

8.14 Print Metadata
Print Metadata prints the database metadata, along with dependencies, description,
DDL and other options for any database object or object group, providing a quick and
yet extremely comprehensive database documentation. The information is printed as a
report, using IBExpert's report templates. Using Report Manager, these reports can

8

IBExpert Tools Menu - Print Metadata

413

also be customized (the Print Metadata standard report templates can be found in the
IBExpert\Reports\ directory). This is of particular importance for those businesses
working according to DIN certification/ISO standards.

The Print Metadata menu item can be found in the IBExpert Tools menu, or started us-
ing the printer icon in the Tools toolbar.

The Print Metadata Editor is similar to the Extract Metadata Editor. First select one of
the registered databases using the top left toolbar button. Then select the objects to be
printed. It is possible to check Print All, or specify individual database objects (using
the < or > buttons, drag 'n' dropping the object names or double-clicking on them), or
object groups (using the << or >> buttons, drag 'n' dropping the object headings or
double-clicking on them). Multiple objects can be selected using the [Ctrl] or [Shift]
keys.

There is even the option to Add Related Objects by using the button above the Se-
lected Objects window.

When one of the selected database objects or object groups is highlighted, a number of
check options appear in the lower right panel. These include:

8

IBExpert Tools Menu - Generate HTML Documentation

414

• fields
• constraints
• indices
• dependent objects
• depend on objects
• parameters
• DDL
• description

In order to print a complete database documentation it is of course necessary to select
all database objects, and then check all options for each object group. This could how-
ever lead to difficulties in the case of very large databases, despite the Report Man-
ager's amazing speed!

It is possible to print the report directly from this dialog or preview it first, using the
magnifying glass icon.

This opens the Fast Report Preview page, which displays the report as it will be printed,
and furthermore offers options such as saving the report to file and searching for text.

8.15 Generate HTML Documentation
Using the IBExpert Tools menu, HTML documentation can be generated for a named,
connected database.

8

IBExpert Tools Menu - Generate HTML Documentation

415

This option is an excellent feature for software documentation, particularly if an object
description was always inserted as objects were created. For those working with an
older version of IBExpert: versions before 2.5.0.47 do not include all of the features
detailed here.

The toolbar displays the selected connected database. The pull-down lists offers a
choice of all connected databases.

The default output directory can be overwritten if wished.

The Generate HTML Documentation Editor is similar to the Extract Metadata Editor. The
Objects page allows single or groups of database objects to be selected for the HTML
documentation. Database objects can be specified individually using the < or > but-
tons, drag 'n' dropping the object names or double-clicking on them, or object groups
may be specified using the << or >> buttons, drag 'n' dropping the object headings or
double-clicking on them. Multiple objects can be selected using the [Ctrl] or [Shift]
keys. Alternatively the Extract All box can be checked, allowing documentation to be
generated for the complete database.

There is even the option to Add Related Objects by using the button above the Se-
lected Objects window.

8

IBExpert Tools Menu - Generate HTML Documentation

416

The Options page lists a series of check boxes including:

• single file (i.e. whether one complete file, as opposed to several smaller files should
be generated)

and whether:

• indices
• foreign keys
• check constraints
• database object descriptions
• syntax highlighted object definitions
• hyperlinks in object definitions

should be included.

8

IBExpert Tools Menu - Generate HTML Documentation

417

The CSS or cascaded style sheets page displays the code for the HTML page template
(please refer to CSS for more information).

8

IBExpert Tools Menu - Generate HTML Documentation

418

The Output page displays the code used to generate the HTML documentation.

By clicking on one of the object subjects, such as triggers, a table of all such objects
(i.e. all triggers) for this database appear. Clicking on the individual objects then
automatically displays the description (if existent) and the definition.

8

IBExpert Tools Menu - User Manager

419

8.15.1 CSS – Cascaded Style Sheets

Cascaded style sheets (CSS) are an option included in the Generate HTML Documenta-
tion menu (second page in the main dialog). With knowledge of HTML these style
sheets can be adapted as wished.

8.16 User Manager
The User Manager administrates database users and their roles. Here individual users
can be allocated database and server access. The User Manager applies to the data-
base server and not the individual database (please refer to server and database secu-
rity for more information).

To start the User Manager select the Tools / User Manager menu item, or click the
relevant icon in the Tools toolbar. The User Manager Editor displays all databases
(drop-down list) on the current connected InterBase/Firebird server. The server con-
nection may be altered using the pull-down list.

Select the database and server (local or remote) to administrate.

User rights for the database:

8

IBExpert Tools Menu - User Manager

420

All users must be logged in, in order to access the server. What they are actually al-
lowed to do on the server is then determined using the InterBase/Firebird GRANT and
REVOKE commands (see Grant Manager for further details), or the front-end program.

Note! To create, edit and delete users and roles you should have the rights of server
administrator.

Users page:

On the Users page, a full list of users registered for the named server connection is
displayed. Even if the selected database is not currently connected, the user list can
still be seen. This is because the users are registered directly in the security database
on the server, and can therefore be granted rights for all databases on this server.
Since version 2.5.0.61 there is the additional column AC (Active Users) displayed in the
users list. It shows how many active connections a user has to the specified database.
This works only with active databases. And since version 2005.02.12.1 the Refresh
button has been added to refresh a list of all users.

You may be asked for a password, when selecting an unconnected database, in order
to ascertain your authority.

A user can be added by the SYSDBA (not a database owner, as users are created for all
databases on the server). Simply click the Add button, and complete the New User
form:

Support for the InterBase 7.5 embedded user authentication was added in IBExpert
version 2004.12.12.1.

Again, only the SYSDBA or is allowed to edit or delete users. When editing, only the
user name used for logging in may not be changed. It is here that a new password
may be entered, if the user has forgotten his old one; or a change of name be input,
for example, if a user marries.

This list contains currently existing users. To add, edit or delete users click buttons at
the right of the list. In the Add / Edit User window set the user name and password
and (optionally) his first, middle and last name.

8

IBExpert Tools Menu - User Manager

421

Password:

The password is always user-oriented. Passwords are stored encrypted in the server
database. When a user enters his password, this is passed onto the server, which com-
pares the string entered with the string of the encrypted password stored on the
server. The password is NEVER passed on from the server to the client.

If a user forgets his password, the SYSDBA can enter a new one to replace the old one.
Alternatively a UDF can be incorporated into the program, to allow the user to change
his password himself, without having to disturb the SYSDBA or reveal the new pass-
word to a third person.

An example of such a UDF can be found in the FreeUDFlib.dll, which can be
downloaded from www.ibexpert.com. (Please refer to FreeUDFLib for details.)

Users can be entered and assigned rights directly, although it often makes more sense
if the majority of users are assigned user rights using roles. Roles are used to assign
groups of people the same rights. When changes need to be made, only the role needs
to be altered and each user individually. Please refer to roles for further information.

Roles page:

The Roles page can be used to create and delete roles exactly in the same way as with
the database object Roles. All roles and their owners are displayed for the selected da-
tabase. Other databases on the same server may be selected to display their full range
of existing roles.

This list contains existing roles. To add or delete roles click buttons at the right of the
list. When creating or deleting a role the Compile Window appears. Commit the trans-
action and if it is successful the new role is created or dropped. After the role has been
created, users need to be added to the role. Role users and rights can be specified, ed-
ited and deleted using IBExpert's Grant Manager.

Roles can only be altered at system table level. They can however be deleted and new
roles added using the User Manager.

Membership page:

The Membership page shows which users have been granted rights to which roles.

8

IBExpert Tools Menu - User Manager

422

The abbreviations G and AO stand for Granted and With Admin Option. Users can be
assigned roles simply by selecting the user, and checking either the Grant boxes or the
Admin Option boxes. For example, all sales staff could be given the user name SALES
with the role SALES. When logging into the system, both these names need to be en-
tered. Checking the Admin Option automatically entitles the user to pass his rights on
to other users.

8.16.1 Server security ISC4.GDB / SECURITY.FDB

When InterBase/Firebird is installed on a server, a database of authorized users is also
installed. This is vital for server security, to protect the server from being accessed,
manipulated or damaged by unauthorized users.

The database's security database is called ISC4.GDB; since Firebird 1.5 SECURITY.FDB,
the change of suffix being due to Windows XP's eternal copying problems with .GDB
files.

The ISC4.GDB provides a user page detailing rights for the InterBase/Firebird server.
Here all users are entered, that are allowed to use the server. The user password is
server-oriented and not database-oriented. It is important to employ users and rights
to limit access and control manipulation, and is particularly advantageous, for example,
to trace who has done what and when, as user names are included in the log.

Any user listed in the server security database's user list can open a database by pro-
viding the appropriate user name and password. If a user name and password is speci-
fied when the database is created, this user becomes the database owner. Only the
SYSDBA and database owner are allowed to drop the database. If no database owner is
specified at the time of database creation, then only the SYSDBA is authorized to drop
the database.

If a user creates a table, InterBase/Firebird appoints that user as the table owner, and
only the table owner and the SYSDBA are authorized to drop the table.

The SYSDBA and database owner can GRANT, REVOKE and grant access rights to users
in the database; the SYSDBA and table owner can GRANT, REVOKE and grant access
rights for tables. These rules also apply to views and stored procedures.

Simply allowing users into the database is not particularly helpful if they have not been
granted access to the objects in this database. Therefore server security is adminis-
trated in IBExpert using the User Manager; user rights can then be assigned and con-
trolled using the IBExpert Grant Manager.

8

IBExpert Tools Menu - Grant Manager

423

Further security features include the following:

• Views - as they can be used to hide many table details from users; the users only
have access to those columns and rows that they really need to see.

• Referential integrity - protects the data against orphaned rows and other opera-
tions, which could possibly damage the database integrity.

• GRANT and REVOKE statements - can be used in the IBExpert Grant Manager to
specify which users may access which tables and views, and whether they are also
allowed to manipulate data.

• An object may not be dropped if it is referenced elsewhere in the database. For ex-
ample, a table cannot be dropped if it is referenced in a view, check constraint,
trigger, stored procedure or other object.

8.16.2 Change user password per batch

To alter a user's password at command-line level, use the following syntax:

gsec -modify SYSDBA -pw password

or:

gesec -user SYSDBA -password oldpassword -modify SYSDBA -pw newpassword

An example for batch:

set isc_user=sysdba
set isc_password=masterke
gsec -add username -pw password

8.17 Grant Manager
The Grant Manager is used to administrate database security by controlling user per-
missions for a specific database. It allows you to specify the access rights for users,
roles and database objects.

To start the Grant Manager select the menu item Tools / Grant Manager, use the re-
spective icon in the Tools toolbar, or double-click on a role in the DB Explorer. Alterna-
tively use the DB Explorer's right mouse-click menu item Edit Role or key combination
[Ctrl + O]. This feature is unfortunately not included in the Personal Edition.

The Grant Manager Editor appears:

8

IBExpert Tools Menu - Grant Manager

424

(1) Select Database: The toolbar displays the alias name for the current selected
connected database. Another database on this server can be selected from the drop-
down list at the top of the window

(2) Privileges for: The pull-down list (default = Users) allows a group for the proc-
essing of privileges to be selected. The options include:

• users,
• roles,
• views,
• triggers,
• procedures.

Once a database object has been selected, a full list of such users/objects in this data-
base is displayed in the panel directly below.

(3) Grants toolbar: The Grants toolbar enables the user to quickly assign or revoke
rights to one or more objects, or for one or more operations. These can also be found
in the right-click pop-up menu (see below).

(4) Filters: It is possible, using the pull-down lists, to specify exactly which grants
should be displayed, i.e. for all database objects (default), just the tables, just the

8

IBExpert Tools Menu - Grant Manager

425

views or just the procedures. Furthermore the user can determine whether all of the
selected objects should be displayed, or only those with grants, or only those not
granted. To the right of these pull-down lists is an empty filter field for user-defined fil-
ters. It is also possible to specify whether system tables should be included or the
user-defined filter inverted, using the check boxes provided.

(5) The main window displays the object grants in a grid, displaying the granted op-
erations (Select, Update, Delete, Insert, Execute and Reference) for the listed objects.
A green circle indicates that access for this operation on this database object has been
granted; a green circle held by a hand indicates that the GRANT WITH GRANT AU-
THORITY option has been granted. An empty field indicates logically that either no
rights have been granted, or they have been revoked.

The right-click pop-up menu offers the various GRANT and REVOKE options also dis-
played in the Grant Manager toolbar.

A further menu option here is Show Column Privileges (checkbox). This blends the
lower window in and out (6), which displays the individual columns for tables and
views, allowing Update and Reference rights to be granted and revoked for individual
fields in the selected object.

Rights can be simply granted and revoked by double-clicking (or using the space bar)
on the grid fields (in both the upper (object) and lower (column) windows). Alterna-
tively, to assign several rights (i.e. select, update, delete and insert) to a single object
or to assign one operative right to all objects displayed, use either the Grant Manager
toolbar or the right-click menu.

Please note that Reference rights only allow the user to read data sets, if there is a
foreign key relationship to other data. And the Grant All to All command may only be
performed by the database owner or the SYSDBA.

The majority of these operations can also be performed in the Grants pages, found in
the individual database object editors. These were introduced to remind the developer
not to forget the assignment of rights! They allow the developer to check existing
rights for the object concerned and, if necessary, subsequently assign rights for a new
or existing object.

Rights are however in practice usually administered at the front end. There is, as a
rule, only one system user, with which the program can log into the database. For
those preferring direct SQL input, please refer to GRANT and REVOKE.

8

IBExpert Tools Menu - Grant Manager

426

8.17.1 Granting access to stored procedures

To grant a user the right to execute stored procedures, use the IBExpert Grant Man-
ager EXECUTE column:

or the SQL EXECUTE statement. For example, to grant Janet and John the right to exe-
cute the stored procedure SP_Delete_Employee, use the following:

GRANT EXECUTE
ON PROCEDURE SP_Delete_Employee
TO Janet, John;

InterBase/Firebird considers stored procedures as virtual users of the database. If a
stored procedure modifies a table, the procedure needs the relevant privileges on that
table. So the user only needs EXECUTE privileges on the procedure and not any sepa-
rate rights for the table. In this situation, the stored procedure performs the changes
on behalf of the user.

If a stored procedure needs the ability to execute another stored procedure, simply se-
lect Procedures from the Privileges For list and Procedures from the Grants On list, to
grant the EXECUTE privilege on the desired procedure. Using SQL the GRANT statement
is used, naming the procedure instead of one or more users (<user_list>).

8.17.2 Using the GRANT AUTHORITY option

A user, that has been granted certain privileges, may also be assigned the authority to
grant those privileges in turn to other users. This is known as assigning grant author-
ity.

InterBase/Firebird allows by default only the creator of a table and the SYSDBA to
grant additional privileges onto other users.

Grant authority can be assigned in the IBExpert Grant Manager or the Grants pages in
the relevant object editors, using the Grant All with GRANT OPTION or the Grant to All
with GRANT OPTION icons or right-click menu items:

8

IBExpert Tools Menu - Secondary Files Manager

427

It is also simple to see which grant authorities have already been assigned to which
users and roles.

In SQL the WITH GRANT OPTION clause may be used in conjunction with a grant of
privileges, to assign users the authority to grant their privileges in turn to other users
(refer to GRANT statement for the full syntax and examples).

8.18 Secondary Files Manager
The Secondary Files Manager can be found in the IBExpert Tools menu.

First select the database for which the secondary files are to be created, from the pull-
down list of connected databases.

Then simply click on the New File button (bottom left corner) to specify a secondary
file. As a database file is being created here, it is important not to forget to also specify
the drive and path, as well as the file name and suffix (usually .GDB). Otherwise the
file will be created and stored anywhere on the system (usually in the Windows Sys-
tem32 folder). Should this happen, the file drive and path can be viewed when the
Secondary Files Manager is restarted.

After specifying the secondary file's name, either the starting page (File Start) or
length in pages (File Length) can be specified by selecting the field, and clicking or us-
ing the space bar to activate the counter or allow numerical entry. Specifying both

8

IBExpert Tools Menu - Secondary Files Manager

428

these parameters is unnecessary, and only provides an error source, as the starting
pages of two files must of course concur with the number of pages of the first file.

When using the IBExpert Secondary Files Manager, the first secondary file starts at the
current position in the primary file, i.e. the primary file is immediately considered to be
"full", and all new data and metadata from this point onwards is stored in this first sec-
ondary file. This can be viewed in the IBExpert Services / Database Statistics. See be-
low for the specification of the primary file size at the time of database creation. Of
course, multiple secondary files may be specified here if wished. It is not necessary to
specify the length of the last secondary file; this can therefore become as large as the
physical disk space allows.

When all files have been specified satisfactorily, simply click the Apply button,

and check before finally committing or rolling back.

There are no performance advantages to be expected by distributing the database
across several files, so it is not recommended that secondary files be used, unless the
disk storage space and database size absolutely require it.

The secondary files' size, path and name can only be altered when the database is re-
stored, as this is the only option which allows secondary files to be redefined.

For those preferring direct SQL input the syntax is as follows:

CREATE DATABASE "database name"
LENGTH <number > PAGES
FILE <secondary file 1> LENGTH <number> PAGES
FILE <secondary file 2> LENGTH <number> PAGES
...
FILE <secondary file N>;

The alternative syntax, using STARTING (AT PAGE), is as follows:

CREATE DATABASE "database name"
FILE <secondary file 1> STARTING AT PAGE <number>
FILE <secondary file 2> STARTING AT PAGE <number>
...
FILE <secondary file N> STARTING AT PAGE <number>;

8

IBExpert Tools Menu - Secondary Files Manager

429

The AT and PAGE keywords are optional. InterBase/Firebird recognizes any of the fol-
lowing variations:

STARTING AT PAGE 5000
STARTING AT 5000
STARTING 5000

Please note that when a database is dropped/deleted, all secondary and shadow files
are also deleted. The complete structure and all the data is permanently deleted!

8.18.1 Primary file

A database's primary file is the main database file. If no secondary files are specified, it
is the only database file.

When secondary files are used, the length in pages needs to be specified for the pri-
mary file, or alternatively the first secondary file needs to be specifies with the START-
ING (AT PAGE) parameter.

Primary and secondary files can be specified in the IBExpert Tools / Secondary Files
Manager.

8.18.2 Secondary files

One or more secondary files may be specified by the database creator, to be used for
database storage once the primary file has reached its specified limit. The database
can be distributed across as many secondary files as wished.

Usually InterBase/Firebird databases grow dynamically, when database objects, pro-
gram code or data are added. The only limitations are the physical limits of the hard
disk or file system on which the database is stored.

Some file systems such as, for example, HP UNIX have additional limitations which do
not enable the partition size to go over two Gigabytes. To avoid such a limitation, the
InterBase database can be spanned across multiple file systems. Each file can be as-
signed a maximum size. Due to the automatic administration in InterBase/Firebird, the
primary file is first filled until the maximum page size has been reached. Subsequent
information is then packed into the secondary files until their capacity has been
reached. As many secondary files can be created as wished.

Since InterBase 6.5/Firebird secondary files are really no longer necessary. In those
particular cases, where secondary files may need to be considered, please consult the
respective database Release Notes.

There are no performance advantages to be expected by distributing the database
across several files, so it is not recommended that secondary files be used, unless the
disk storage space and database size absolutely require it.

Secondary files can be simply and easily created using the IBExpert menu item Tools /
Secondary Files Manager.

8

IBExpert Tools Menu - Localize IB Messages

430

Please note that when a database is dropped/deleted, all secondary and shadow files
are also deleted. The complete structure and all the data is permanently deleted!

8.19 Localize IB Messages
Localize IB Messages can be found in the IBExpert Tools menu. It enables the user to
translate InterBase/Firebird messages into another language.

The InterBase/Firebird messages can be loaded by clicking on the Open File icon and
specifying the drive and path (Firebird\interbase.msg or Inter-
Base\interbase.msg).

The messages are displayed in tabular form. The first column displays the message
number (the total number of messages is displayed in the status bar).

The second column shows the editable text; the third column the original English text.

To translate a message, simply double-click to open the Edit window, enter the desired
translation, confirm to return to the main window, and save (or undo). When saving it
is recommended a new file name be specified, for example interbase_german.msg, as
otherwise the original English text is overwritten by the translation.

8

IBExpert Tools Menu - Localize IBExpert

431

Other options offered in the Localize IB Messages toolbar include:

• Save to File - saves all changes to the file named in the title bar.
• Undo - allows the message text to be reverted to the original, provided it has not

yet been saved to file.
• Goto Message Number - spring to specified message number.
• Find and Search Again - search options for finding message texts.
• Export to Text File - enables the message list to be exported to a text file.
• Import from Text File - allows a message list to be loaded from a text file as op-

posed to loading the interbase.msg file).

8.20 Localize IBExpert
Localize IBExpert can be found in the IBExpert Tools menu. It enables the user to
translate InterBase/Firebird messages into another language.

8

IBExpert Tools Menu - Localize IBExpert

432

The InterBase/Firebird messages are automatically loaded. An alternative Font Charac-
ter Set may be selected if necessary from the pull-down list offered in the Localize
IBExpert toolbar.

The Localizing Form displays all IBExpert messages in a tabular form. The first column
displays the ID number (there are 2,999 ID records altogether). The second column
shows the message type (e.g. string), the third the editable item text; and the fourth
column the respective shortcut. Initially pink highlighted records show messages al-
ready created and assigned in the original English version. Blank rows (non-
highlighted) indicate non-assigned messages.

To translate a message, simply select it, enter the desired translation in the lower edit-
ing panel and save. When saving it is recommended an new file name be specified, for
example interbase_german.msg, as otherwise the original English text is overwritten
by the translation.

Other options offered in the Localize IBExpert toolbar include:

• Save to File - saves all changes to the file named in the title bar.
• Find and Search Again - search options for finding message texts.
• Export to Text File - enables the message list to be exported to a text file.
• Import from Text File - allows a message list to be loaded from a text file (as op-

posed to loading the standard IBExpert original English file).

If you have succeeded in translating this file into a language that IBExpert does not yet
offer, please contact hk@ibexpert.com. We would love to hear from you!

8.20.1 Find IBExpert Message

This Search dialog is useful for finding individual words or word strings in the long lists
of IBExpert language translations. It can be called using the Binocular icon in the Lo-
calizing Form toolbar. The dialog offers a number of options:

The Text to Find field allows direct input, or the pull-down list may be used to select a
text recently searched for.

The Direction forward (default) or backward may be selected, as well as the area to be
searched (from a selected area or across the entire scope).

Use the OK button to spring to the first occurrence of the text specified.

The

8

IBExpert Tools Menu - Report Manager

433

icon can be used to search for further occurrences, should any exist, of the specified
string.

8.21 Report Manager
Using the menu item Tools / Report Manager or the respective icon in the Tools tool-
bar, the Report Manager dialog is opened. (This feature is unfortunately not included in
the Personal Edition.)

A new report can be created on any volume or in the database (double-click on a data-
base entry to create the necessary objects automatically). To edit the report, just use
[Ctrl+D] and the editor will open. To create a new report, simply right -click on Page1
header and add a new dialog form. On this form you can add a database and one or
more query components. Go back to Page1 and Insert some bands and rectangular ob-
jects. All data connections can be viewed in the Object Inspector or following a double
click.

Take a look at http://www.fast-report.com/ to see some examples and the original
components, which can be used in any Delphi/CBuilder project as an extremely power-
ful, quick and stable replacement for Quickreport and other report tools.

We personally have still not found anything that Fast Report cannot do!

8.22 Blob Viewer/Editor
The IBExpert Blob Viewer/Editor can be found in the Tools menu.

(This feature is unfortunately not included in the Personal Edition.)

It enables blob fields in an open grid (e.g. the Table Editor / Data page, the SQL Editor
/ Results page) to be viewed as Text, Hex, Picture, RTF or as a web page.

The individual fields in the blob column can be viewed and navigated using the editor's
navigational toolbar (please refer to Blob Viewer/Editor toolbar for details).

New to IBExpert version 2003.11.6.1 is the added syntax highlighting for SQL. This is
useful if your blobs contain SQL queries. Furthermore, there is now a new As BLR page.
This allows blobs with subtype 2 data to be displayed:

8

IBExpert Tools Menu - Database Designer

434

This shows what is really physically in the database.

Since IBExpert version 2005.03.12 there is also added support for PNG (Portable Net-
work Graphics) images.

8.23 Database Designer
The IBExpert Database Designer is a comprehensive tool, which allows database ob-
jects to be managed visually. It can be used to represent an existing database visually,
or create a new database model, and then create a new database, based upon this
model. It is possible to add, edit and drop tables and views, edit table fields, set links
between tables, edit and drop procedures, and so on. This feature is unfortunately not
included in the Personal Edition.

The Database Designer can be started from the IBExpert Tools menu.

The Designer Menu offers the following options:

• Reverse Engineer ...
• Generate Script ...
• New Diagram
• Load Diagram from File
• Save Diagram
• Export ...
• Print
• Manage Subject Areas
• Manage Layers
• Model Options...

There are also a number of toolbars (please refer to Database Designer toolbars for
further information).

Using the Designer menu items or icons, an existing diagram can be opened from file,
or a new diagram created.

8

IBExpert Tools Menu - Database Designer

435

Reverse Engineering will be used here for the sake of demonstration. (Please refer to
Reverse Engineer for details.) By simply creating a model of the sample EMPLOYEE da-
tabase using the Reverse Engineer ... menu item, it is possible to view and test the
many features the Database Designer has to offer.

The magnifying glass icons in the Menu and Palette toolbar can be used to increase or
reduce the diagram size. Using the pointer icon (= normal editing mode), tables and
views can be selected by clicking on them with the mouse, or dragged 'n' dropped as
wished; the connecting lines (= links) automatically move as well.

Insert new tables or views by simply clicking on the relevant icon in the Palette toolbar,
and positioning in the main diagram area. Since IBExpert version 2004.10.30.1 tem-
plates can be used (IBExpert menu item Environment Options / Templates) to create
foreign and constraint names automatically.

Alternatively, existing objects may be dragged and dropped from the DB Explorer and
SQL Assistant into the main editing area. When an object node(s) is dragged from the
DB Explorer or SQL Assistant, IBExpert will offer various versions of text to be inserted
into the Code Editor. It is also possible to customize the highlighting of variables. Use
Options / Editor Options / Color to choose color and font style for variables.

And since IBExpert version 2004.9.12.1 there is now a Model Navigator in the SQL As-
sistant, enabling you to navigate models quickly. Use the corresponding tab in the SQL
Assistant (Model Navigator). The Database Explorer now offers an additional Diagrams
page, displaying all objects in the database model in a tree form. Simply click on any
object, and it is automatically marked for editing in the main Database Designer win-
dow.

The Comment box icon allows comments to be added to the diagram. Insert and posi-
tion a comment box, double-click to add the comment text in the Model Options win-
dow on the Database Designer Comment Box page.

Reference lines, i.e. foreign key relationships can be drawn between tables/views using
the right-hand icon in the Menu and Palette toolbar, and dragging the mouse from one
table to the next.

Context-sensitive right-click menus offer a number of options for selected tables, views
or links (please refer to Database Designer Right-Click Menus for further information).

Double clicking on any table or view opens the Model Options menu item in the lower
window, where information can be viewed, altered or specified. Please refer to Model
Options for further information.

By double-clicking on the line between two tables, the relationships are shown in de-
tail. The name and automatic tracing of links are options, as already mentioned, in-
cluded in Model Options.

8

IBExpert Tools Menu - Database Designer

436

Database objects may be grouped using the [Shift] key and selecting objects with the
mouse, and then using the respective Layout toolbar icons to group or ungroup ob-
jects.

Objects can also be aligned (left, center, right, top, middle, bottom), again by holding
the [Shift] key and selecting objects with the mouse, and using the respective Layout
icons. Using these key combinations, it is also possible to select a group of objects, and
make them the same size, height or width, size to grid, or center horizontally or verti-
cally.

And since IBExpert version 2005.03.12 there is the added option, using the right-click
context-sensitive menus, to lock visual objects, to protect them against casual modifi-
cation of size and position.

Don't forget, the white pointer icon returns the mouse to the normal editing mode!

It is also possible to Manage Subject Areas and Manage Subject Layers (please refer to
these subjects for further information).

When the database model has been designed/altered as wished, a script can be gener-
ated (please refer to Generate Script) and executed, to apply these alterations to the
database itself.

8.23.1 Database Designer right–click menus

The main Database Designer design area offers a selection of context-sensitive right-
click menus.

8

IBExpert Tools Menu - Database Designer

437

When a table is selected, the following options are offered:

These include options to Select All, Copy and Paste; Columns, Indexes, Keys, Checks,
Triggers and SQL Preview are those options also offered in the Model Options dialog in
the lower part of the screen; a check box to specify whether a selected table should be
depicted with a shadow or not; and Format. This menu item opens a new dialog - for
tables however, this only offers the shadow option, also listed as a check option in the
menu.

The Lock / Unlock option is new to IBExpert version 2005.03.12, and allows visual ob-
jects to be locked, to protect them against casual modification of size and position.

When a view is selected, the right-click menu offers the following options:

Again the option to Select All, Copy and Paste is offered, along with the Format option.
This dialog must be opened and the shadow option checked or unchecked, if the ap-
pearance of the view is to be altered.

When a link is selected, the following options are offered:

Again there is the option to Select All, Copy and Paste. Furthermore, it is possible to
spring to either the Parent or Child (i.e. primary key able or foreign key table), and
again the Format option opens a new dialog, where, on the Links page, the rounded
corners option may be checked or unchecked as wished.

8

IBExpert Tools Menu - Database Designer

438

8.23.2 Reverse Engineer

Reverse engineering creates a diagram of an existing database.

When reverse engineering, select the database to be visually displayed from the list of
registered databases.

In the case of the selection of an unconnected database, IBExpert asks whether it
should connect. Specify whether a new diagram should be created or an existing one
updated, and check the Clear Diagram option if necessary:

The option Do not remove foreign keys marked as non-Generate was added in IBEx-
pert version 2004.12.12.1 and is useful to prevent fake relationships from being de-
leted.

Start the reverse engineering, and see how quickly IBExpert creates a diagram of the
database:

8

IBExpert Tools Menu - Database Designer

439

8.23.3 Generate Script

It is also possible to generate a script for the model using the Generate Script menu
item. This is necessary in order to apply any changes made to the model to the data-
base itself.

The script can be generated into the Script Executive, to a file or to clipboard. The
Script Type options include:

• Create new database
• Update existing database

8

IBExpert Tools Menu - Database Designer

440

• Difference script (for testing only)

Specify the file name if saving to file and check/uncheck the options

• Don't quote identifiers if possible
• Include object descriptions

if wished, and run.

Since version IBExpert 2004.8.5.1 generators and triggers are now processed during
generation of the update database script. View dependencies are also now taken into
account when the script is generated.

Since IBExpert version 2004.9.12.1 the SET NAMES, SET SQL DIALECT, CREATE DATA-
BASE statements were removed from the resulting CREATE DATABASE script. You now
need to use the model prescript (Model Options) to specify necessary INIT statements.

The generation of update scripts was improved in IBExpert version 2004.12.12.1. to
include analysis of exceptions and procedures.

8.23.4 Export

The database model can be exported, either as a bitmap (.bmp) or an enhanced meta-
file (.emf). This is new to IBExpert version 2.5.0.61. Simply load the model to be ex-
ported, click the Export menu item, and specify the name and format.

8.23.5 Print

The database model can be printed, using the respective Database Designer menu item
or icon. This option firstly produces a print preview, allowing adjustments to be made
before printing.

New Features:

• Since IBExpert version 2.5.0.61 it is possible to store printing options between ses-
sions.

• Since version 2003.12.18.1 it is now possible to display borders of pages (printable
parts) with dashed lines. You can customize the page options (size, headers and
footers etc.) using the Print Preview form.

8

IBExpert Tools Menu - Database Designer

441

8.23.6 Manage Subject Areas

The IBExpert Database Designer menu item Manage Subject Areas is particularly use-
ful, for example, to administrate or visualize certain sub-areas of the database, e.g.
Sales or Administration, independently or separately from the rest of the database. Use
the Manage Subject Areas menu item.

8

IBExpert Tools Menu - Database Designer

442

Using the two dialog icons, new subjects can be defined by entering a name and check-
ing those tables to be included; or existing subjects altered or deleted. Since IBExpert
version 2004.12.12.1 it is possible to drag 'n' drop objects from the DB Explorer (Dia-
grams page) to the subject areas to include them as members of this area. It is also
possible to drag objects from the list of objects in the Subject Areas Manager.

Several subject areas can be opened and administrated simultaneously; switch from
subject to subject by clicking on the window buttons underneath the main editing area.

These subject areas are stored with the main subject area when the diagram is saved
to file.

8.23.7 Manage Subject Layers

This filter option allow certain specified tables and their relationships to be viewed.
Simply click the New Layer icon, name the layer, and check those objects to be in-
cluded.

In order to view everything again, it is necessary to reopen the Manage Layers dialog,
and click the icon Show All.

8

IBExpert Tools Menu - Database Designer

443

The diagram created may be saved to file or exported using the respective Designer
menu item or Save icon.

8.23.8 Model Options

The Model Options menu item opens a new window in the lower half of the Database
Designer dialog. Here the following visual display and script options may be selected:

When a table or view is double-clicked in the main editing area, an additional window
appears automatically in the model options dialog.

General: Since version 2004.6.17 it is possible to specify the font character set for
model objects. Simply click General on the left-hand list, and specify the character set
using the pull-down list.

Table: Options to display the following: Table Name and Description, Field Name,
Type, Not Null and Description, Primary Key and Foreign Key Marks and Expand Mark.
It is even possible to specify the maximal description length.

8

IBExpert Tools Menu - Database Designer

444

Links: Display Link Names (i.e. display FK relationships) and Automatically Trace Links
(displays the links as horizontal/vertical lines with 90° corners).

The pre- and postscript options were added in IBExpert version 2003.12.18.1. This of-
fers the possibility to define pre- and postscripts for your database model. The pre-
script will be inserted into the model script just after CREATE DATABASE or CONNECT
statement. The postscript will be added to the end of the model script. There is also
now an added option allowing you to define pre- and postscripts for each table sepa-
rately.

By double-clicking on the line between two tables, the relationships are shown in de-
tail. The name and automatic tracing of links, are options already mentioned, included
in the Model Options menu item.

The Model Options window may be closed by clicking the small black X in the top left-
hand corner.

Domains

The Model Options also included a Domains page with various insert, alter and delete
options, similar to the Domain Editor in the DB Explorer.

Exceptions

The Model Options also included an Exceptions page with various insert, alter and de-
lete options, similar to the Exception Editor in the DB Explorer. The support of excep-
tions and stored procedures has been included since IBExpert version 2.5.0.6.1.

Procedures

The Model Options also included a Procedures page, similar to the Procedure Editor in
the DB Explorer. The support of stored procedures has been included since IBExpert
version 2.5.0.6.1.

It is possible to insert a new procedure or delete a selected procedure, using the rele-
vant icons. Procedures can be selected from the pull-down list to the right of these
icons.

The code can be altered as wished; the editing page offering all those features included
in all IBExpert Edit pages (such as Code Completion, comprehensive right-click menu
(SQL Editor Menu) etc).

Generators

The Model Options also include a Generators page with various insert, alter and delete
options, similar to the Generator Editor in the DB Explorer. The support of generators
has been included since IBExpert version 2004.1.22.1.

Selected Table / Selected View

Table <selected table>: The options allow columns, indices, keys, checks and trig-
gers to be added, amended or deleted. This version of the IBExpert Table Editor can be

8

IBExpert Tools Menu - Database Designer

445

used to create a new table or view, or alter an existing selected table. For details
please refer to Create Table and Table Editor.

View <selected view>: A new view can only be created in the Database Designer us-
ing SQL. Alternatively create a new view in the DB Explorer, and update an existing
diagram using Reverse Engineer... For further information regarding view creation in
the IBExpert DB Explorer, please refer to New View.

The Definitions page displays the table or view name, allows a description to be dis-
played/entered and the Generate check option allows the selected table or view to be
updated in the diagram.

The Selected Table options: Columns, Indexes, Keys, Checks, Triggers and Preview,
and the Selected View options: SQL, Triggers and Preview, are based on those pages
found in the Table Editor and View Editor in the DB Explorer. There is however a num-
ber of abbreviations included in these frames, which are not included in the DB Ex-
plorer editors. These have the following meaning:

• G = generate, i.e. include into the result script.
• U = unique (for indices)
• A = active (for triggers)
• M = mandatory (for columns, i.e. NOT NULL)

Since version 2003.12.18.1 there is also the possibility to define pre- and postscripts
for each table separately. The prescript will be inserted into the model script just after
the CREATE DATABASE or CONNECT statement. The postscript will be added to the end of
the model script. You can also define pre- and postscripts for each table separately.

Since version 2.5.0.61 IBExpert has increased the flexibility with regard to customizing
table layout. It is possible to toggle on/off displaying of field name, field type, NOT
NULL flag, field description and foreign key mark in any combination. It is also possi-
ble to display the table description instead of, or together with the table name.

8

IBExpert Tools Menu - Test Data Generator

446

In IBExpert version 2003.11.6.1 the View Editor and Note Editor were redesigned.
They are now no longer modal.

Comment Box

When a Comment Box is inserted into the main diagram, double-clicking upon this box
produces a new Comment Box page in the Model Options dialog. This can be used to
insert, alter or delete a comment text as wished.

In IBExpert version 2003.11.6.1 the View Editor and Note Editor were redesigned.
They are now no longer modal.

8.24 Test Data Generator
The IBExpert Test Data Generator can be found in the Tools menu.

(This feature is unfortunately not included in the Personal Edition.)

A database connection must already exist. Select the database for which test data is to
be generated, if more than one database is connected. To generate data for a specific
table, select the table, then select the number of data sets to be generated. Over
100,000 data sets are not a problem for IBExpert here, even when working locally, al-
though it may take a little time. Click on the individual fields and specify the contents
on the right. It is possible to specify the following:

Data Generation Type: options here include:

• Generate randomly: User-defined constraints include the following:
- Integer: the minimum and maximum value.
- Float: check option Fixed Float Number, and user specification of number of digits
and level of precision.
- String: the minimum and maximum length; the range of characters within the
character set which may be used for the data content.
- Date: the minimum and maximum date, and a check option, whether a time slice
should also be included.

8

IBExpert Tools Menu - IBExpert Command–Line Tools

447

• Get from another table: Specify table, field and number of records. This is a use-
ful way of generating test data for a foreign key field.

• Get from a list: A list can be typed or pasted in the panel.
• Autoincrement: This option is of course only offered for integral fields, and en-

ables the developer to specify an initial value, and the interval (step).

Finally execute (green > icon or [F9]), and watch the counter generate the test data!

The data can finally be viewed in the Table Editor on the Data page:

8.25 IBExpert Command–Line Tools
IBExpert offers the following command-line tools:

• IBEBlock,
• IBECompare,
• IBEExtract,
• IBEScript.

8

IBExpert Tools Menu - IBExpert Command–Line Tools

448

These cover the majority of the options offered by the InterBase command-line utilities
and much more.

In order to distribute any of the IBExpert modules (ibexpert.exe, ibescript.dll, ibeex-
tract.exe and ibecompare.exe) together with your application, you need either an:

• IBExpert Site License, if the distribution is located only on computers within your
own company, or an

• IBExpert VAR License, if the distribution is located on any computer outside your
company.

If you are already an IBExpert customer, you can upgrade to a Site or VAR License and
purchase the 24 month Extension product. Please refer to www.ibexpert.com Purchase
Area for details.

8.25.1 IBEBLOCK (EXECUTE IBEBLOCK)

IBExpert version 2004.9.12.1 introduced an important, new and powerful feature -
EXECUTE IBEBLOCK.

What is IBEBLOCK?

It is a set of DDL, DML and other statements that are executed on the server and on
the client side, and which include some specific constructions applicable only in IBEx-
pert or IBEScript (excluding the free versions of these products), independent of the
database server version.

With EXECUTE IBEBLOCK you will be able to:

• Work with different connections within the single IBEBLOCK at the same time.
• Move (copy) data from one database to another.
• Join tables from different databases.
• Compare data from different databases and synchronize them.
• Populate a table with test data using random values or values from other tables or

even from other databases.
• ... and much more.

The syntax of IBEBLOCK is similar to that of stored procedures but there are many im-
portant extensions. For example:

• You can use EXECUTE STATEMENT with any server, including InterBase 5.x, 6.x, 7.x.
• You can use one-dimensional arrays (lists) of untyped variables and access them by

index.
• It isn't necessary to declare variables before using them.
• You can use data sets (temporary memory tables) to store data.
• Since IBExpert version 2005.02.12.1 there is added support for ROW_COUNT and
ROWS_AFFECTED variables.

• Since version 2005.02.12.1 Code Insight also supports IBEBlock constants and
functions.

• ... and much more.

You can debug IBEBLOCKs in the same way as stored procedures and triggers.

8

IBExpert Tools Menu - IBExpert Command–Line Tools

449

IBEScript supports EXECUTE IBEBLOCK too.

This section describes the following topics:

• Procedural extensions of IBEBlock
• IBEBlock functions
• Examples of usage of IBEBlock

As this important feature is still new to IBExpert, some areas are still incomplete or in
work. Check regularly for the latest revisions by using the What's New function in the
online documentation: http://www.ibexpert.info/documentation/whatsnew.html

Procedural extensions of IBEBlock

The following procedural extensions are available in IBEBlock:

• CREATE CONNECTION
• USE connection
• CLOSE CONNECTION
• CREATE DATABASE
• DROP DATABASE
• FOR ... DO loops
• SELECT ... AS DATASET
• SELECT ... EXPORT AS ...
• CLOSE DATASET
• EXECUTE IBEBLOCK
• EXECUTE STATEMENT
• INSERT INTO connection.table
• COMMIT
• ROLLBACK
• FOR EXECUTE STATEMENT ... DO
• Default calues and comments for parameters and variables

CREATE CONNECTION

Creates a named connection to a database.

Syntax

 CREATE CONNECTION connection DBNAME 'filespec'
 USER 'username' PASSWORD 'password'
 [CLIENTLIB 'libfile']
 [NAMES charset]
 [SQL_DIALECT dialect]
 [ROLE rolename]

Argument Description

connection Connection name.

DBNAME
'filespec'

Database file name; can include path specification and node.

8

IBExpert Tools Menu - IBExpert Command–Line Tools

450

USER 'user-
name'

String that specifies a user name for use when attaching to the
database. The server checks the user name against the security
database. User names are case insensitive on the server.

PASSWORD
'password'

String, up to 8 characters in size, that specifies password for use
when attaching to the database. The server checks the user name
and password against the security database. Case sensitivity is
retained for the comparison.

CLIENTLIB
'libfile'

Client library file name; default: gds32.dll.

NAMES
charset

Name of a character set that identifies the active character set for a
given connection; default: NONE.

SQL_DIALECT
dialect

The SQL Dialect for database access, either 1, 2, or 3.

ROLE role-
name

String, up to 31 characters in size, which specifies the role that the
user adopts on connection to the database. The user must have
previously been granted membership in the role to gain the privi-
leges of that role. Regardless of role memberships granted, the
user has the privileges of a role at connect time only if a ROLE
clause is specified in the connection. The user cannot adopt more
than one role per connection, and cannot switch roles except by
reconnecting.

Description

Example

 execute IBEBlock
 as
 begin
 CREATE CONNECTION Con1 DBNAME 'localhost:c:\mydata\mydb.gdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 CLIENTLIB 'C:\Program Files\Firebird\Bin\fbclient.dll'
 SQL_DIALECT 3 NAMES WIN1251 ROLE ADMIN;

 USE Con1;

 ...

 CLOSE CONNECTION Con1;
 end

USE connection

Makes an existing connection the active connection.

Syntax

 USE connection;

8

IBExpert Tools Menu - IBExpert Command–Line Tools

451

ArgumentDescriptionconnectionName of an existing connection created with
the CREATE CONNECTION statement.

Description

Example

 execute IBEBlock
 as
 begin
 CREATE CONNECTION Con1 DBNAME 'localhost:c:\mydata\mydb.gdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 CLIENTLIB 'C:\Program Files\Firebird\Bin\fbclient.dll'
 SQL_DIALECT 3 NAMES WIN1251 ROLE ADMIN;

 USE Con1;

 ...

 CLOSE CONNECTION Con1;
 end

CLOSE CONNECTION

Closes an existing connection.

Syntax

 CLOSE CONNECTION connection;

Argument Description

connection Name of an existing connection opened with the CREATE CONNECTION
statement.

Description

Example

 execute IBEBlock
 as
 begin
 CREATE CONNECTION Con1 DBNAME 'localhost:c:\mydata\mydb.gdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 SQL_DIALECT 3 NAMES WIN1251;

 USE Con1;

 ...

 CLOSE CONNECTION Con1;
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

452

CREATE DATABASE

Syntax

 CREATE DATABASE 'filespec' USER 'username' PASSWORD 'password'
 [CLIENTLIB 'libfile']
 [SQL_DIALECT dialect]
 [PAGE_SIZE int]
 [DEFAULT CHARACTER SET charset]

Argument Description

'filespec' A new database file specification; file naming conventions are
platform-specific.

USER 'username' Checks the username against valid user name and password
combinations in the security database on the server where the
database will reside.

PASSWORD 'pass-
word'

Checks the password against valid user name and password
combinations in the security database on the server where the
database will reside; can be up to 8 characters.

CLIENTLIB 'lib-
file'

Client library file name; default: gds32.dll.

SQL_DIALECT dia-
lect

The SQL Dialect for the new database, either 1, 2, or 3.

PAGE_SIZE int Size, in bytes, for database pages; int can be 1024 (default),
2048, 4096, or 8192.

DEFAULT CHARAC-
TER SET charset

Sets default character set for a database; charset is the name
of a character set; if omitted, character set defaults to NONE.

Description

Example

 execute IBEBlock
 as
 begin
 CREATE DATABASE 'localhost:c:\db2.fdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 PAGE_SIZE 4096 SQL_DIALECT 3
 DEFAULT CHARACTER SET WIN1251
 CLIENTLIB 'C:\Program Files\Firebird\bin\fbclient.dll';

 CREATE CONNECTION Con1 'localhost:c:\db2.fdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 CLIENTLIB 'C:\Program Files\Firebird\Bin\fbclient.dll'
 SQL_DIALECT 3 NAMES WIN1251;

 USE Con1;

8

IBExpert Tools Menu - IBExpert Command–Line Tools

453

 ...

 CLOSE CONNECTION Con1;
 end

DROP DATABASE

Deletes specified database.

Syntax

 DROP DATABASE 'filespec' USER 'username' PASSWORD 'password'
 [CLIENTLIB 'libfile'];

Argument Description

'filespec' A database file specification; file naming conventions are platform-
specific.

USER 'user-
name'

Checks the username against valid user name and password com-
binations in the security database on the server where the data-
base will reside.

PASSWORD
'password'

Checks the password against valid user name and password com-
binations in the security database on the server where the data-
base will reside; can be up to 8 characters.

CLIENTLIB
'libfile'

Client library file name; default: gds32.dll.

Description

DROP DATABASE deletes specified database, including any associated secondary,
shadow, and log files. Dropping a database deletes any data it contains.

A database can be dropped by its creator, the SYSDBA user, and any users with oper-
ating system root privileges.

Example

 execute ibeblock
 as
 begin
 drop database 'localhost/3060:c:\db1.fdb' user 'SYSDBA' password
'masterkey'
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';
 end

DO loops

FOR ... DO loops were implemented in IBExpert version 2005.03.12. Examples of us-
age:

8

IBExpert Tools Menu - IBExpert Command–Line Tools

454

EXECUTE IBEBLOCK
RETURNS (I INTEGER)
AS
BEGIN
 FOR I = 0 TO 100 DO
 SUSPEND;
END

It is possible to use the CONTINUE statement within FOR loop to proceed to the next it-
eration of FOR:

EXECUTE IBEBLOCK
RETURNS (I INTEGER)
AS
BEGIN
 FOR I = 0 TO 100 DO
 BEGIN
 IF (I < 20) THEN
 CONTINUE; -- SUSPEND will not be executed
 SUSPEND;
 END
END

AS DATASET

Syntax

 <select_statement> AS DATASET dataset;

Argument Description

<select_statement> Regular SELECT statement.

dataset Name of the dataset.

Description

Example

 execute ibeblock
 returns (FieldName varchar(31), FieldType varchar(100))
 as
 begin
 select * from rdb$fields
 where (1 = 0)
 as dataset RdbFields;

 iCount = ibec_ds_FieldCount(RdbFields);
 i = 0;
 while (i < iCount) do
 begin
 FieldName = ibec_ds_FieldName(RdbFields, i);

8

IBExpert Tools Menu - IBExpert Command–Line Tools

455

 FieldType = ibec_ds_FieldTypeN(RdbFields, i);
 suspend;
 i = i + 1;
 end;

 close dataset RdbFields;
 end

EXPORT AS ... INTO

SELECT ... EXPORT AS ... was implemented in IBExpert version 2005.03.12.

Examples of usage:

1.
SELECT * FROM RDB$FIELDS
EXPORT AS HTML INTO 'E:\TestExport.html'
OPTIONS 'ColorShema=MSMoney; FontFace=Verdana';

Possible ColorShemes are BW, Classic, ColorFull, Gray, MSMoney, Murky, Olive,
Plain, Simple.

2.
SELECT * FROM RDB$FIELDS
EXPORT AS XLS INTO 'E:\TestExport.xls' OPTIONS '';

3.
SELECT * FROM RDB$FIELDS
EXPORT AS TXT INTO 'E:\TestExport.txt'
OPTIONS 'OmitCaptions';

4.
SELECT * FROM RDB$FIELDS
EXPORT AS CSV INTO 'E:\TestExport.txt'
OPTIONS 'OmitCaptions; Delimiter=";"';

5.
SELECT * FROM RDB$FIELDS
EXPORT AS XML INTO 'E:\TestExport.xml'
OPTIONS 'Encoding=windows-1251; MemoAsText; StringAsText';

CLOSE DATASET

Closes an existing dataset.

Syntax

 CLOSE DATASET dataset;

Argument Description

dataset Name of an existing dataset created with SELECT ... AS DATASET

8

IBExpert Tools Menu - IBExpert Command–Line Tools

456

statement.

Description

Example

 execute ibeblock
 returns (FieldName varchar(31), FieldType varchar(100))
 as
 begin
 select * from rdb$fields
 where (1 = 0)
 as dataset RdbFields;

 iCount = ibec_ds_FieldCount(RdbFields);
 i = 0;
 while (i < iCount) do
 begin
 FieldName = ibec_ds_FieldName(RdbFields, i);
 FieldType = ibec_ds_FieldTypeN(RdbFields, i);
 suspend;
 i = i + 1;
 end;

 close dataset RdbFields;
 end

EXECUTE IBEBLOCK

The EXECUTE IBEBLOCK statement was implemented in IBExpert verison 2005.03.12.
Using this statement you can call other IBEBlocks from the main block.

Examples of usage:

1.

EXECUTE IBEBLOCK
AS
BEGIN
 ...
 MyFunc = 'EXECUTE IBEBLOCK (
 IntVal INTEGER)
 RETURNS (
 Square INTEGER)
 AS
 BEGIN
 Square = IntVal * IntVal;
 END';
 EXECUTE IBEBLOCK MyFunc (2) RETURNING_VALUES :Square;
 ...
END

8

IBExpert Tools Menu - IBExpert Command–Line Tools

457

2.

EXECUTE IBEBLOCK
AS
BEGIN
 ...
 MyFunc = ibec_LoadFromFile('C:\MyBlocks\Square.ibeblock');
 EXECUTE IBEBLOCK MyFunc (2) RETURNING_VALUES :Square;
 ...
END

EXECUTE STATEMENT

Executes specified SQL statement.

Syntax

 EXECUTE STATEMENT 'statement'
 [INTO :var [, :var ...]]
 [VALUES :var];

Argument Description

'statement' Any valid DML or DDL statement except CREATE/DROP DATA-
BASE. DML statements may contain parameters.

INTO :var [,
:var ...]

Specifies a list of variables into which to retrieve values. Only
singleton SELECT operators may be executed with this form of
EXECUTE STATEMENT.

VALUES :var Array of variants which values will be used to fill parameters if
any exist in the statement.

Description

Example

 execute ibeblock
 returns (TableName varchar(31))
 as
 begin
 TableID = 0;
 Stmt = 'select rdb$relation_name from rdb$relations where
rdb$relation_id = :rel_id';
 while (TableID < 35) do
 begin
 execute statement :Stmt into :TableName values :TableId;
 suspend;
 TableID = TableID + 1;
 end
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

458

INSERT INTO connection.table

Syntax

 INSERT INTO connection.table [(col [, col ...])]
 {VALUES (<val> [, <val> ...]) | <select_expr>};

COMMIT

Makes a transaction's changes to the database permanent, and ends the transaction.

Syntax

 COMMIT;

Description

Example

 execute IBEBlock
 as
 begin
 ...

 EXECUTE STATEMENT 'create table mytable (id integer, data var-
char(50))';
 COMMIT;

 INSERT INTO MYTABLE (ID, DATA) VALUES (1, NULL);
 COMMIT;

 ...
 end

ROLLBACK

Restores the database to its state prior to the start of the current transaction.

Syntax

 ROLLBACK;

Description

ROLLBACK undoes changes made to a database by the current transaction, then ends
the transaction.

Example

DO

Example

8

IBExpert Tools Menu - IBExpert Command–Line Tools

459

 execute ibeblock
 returns (TableName varchar(31))
 as
 begin
 TableID = 0;
 Stmt = 'select rdb$relation_name from rdb$relations where
rdb$relation_id = :rel_id';
 while (TableID < 35) do
 begin
 execute statement :Stmt into :TableName values :TableId;
 suspend;
 TableID = TableID + 1;
 end
 end

Default values and comments for parameters and variables

Default values and comments for input/output parameters and variables were imple-
mented in IBExpert version 2005.03.12.

Example:

EXECUTE IBEBLOCK (
 CodeDir VARCHAR(1000) = 'C:\MyBlocks\' COMMENT 'Path to my IBEBlocks',
 SQLDialect INTEGER = 3 COMMENT 'Database SQL Dialect')
RETURNS (
 TotalTime DOUBLE PRECISION = 0 COMMENT 'Total time spent')
AS
DECLARE VARIABLE MyVar INTEGER = 0 COMMENT 'Just a comment'
BEGIN
 ...
END

• Comments for input parameters will be displayed in Description column of Re-
quest Input Parameters form.

• Comments for output variables will be used as column captions of the result data-
set.

• Comments for local variables are ignored.

IBEBlock functions

There are following groups of IBEBlock functions:

• String-handling functions
• Mathematical functions
• Functions to work with files
• Dataset functions
• Miscellaneous functions

String–handling functions

The following string-handling functions are available in IBEBlock:

8

IBExpert Tools Menu - IBExpert Command–Line Tools

460

Function Description

ibec_Copy Returns a substring of a string

ibec_Length Returns the number of characters in a string

ibec_Pos Returns the index value of the first character in a specified substring
that occurs in a given string

ibec_Trim Trims leading and trailing spaces and control characters from a string

ibec_Copy

Returns a substring of a string.

Syntax

 function ibec_Copy(S : string; Index, Count: Integer): string;

Description

S is an expression of a string. Index and Count are integer-type expressions.
ibec_Copy returns a substring containing Count characters starting at S[Index].

If Index is larger than the length of S, ibec_Copy returns an empty string.

If Count specifies more characters than are available, only the characters from
S[Index] to the end of S are returned.

Example

 execute IBEBlock
 returns (proc_name varchar(31), proc_src varchar(100))
 as
 begin
 for
 select rdb$procedure_name, rdb$procedure_source
 from rdb$procedures
 order by rdb$procedure_name
 into :proc_name, :proc_src
 do
 begin
 proc_src = ibec_Copy(proc_src, 1, 100);
 suspend;
 end
 end

ibec_Length

Returns the number of characters in a string.

Syntax

8

IBExpert Tools Menu - IBExpert Command–Line Tools

461

 function ibec_Length(S : string): string;

Description

No additional description...

Example

 execute IBEBlock
 returns (iresult integer)
 as
 begin
 for select rdb$relation_name
 from rdb$relations
 into :sname
 do
 begin
 sname = ibec_Trim(sname);
 iresult = ibec_Length(sname);
 suspend;
 end
 end

ibec_Pos

Returns the index value of the first character in a specified substring that occurs in a
given string.

Syntax

 function ibec_Pos(Substr: string; S : string): integer;

Description

No additional description...

Example

 execute IBEBlock
 returns (vcresult varchar(100))
 as
 begin
 for select rdb$relation_name
 from rdb$relations
 into :sname
 do
 begin
 sname = ibec_trim(sname);
 vcresult = '';
 if (ibec_Pos('RDB$', sname) = 1) then
 vcresult = sname || ' is a system table';
 else if (ibec_Pos('IBE$', sname) = 1) then

8

IBExpert Tools Menu - IBExpert Command–Line Tools

462

 vcresult = sname || ' is an IBExpert table';
 else
 vcresult = sname || ' is an user table';
 suspend;
 end
 end

ibec_Trim

Trims leading and trailing spaces and control characters from a string.

Syntax

 function ibec_Trim(S : string): string;

Description

No additional description...

Example

 execute IBEBlock
 returns (proc_name varchar(31), proc_src varchar(100))
 as
 begin
 for
 select rdb$procedure_name, rdb$procedure_source
 from rdb$procedures
 order by rdb$procedure_name
 into :proc_name, :proc_src
 do
 begin
 proc_src = ibec_Trim(ibec_Copy(proc_src, 1, 100));
 suspend;
 end
 end

Mathematical functions

The following mathematical functions are available in IBEBlock:

Function Description

ibec_Div Returns the value of x/y rounded in the direction of zero to the nearest
integer

ibec_Mod Returns the remainder obtained by dividing its operands

ibec_Div

The value of x div y is the value of x/y rounded in the direction of zero to the nearest
integer.

8

IBExpert Tools Menu - IBExpert Command–Line Tools

463

Syntax

 function ibec_div(Operand1, Operand2 : integer) : integer;

Description

No additional description...

Example

 execute IBEBlock
 returns (cout varchar(100))
 as
 begin
 i = 1;
 while (I < 50) do
 begin
 if ((i/2 - ibec_div(i, 2)) > 0) then
 cout = i || ' is odd number';
 else
 cout = i || ' is even number';
 suspend;
 i = i + 1;
 end
 end

ibec_Mod

Returns the remainder obtained by dividing its operands.

Syntax

 function ibec_mod(Operand1, Operand2 : integer) : integer;

Description

No additional decription...

Example

 execute IBEBlock
 returns (cout varchar(100))
 as
 begin
 i = 1;
 while (I < 50) do
 begin
 if (ibec_mod(i, 2) = 0) then
 cout = i || ' is even number';
 else
 cout = i || ' is odd number';
 suspend;

8

IBExpert Tools Menu - IBExpert Command–Line Tools

464

 i = i + 1;
 end
 end

File functions

The following file-handling functions are available in IBEBlock:

Function Description

ibec_DeleteFile Erases the file from the disk

ibec_FileExists Tests if a specified file exists

ibec_FileSize Returns the size of the specified file

ibec_GetFiles See online help

ibec_LoadFromFile Loads file data into variable

ibec_SaveToFile Saves value of variable into file

The following functions are intended for working with files in stream mode:

Function Description

ibec_fs_CloseFile Closes the file opened with the ibec_fs_OpenFile function

ibec_fs_Eof Tests whether the file position is at the end of a file

ibec_fs_OpenFile Opens a file for reading or writing

ibec_fs_Position Returns the current offset into the stream for reading and
writing

ibec_fs_Readln Reads a line of text from a file

ibec_fs_Seek Resets the current position of the file stream

ibec_fs_Size Returns the length, in bytes, of the file stream

ibec_fs_Writeln See online help

ibec_fs_WriteString See online help

ibec_DeleteFile

Erases the file from the disk.

Syntax

 function ibec_DeleteFile(FileName : string): boolean;

Description

8

IBExpert Tools Menu - IBExpert Command–Line Tools

465

The ibec_DeleteFile function erases the file named by FileName from the disk. If the
file cannot be deleted or does not exist, the function returns False.

Example

 execute IBEBlock
 as
 begin
 FileName = 'C:\mydata.txt';
 if (ibec_FileExists(FileName)) then
 ibec_DeleteFile(FileName);
 end

ibec_FileExists

Tests if a specified file exists.

Syntax

 function ibec_FileExists(FileName : string): boolean;

Description

ibec_FileExists returns True if the file specified by FileName exists. If the file does
not exist, the function returns False.

Example

 execute IBEBlock
 as
 begin
 FileName = 'C:\mydata.txt';
 if (ibec_FileExists(FileName)) then
 ibec_DeleteFile(FileName);
 end

ibec_FileSize

Returns the size of the specified file.

Syntax

 function ibec_FileSize(FileName : string): variant;

Description

The ibec_FileSize function returns the size in bytes of the file specified by FileName.
If the file does not exist, the function returns NULL.

Example

8

IBExpert Tools Menu - IBExpert Command–Line Tools

466

 execute ibeblock
 returns (fname varchar(100), isize integer)
 as
 begin
 options = __gfFullName;
 files_count = ibec_getfiles(files_list, 'E:\Projects_5\', '*.*', op-
tions);
 if (files_count > 0) then
 begin
 i = 0;
 while (i < ibec_high(files_list)) do
 begin
 fname = files_list[i];
 isize = ibec_filesize(fname);
 suspend;
 i = i + 1;
 end
 end
 end

ibec_LoadFromFile

Loads file data into variable.

Syntax

 function ibec_LoadFromFile(FileName : string): string;

Description

Example

See Inserting file data into database.

ibec_SaveToFile

Saves value of variable into file.

Syntax

 function ibec_SaveToFile(FileName : string; Value : variant; Mode : in-
teger): variant;

Description

Example

8

IBExpert Tools Menu - IBExpert Command–Line Tools

467

ibec_fs_CloseFile

Closes the file opened with the ibec_fs_OpenFile function.

Syntax

 function ibec_fs_CloseFile(FileHandle : variant): variant

Description

The ibec_fs_CloseFile function closes the file opened with the ibec_fs_OpenFile
function.

This function always returns 0.

Example

 execute IBEBlock
 as
 begin
 FileName = 'C:\mydata.txt';
 FH = ibec_fs_OpenFile(FileName, __fmCreate);
 if (not FH is NULL) then
 begin
 ibec_fs_Writeln(FH, 'just a test');
 ibec_fs_CloseFile(FH);
 end
 end

ibec_fs_Eof

Tests whether the file position is at the end of a file.

Syntax

 function ibec_fs_Eof(FileHandle : variant): boolean;

Description

The ibec_fs_Eof function tests whether the file position is at the end of a file.
ibec_fs_Eof returns True if the current file position is beyond the last character of the
file or if the file is empty; otherwise, ibec_fs_Eof returns False.

Example

 execute IBEBlock
 returns (vcout varchar(1000))
 as
 begin
 FileName = 'C:\mydata.csv';
 FH = ibec_fs_OpenFile(FileName, __fmOpenRead);
 if (not FH is NULL) then

8

IBExpert Tools Menu - IBExpert Command–Line Tools

468

 begin
 while (not ibec_fs_Eof(FH)) do
 begin
 vcout = ibec_fs_Readln(FH);
 suspend;
 end
 ibec_fs_CloseFile(FH);
 end
 end

ibec_fs_OpenFile

Opens a file for reading or writing.

Syntax

 function ibec_fs_OpenFile(FileName : string; Mode : integer): variant;

Description

The ibec_fs_OpenFile function opens file specified by FileName for reading or writing.

The Mode parameter indicates how the file is to be opened. The Mode parameter con-
sists of an open mode and a share mode or'ed together. The open mode must be one
of the following values:

Value Meaning

__fmCreate Create a file with the given name. If a file with the given
name exists, open the file in write mode.

__fmOpenRead Open the file for reading only.

__fmOpenWrite Open the file for writing only. Writing to the file completely
replaces the current contents.

__fmOpenReadWrite Open the file to modify the current contents rather than
replace them.

The share mode must be one of the following values:

Value Meaning

__fmShareCompat Sharing is compatible with the way FCBs are opened.

__fmShareExclusive Other applications can not open the file for any reason.

__fmShareDenyWrite Other applications can open the file for reading but not for
writing.

__fmShareDenyRead Other applications can open the file for writing but not for
reading.

__fmShareDenyNone No attempt is made to prevent other applications from read-
ing from or writing to the file.

8

IBExpert Tools Menu - IBExpert Command–Line Tools

469

If the file can not be opened, ibec_fs_OpenFile returns NULL. Otherwise it returns the
Handle for just opened file.

To close the file opened with ibec_fs_OpenFile use ibec_fs_CloseFile function.

Example

 execute IBEBlock
 as
 begin
 FileName = 'C:\mydata.txt';
 FH = ibec_fs_OpenFile(FileName, __fmCreate);
 if (not FH is NULL) then
 begin
 ibec_fs_Writeln(FH, 'just a test');
 ibec_fs_CloseFile(FH);
 end
 end

ibec_fs_Position

Returns the current offset into the stream for reading and writing.

Syntax

 function ibec_fs_Position(FileHandle : variant) : integer;

Description

Use ibec_fs_Position to obtain the current position of the stream. This is the number of
bytes from the beginning of the streamed data.

Example

 execute IBEBlock
 returns (vcout varchar(1000))
 as
 begin
 FileName = 'C:\mydata.csv';
 FH = ibec_fs_OpenFile(FileName, __fmOpenRead);
 if (not FH is NULL) then
 begin
 while (ibec_fs_Position(FH) < ibec_fs_Size(FH)) do
 begin
 vcout = ibec_fs_Readln(FH);
 suspend;
 end
 ibec_fs_CloseFile(FH);
 end
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

470

ibec_fs_Readln

Reads a line of text from a file.

Syntax

 function ibec_fs_Readln(FileHandle : variant) : string;

Description

The ibec_fs_Readln function reads a line of text and then skips to the next line of the
file.

Example

 execute IBEBlock
 returns (vcout varchar(1000))
 as
 begin
 FileName = 'C:\mydata.csv';
 FH = ibec_fs_OpenFile(FileName, __fmOpenRead);
 if (not FH is NULL) then
 begin
 while (not ibec_fs_Eof(FH)) do
 begin
 vcout = ibec_fs_Readln(FH);
 suspend;
 end
 ibec_fs_CloseFile(FH);
 end
 end

ibec_fs_Seek

Resets the current position of the file stream.

Syntax

 function ibec_fs_Seek(FileHandle : variant; Offset: integer; Origin:
integer): integer;

Description

Use ibec_fs_Seek to move the current position within the file by the indicated offset.
ibec_fs_Seek allows to read from or write to a particular location within the file.

The Origin parameter indicates how to interpret the Offset parameter. Origin should
be one of the following values:

Value Meaning

__soFromBeginning Offset is from the beginning of the resource. ibec_fs_Seek

8

IBExpert Tools Menu - IBExpert Command–Line Tools

471

moves to the position Offset. Offset must be >= 0.

__soFromCurrent Offset is from the current position in the resource.
ibec_fs_Seek moves to Position + Offset.

__soFromEnd Offset is from the end of the resource. Offset must be <= 0
to indicate a number of bytes before the end of the file.

ibec_fs_Seek returns the new current position in the file.

Example

ibec_fs_Size

Returns the length, in bytes, of the file stream.

Syntax

 function ibec_fs_Size(FileHandle : variant) : integer;

Description

The ibec_fs_Size returns the length, in bytes, of the file identified by the FileHan-
dle.

Example

 execute IBEBlock
 returns (vcout varchar(1000))
 as
 begin
 FileName = 'C:\mydata.csv';
 FH = ibec_fs_OpenFile(FileName, __fmOpenRead);
 if (not FH is NULL) then
 begin
 while (ibec_fs_Position(FH) < ibec_fs_Size(FH)) do
 begin
 vcout = ibec_fs_Readln(FH);
 suspend;
 end
 ibec_fs_CloseFile(FH);
 end
 end

Dataset functions

The following dataset-handling functions are available in IBEBlock:

Function Description

ibec_ds_Append Adds a new, empty record to the end of the dataset

8

IBExpert Tools Menu - IBExpert Command–Line Tools

472

ibec_ds_Cancel Cancels modifications to the active record if those changes are
not yet posted

ibec_ds_Delete Deletes the active record and positions the cursor on the next
record

ibec_ds_Edit Enables editing of data in the dataset

ibec_ds_Eof Indicates whether or not a cursor is positioned at the last
record in a dataset

ibec_ds_Bof Indicates whether or not a cursor is positioned at the first
record in a dataset

ibec_ds_FieldCount Returns the number of fields associated with the dataset

ibec_ds_FieldName Returns the name of specified field

ibec_ds_FieldType See online help

ibec_ds_FieldTypeN Returns the native type of specified field

ibec_ds_First Positions the cursor on the first record in the dataset

ibec_ds_GetField Returns value of specified field

ibec_ds_Insert See online help

ibec_ds_Last Positions the cursor on the last record in the dataset

ibec_ds_Next Positions the cursor on the next record in the dataset

ibec_ds_Post See online help

ibec_ds_Prior Positions the cursor on the previous record in the dataset

ibec_ds_SetField See online help

ibec_ds_Append

Adds a new, empty record to the end of the dataset.

Syntax

 function ibec_ds_Append(Dataset : variant) : variant;

Description

Call ibec_ds_Append to:

• Open a new, empty record at the end of the dataset.
• Set the active record to the new record.
• After a call to ibec_ds_Append, you can enter data in the fields of the record, and

can then post those changes to the dataset using ibec_ds_Post.

Example

8

IBExpert Tools Menu - IBExpert Command–Line Tools

473

ibec_ds_Cancel

Cancels modifications to the active record if those changes are not yet posted.

Syntax

 function ibec_ds_Cancel(Dataset : variant) : variant;

Description

Call ibec_ds_Cancel to undo modifications made to one or more fields belonging to
the active record. As long as those changes are not already posted to the dataset,
ibec_ds_Cancel returns the record to its previous state, and sets the dataset state to
__dsBrowse.

Example

ibec_ds_Delete

Deletes the active record and positions the cursor on the next record.

Syntax

 function ibec_ds_Delete(Dataset : variant) : variant;

Description

Call ibec_ds_Delete to remove the active record from the database. If the dataset is
inactive, ibec_ds_Delete raises an exception. Otherwise ibec_ds_Delete:

• Verifies that the dataset is not empty (and raises an exception if it is).
• Deletes the record.
• Frees the buffers allocated for the record.
• Puts the dataset into __dsBrowse mode :
• Resynchronizes the dataset to position the cursor on the next undeleted record.

Example

ibec_ds_Edit

Enables editing of data in the dataset.

Syntax

 procedure ibec_ds_Edit(Dataset : variant) : variant;

Description

Call ibec_ds_Edit to permit editing of the active record in a dataset. ibec_ds_Edit
determines the current state of the dataset. If the dataset is empty, ibec_ds_Edit
calls ibec_ds_Insert.

8

IBExpert Tools Menu - IBExpert Command–Line Tools

474

Example

ibec_ds_Eof

Indicates whether or not a cursor is positioned at the last record in a dataset.

Syntax

 function ibec_ds_Eof(Dataset : variant) : boolean;

Description

Call ibec_ds_Eof to determine if the cursor is positioned at the last record in a data-
set. If ibec_ds_Eof returns True, the cursor is unequivocally on the last row in the
dataset. Otherwise this function returns False.

Example

 execute ibeblock
 as
 begin
 select * from RDB$FIELDS as dataset MyDataset;

 while (not ibec_ds_Eof(MyDataset)) do
 begin
 ...
 ibec_ds_Next(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

ibec_ds_Bof

Indicates whether or not a cursor is positioned at the first record in a dataset.

Syntax

 function ibec_ds_Bof(Dataset : variant) : boolean;

Description

Call ibec_ds_Bof to determine if the cursor is positioned at the first record in a data-
set. If ibec_ds_Bof returns True, the cursor is unequivocally on the first row in the
dataset. Otherwise this function returns False.

Example

 execute ibeblock
 as

8

IBExpert Tools Menu - IBExpert Command–Line Tools

475

 begin
 select * from RDB$FIELDS as dataset MyDataset;

 ibec_ds_Last(MyDataset);
 while (not ibec_ds_Bof(MyDataset)) do
 begin
 ...
 ibec_ds_Prior(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

ibec_ds_FieldCount

Returns the number of fields associated with the dataset.

Syntax

 function ibec_ds_FieldCount(Dataset : variant) : integer;

Description

Call ibec_ds_FieldCount to determine the number of fields associated with the Data-
set.

Example

ibec_ds_FieldName

Returns the name of specified field.

Syntax

 function ibec_ds_FieldName(Dataset : variant; FieldIndex : integer) :
variant;

Description

Example

 execute ibeblock
 returns (FieldName varchar(31), FieldType varchar(100))
 as
 begin
 select * from rdb$fields
 where (1 = 0)
 as dataset RdbFields;

 iCount = ibec_ds_FieldCount(RdbFields);

8

IBExpert Tools Menu - IBExpert Command–Line Tools

476

 i = 0;
 while (i < iCount) do
 begin
 FieldName = ibec_ds_FieldName(RdbFields, i);
 FieldType = ibec_ds_FieldTypeN(RdbFields, i);
 suspend;
 i = i + 1;
 end;

 close dataset RdbFields;
 end

ibec_ds_FieldTypeN

Returns the native type of specified field.

Syntax

 function ibec_ds_FieldTypeN(Dataset : variant; Field : variant) : vari-
ant;

Description

Example

 execute ibeblock
 returns (FieldName varchar(31), FieldType varchar(100))
 as
 begin
 select * from rdb$fields
 where (1 = 0)
 as dataset RdbFields;

 iCount = ibec_ds_FieldCount(RdbFields);
 i = 0;
 while (i < iCount) do
 begin
 FieldName = ibec_ds_FieldName(RdbFields, i);
 FieldType = ibec_ds_FieldTypeN(RdbFields, i);
 suspend;
 i = i + 1;
 end;

 close dataset RdbFields;
 end

ibec_ds_First

Positions the cursor on the first record in the dataset.

Syntax

8

IBExpert Tools Menu - IBExpert Command–Line Tools

477

 function ibec_ds_First(Dataset : variant) : variant;

Description

Call ibec_ds_First to position the cursor on the first record in the dataset and make
it the active record.

Example

ibec_ds_GetField

Returns value of specified field.

Syntax

 function ibec_ds_GetField(Dataset : variant; Field : variant) : vari-
ant;

Description

Example

ibec_ds_Last

Positions the cursor on the last record in the dataset.

Syntax

 function ibec_ds_Last(Dataset : variant) : variant;

Description

Call ibec_ds_Last to position the cursor on the last record in the dataset and make it
the active record.

Example

 execute ibeblock
 as
 begin
 select * from RDB$FIELDS as dataset MyDataset;

 ibec_ds_Last(MyDataset);
 while (not ibec_ds_Bof(MyDataset)) do
 begin
 ...
 ibec_ds_Prior(MyDataset);
 end

 ...

8

IBExpert Tools Menu - IBExpert Command–Line Tools

478

 close dataset MyDataset;
 end

ibec_ds_Next

Positions the cursor on the next record in the dataset.

Syntax

 function ibec_ds_Next(Dataset : variant) : variant;

Description

Call ibec_ds_Next to position the cursor on the next record in the dataset and make it
the active record.

Example

 execute ibeblock
 as
 begin
 select * from RDB$FIELDS as dataset MyDataset;

 while (not ibec_ds_Eof(MyDataset)) do
 begin
 ...
 ibec_ds_Next(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

ibec_ds_Prior

Positions the cursor on the previous record in the dataset.

Syntax

 function ibec_ds_Prior(Dataset : variant) : variant;

Description

Call ibec_ds_Prior to position the cursor on the previous record in the dataset and
make it the active record.

Example

 execute ibeblock
 as

8

IBExpert Tools Menu - IBExpert Command–Line Tools

479

 begin
 select * from RDB$FIELDS as dataset MyDataset;

 ibec_ds_Last(MyDataset);
 while (not ibec_ds_Bof(MyDataset)) do
 begin
 ...
 ibec_ds_Prior(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

Miscellaneous functions

The following miscellaneous functions are available in IBEBlock:

Function Description

ibec_BuildCube Builds an OLAP cube using a specified SELECT statement

ibec_Chr Returns the character for a specified ASCII value

ibec_CmpRecords Compares two arrays of variants (records)

ibec_CmpVals Compares two values

ibec_CreateModelScript Creates an SQL script from specified Database Model file

ibec_FormatIdent See online help

ibec_GetTickCount Retrieves the number of milliseconds that have elapsed
since Windows was started

ibec_High Returns the highest value within the range of the index
type of the array

ibec_IIF Tests a condition and returns Value1 if the Condition is
TRUE and Value2 if the Condition is FALSE

ibec_IntToHex Returns the hex representation of an integer

ibec_Ord Returns the ordinal value of the specified character

ibec_ParseCSVLine See online help

ibec_Progress Displays a progress message

ibec_Random Generates random numbers within a specified range

ibec_Random2 Generates random numbers within a specified range

ibec_RandomChar Generates random char within a specified range

ibec_RandomString Returns a random string

ibec_RandomVal See online help

ibec_SetLength Sets the length of a dynamic-array variable

8

IBExpert Tools Menu - IBExpert Command–Line Tools

480

ibec_ShiftRecord See online help

ibec_BuildCube

Builds an OLAP cube using a specified SELECT statement.

Syntax

 function ibec_BuildCube(FileName : string;
 SelectSQL : string;
 Dimensions : Array of variants;
 Measures : Array of variants;
 Params : Array of variants): integer;

Description

Example

 execute ibeblock
 as
 begin
 SelectSQL = 'select rf.rdb$relation_name, f.rdb$field_type,
f.rdb$field_length,

f.rdb$field_precision
 from rdb$relation_fields rf, rdb$fields f
 where rf.rdb$field_source = f.rdb$field_name';

 vDimensions[0] = 'FieldName=RDB$RELATION_NAME; Alias="Table Name"';
 vDimensions[1] = 'FieldName=RDB$FIELD_TYPE; Alias="Field Type';

 vMeasures[0] = 'FieldName=RDB$FIELD_TYPE; Alias="Field Count"; Calc-
Type=ctCount; Format=0';
 vMeasures[1] = 'FieldName=RDB$FIELD_LENGTH; Alias="Total Length";
CalcType=ctSum; Format=0';
 vMeasures[2] = 'FieldName=RDB$FIELD_PRECISION; Alias="Avg Precision";
CalcType=ctAverage';

 -- Build and save cube in binary format
 ibec_BuildCube('C:\test_cub.cub', SelectSQL, vDimensions, vMeasures,
null);

 -- Build and save cube in XML format
 ibec_BuildCube('C:\test_cub.xml', SelectSQL, vDimensions, vMeasures,
null);
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

481

ibec_Chr

Returns the character for a specified ASCII value.

Syntax

 function ibec_Chr(X : integer): string;

Description

ibec_Chr returns the character with the ordinal value (ASCII value) of the byte-type
expression, X.

Example

 execute IBEBlock
 returns (cout varchar(1))
 as
 begin
 i = 0;
 while (i < 256) do
 begin
 cout = ibec_Chr(i);
 i = i + 1;
 suspend;
 end
 end

ibec_CmpRecords

Compares two arrays of variants (records).

Syntax

 function ibec_CmpRecords(Record1, Record2 : array of variants): vari-
ant;

Description

Example

 execute ibeblock
 returns (iresult integer)
 as
 begin
 Val1[0] = 1; Val1[1] = 'ABC'; Val1[2] = 25.67;
 Val2[0] = 1; Val2[1] = 'ABC'; Val2[2] = 25.67;
 iresult = ibec_CmpRecords(Val1, Val2); /* iresult = 0 */
 suspend;

 Val2[2] = 15.43;
 iresult = ibec_CmpRecords(Val1, Val2); /* iresult = 2 */

8

IBExpert Tools Menu - IBExpert Command–Line Tools

482

 suspend;

 Val2[3] = 0;
 iresult = ibec_CmpRecords(Val1, Val2); /* iresult = NULL */
 suspend;
 end

ibec_CmpVals

Compares two values.

Syntax

 function ibec_CmpVals(Value1, Value2 : variant): variant;

Description

The ibec_CmpVals compares Value1 and Value2 and returns if they are equal.

If Value1 is greater than Value2, ibec_CmpVals returns 1.

If Value1 is less than Value2, ibec_CmpVals returns -1.

If it is impossible to compare values the function returns NULL.

Example

 execute IBEBlock
 returns (iresult integer)
 as
 begin
 iresult = ibec_CmpVals(25, '25');
 suspend; /* Values are equal, iresult = 0 */

 iresult = ibec_CmpVals('25', 40);
 suspend; /* 25 is less then 40, iresult = -1 */

 iresult = ibec_CmpVals('ABC', 'abc');
 suspend; /* 'ABC' is less then 'abc', iresult = -1 */

 iresult = ibec_CmpVals(NULL, '25');
 suspend; /* NULL is less than any other value, iresult = -1 */

 iresult = ibec_CmpVals('25', NULL);
 suspend; /* Any value is greater than NULL, iresult = 1 */

 iresult = ibec_CmpVals(NULL, NULL);
 suspend; /* NULL is equal to NULL!!!, iresult = 0 */

 iresult = ibec_CmpVals('ABC', 25);
 suspend; /* Impossible to compare, iresult = NULL */

8

IBExpert Tools Menu - IBExpert Command–Line Tools

483

 iresult = ibec_CmpVals('24.56', 24.56);
 suspend; /* Values are equal, iresult = 0 */
 end

ibec_CreateModelScript

Creates an SQL script from specified Database Model file.

Syntax

 function ibec_CreateModelScript(ModelFileName : string; ScriptFileName
: string; Options : cardinal): integer;

Description

Example

 execute ibeblock
 as
 begin
 ibec_create_model_script('C:\npfe_1.grc', 'C:\npfe_1.sql',
__msoDontQuoteIdents + __msoIncludeDescriptions);
 end

ibec_GetTickCount

Retrieves the number of milliseconds that have elapsed since Windows was started.

Syntax

 function ibec_GetTickCount : integer;

Description

No additional description...

Example

 execute IBEBlock
 returns (cout varchar(100))
 as
 begin
 Time1 = ibec_GetTickCount();

 select * from rdb$fields as dataset ds;
 close dataset ds;

 Time2 = ibec_GetTickCount();
 cout = 'Time elapsed: ' || ((Time2 - Time1) / 1000) || ' seconds';
 suspend;
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

484

ibec_High

Returns the highest value within the range of the index type of the array.

Syntax

 function ibec_High(AArray : array of variants): integer;

Description

No additional description yet...

Example

 execute IBEBlock
 returns (iresult integer)
 as
 begin
 vals = 0;
 iresult = ibec_High(vals);
 suspend; /* iresult = 0 */

 vals[1] = 12;
 iresult = ibec_High(vals);
 suspend; /* iresult = 1 */

 vals[10] = 'ibexpert';
 iresult = ibec_High(vals);
 suspend; /* iresult = 10 */

 ibec_SetLength(vals, 5);
 iresult = ibec_High(vals);
 suspend; /* iresult = 4 */

 ibec_SetLength(vals, 500);
 iresult = ibec_High(vals);
 suspend; /* iresult = 499 */

 ibec_SetLength(vals, 0);
 iresult = ibec_High(vals);
 suspend; /* iresult = 0 */
 end

ibec_IIF

Tests a condition and returns Value1 if the Condition is TRUE and Value2 if the Con-
dition is FALSE.

Syntax

 function ibec_IIF(Condition : boolean; Value1, Value2 : variant): vari-
ant;

8

IBExpert Tools Menu - IBExpert Command–Line Tools

485

Description

Tests a condition and returns Value1 if the Condition is TRUE and Value2 if the Con-
dition is FALSE.

Example

 execute IBEBlock
 returns (cout varchar(100))
 as
 begin
 i = 1;
 while (I < 50) do
 begin
 cout = ibec_IIF((ibec_mod(i, 2) = 0), i || ' is even number', i ||
' is odd number');
 suspend;
 i = i + 1;
 end
 end

ibec_IntToHex

Returns the hex representation of an integer.

Syntax

 function ibec_IntToHex(Value: Integer; Digits: Integer): string;

Description

ibec_IntToHex converts a number into a string containing the number's hexadecimal
(base 16) representation. Value is the number to convert. Digits indicates the mini-
mum number of hexadecimal digits to return.

Example

 execute ibeblock
 returns (iint integer, shex varchar(5))
 as
 begin
 iint = 0;
 while (iint < 1000) do
 begin
 shex = '$' || ibec_IntToHex(iint, 4);
 iint = iint + 1;
 suspend;
 end
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

486

ibec_Ord

Returns the ordinal value of the specified character.

Syntax

 function ibec_Ord(Chr : char): integer;

Description

The ibec_Ord function returns the ordinal value of the specified character. If Chr is an
empty string or NULL, then result is .

Example

 execute IBEBlock
 returns (cout varchar(1))
 as
 begin
 i = 0;
 while (i < 256) do
 begin
 cout = ibec_Chr(i);
 i = i + 1;
 suspend;
 end
 end

ibec_ParseCSVLine

Syntax

 function ibec_fs_ParseCSVLine(DestValues : array of variants; CSVLine :
string; QuoteChar : char; Delimiter : string; Options : cardinal): inte-
ger;

ibec_Progress

Displays a progress message.

Syntax

 function ibec_Progress(Mes : string): string;

Description

Call ibec_Progress function to display a message. The Msg parameter is the message
string that appears in the upper status panel of the SQL Editor or Script Editor. If
you're executing an IBEBlock using the IBEScript tool the message will appear on the
screen and will be included into log file

Example

8

IBExpert Tools Menu - IBExpert Command–Line Tools

487

 execute IBEBlock
 returns (table_name varchar(31), irecords integer)
 as
 begin
 for select rdb$relation_name
 from rdb$relations
 order by rdb$relation_name
 into :table_name
 do
 begin
 ibec_Progress('Counting records of ' || ibec_Trim(table_name));
 execute statement 'select count(*) from ' || ibec_Trim(table_name)
into :irecords;
 suspend;
 end
 end

ibec_Random

Generates random numbers within a specified range.

Syntax

 function ibec_Random(Range : integer): integer;

Description

ibec_Random returns a random number within the range 0 <= X < Range. If Range=0,
the result is a real-type random number within the range 0 <= X < 1.

Example

 execute IBEBlock
 returns (iout integer, dpout double precision)
 as
 begin
 i = 0;
 while (i < 100) do
 begin
 iout = ibec_Random(100);
 dpout = ibec_Random(0);
 i = i + 1;
 suspend;
 end
 end

ibec_Random2

Generates random numbers within a specified range.

Syntax

8

IBExpert Tools Menu - IBExpert Command–Line Tools

488

 function ibec_Random2(MinValue, MaxValue : integer): integer;

Description

ibec_Random2 returns a random number within the range MinValue <= X <= Max-
Value.

Example

 execute IBEBlock
 returns (iout integer)
 as
 begin
 i = 0;
 while (i < 100) do
 begin
 iout = ibec_Random2(50, 100);
 i = i + 1;
 suspend;
 end
 end

ibec_RandomChar

Generates random char within a specified range.

Syntax

 function ibec_RandomChar(MinOrdValue, MaxOrdValue : integer): string;

Description

ibec_RandomChar returns a random char within the range MinOrdValue <= X <=
MaxOrdValue.

Example

 execute IBEBlock
 returns (cout varchar(1))
 as
 begin
 i = 0;
 while (i < 100) do
 begin
 cout = ibec_RandomChar(1, 255);
 i = i + 1;
 suspend;
 end
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

489

ibec_RandomString

Returns a random string.

Syntax

 function ibec_RandomString(MinLen, MaxLen, MinOrdValue, MaxOrdValue :
integer): string;

Description

Example

ibec_SetLength

Sets the length of a dynamic-array variable.

Syntax

 function ibec_SetLength(AArray : array of variants; NewLength : inte-
ger): integer;

Description

AArray is a dynamic-array variable.

ibec_SetLength reallocates the array referenced by AArray to the given length. Exist-
ing elements in the array are preserved, the content of newly allocated elements is
NULL.

ibec_SetLength returns the number of array elements.

Example

 execute IBEBlock
 returns (iresult integer)
 as
 begin
 vals = 0;
 iresult = ibec_SetLength(vals, 10);
 suspend; /* iresult = 10 */

 iresult = ibec_SetLength(vals, -1);
 suspend; /* illegal NewLength, iresult = 10 */

 iresult = ibec_SetLength(vals, '25');
 suspend; /* iresult = 25 */

 iresult = ibec_SetLength(vals, NULL);
 suspend; /* illegal NewLength, iresult = 25 */
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

490

ibec_ShiftRecord

Syntax

 function ibec_ShiftRecord(AArray : array of variants; Shift : integer):
integer;

Examples of usage of IBEBlock

This section includes a few examples illustrating the usage of EXECUTE IBEBLOCK
(please refer to the individual subjects for details):

• Table data comparing
• Test data generator
• Joining tables from different databases
• Recreating indices #1
• Recreating indices #2
• Building an OLAP cube
• Inserting data from a file into a database
• Importing data from a CSV-file
• Creating script from Database Designer model file
• Creating an UPDATE-script with domain descriptions

IBEBLOCK and Test Data Generator

The following IBEBlock creates a table named IBE$TEST_DATA and populates it with
random data.

execute ibeblock
returns (info varchar(100))
as
begin
 RecNum = 10000;

 if (exists (select rdb$relation_name from rdb$relations where
rdb$relation_name = 'IBE$$TEST_DATA')) then
 begin
 execute statement 'drop table IBE$$TEST_DATA';
 commit;
 end

 execute statement
 'create table IBE$$TEST_DATA (
 F_INTEGER integer,
 F_VARCHAR varchar(100),
 F_DATE date,
 F_TIME time,
 F_TIMESTAMP timestamp,
 F_NUMERIC numeric(15,2),
 F_BOOL char(1) check (F_BOOL in (''T'', ''F'')),
 F_BLOB blob sub_type 1,
 F_SEASON varchar(15) check(F_SEASON in (''Spring'', ''Summer'',

8

IBExpert Tools Menu - IBExpert Command–Line Tools

491

''Autumn'', ''Winter'')),
 F_RELS varchar(64))';
 commit;

 StartTime = ibec_gettickcount();

 i = 0;
 for select rdb$relation_name
 from rdb$relations
 into :rel_names
 do
 begin
 rels[i] = :rel_names;
 i = i + 1;
 end

 i = 0;
 while (i < RecNum) do
 begin
 fint = ibec_random2(1, 100000);
 fvarc = ibec_randomstring(1,100,65,90);
 fdate = ibec_random2(20000,40000);
 ftime = ibec_random(0);
 ftimest = ibec_random2(20000,40000) + ibec_random(0);
 fnum = ibec_random2(1,40000) + ibec_random(0);
 fbool = ibec_randomval('T','F');
 fblob = ibec_randomstring(500, 1000, 0, 255);
 fseason = ibec_randomval('Spring', 'Summer', 'Autumn', 'Winter');
 frel = rels[ibec_random2(0,ibec_high(rels))];

 insert into IBE$$TEST_DATA values (:fint, :fvarc, :fdate, :ftime,
:ftimest, :fnum, :fbool, :fblob, :fseason, :frel);
 i = i + 1;

 if (ibec_mod(i, 500) = 0) then
 begin
 ibec_progress(i || ' records inserted...');
 commit;
 end
 end

 commit;

 EndTime = ibec_gettickcount();
 info = 'Total time: ' || ((EndTime - StartTime) / 1000) || ' seconds';
 suspend;
 info = 'Per record: ' || ((EndTime - StartTime) / 1000 / RecNum) || '
seconds';
 suspend;
end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

492

Joining tables from different databases

The following example illustrates how to join two tables from different databases:

execute ibeblock (iii integer, ivc varchar(100))
returns (id integer, ename varchar(100), company varchar(100))
as
begin

-- drop database 'localhost/3060:c:\db1.fdb' user 'SYSDBA' password 'mas-
terkey' clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

-- drop database 'localhost/3060:c:\db2.fdb' user 'SYSDBA' password 'mas-
terkey' clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create database 'localhost/3060:c:\db1.fdb' user 'SYSDBA' password
'masterkey'
 page_size 4096 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create database 'localhost/3060:c:\db2.fdb' user 'SYSDBA' password
'masterkey'
 page_size 4096 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create connection db1 dbname 'localhost/3060:c:\db1.fdb'
 password 'masterkey' user 'SYSDBA'
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create connection db2 dbname 'localhost/3060:c:\db2.fdb'
 password 'masterkey' user 'SYSDBA'
 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 use db1;

 vstmt = 'create table "employees" (' || '
 id integer not null primary key,
 full_name varchar(100),
 company_id integer)';

 execute statement :vstmt;

 commit;

 use default;

 select count(*) from help_items into :icount;

 use db1;

8

IBExpert Tools Menu - IBExpert Command–Line Tools

493

 insert into "employees" (id, full_name, company_id) values (1, 'Alexan-
der Khvastunov', 2);
 insert into "employees" (id, full_name, company_id) values (2, 'Bill
Gates', 1);
 insert into "employees" (id, full_name, company_id) values (3, 'John
Doe', NULL);
 insert into "employees" (id, full_name, company_id) values (4, 'Vladi-
mir Putin', 3);
 insert into "employees" (id, full_name, company_id) values (5, 'Some-
body', 15);

 use db2;

 execute statement
 'create table companies (
 id integer not null primary key,
 company_name varchar(100))';

 commit;

 insert into companies (id, company_name) values (1, 'Microsoft');
 insert into companies (id, company_name) values (2, 'HK-Software');
 insert into companies (id, company_name) values (3, 'The Kremlin?');

 commit;

 use db1;

 for execute statement 'select id, full_name, company_id from "employ-
ees"'
 into :id, :ename, :cid
 do
 begin
 use db2;

 company = NULL;

 select company_name from companies
 where id = :cid
 into :company;

 suspend;
 end

 close connection db1;
 close connection db2;
end

Recreating indices 1

The following example illustrates how to recreate database indices:

8

IBExpert Tools Menu - IBExpert Command–Line Tools

494

execute ibeblock
returns (info varchar(1000))
as
begin
 i = 0;

 for select i.rdb$index_name, i.rdb$relation_name, i.rdb$unique_flag,
 i.rdb$index_inactive, i.rdb$index_type
 from rdb$indices i
 left join rdb$relation_constraints rc on (i.rdb$index_name =
rc.rdb$index_name)
 where (i.rdb$system_flag is null) and (rc.rdb$index_name is null)
 into :IdxName, :IdxRelName, :IdxUnique, :IdxInactive, :IdxType
 do
 begin
 sFields = '';
 for select rdb$field_name from rdb$index_segments
 where rdb$index_name = :IdxName
 order by rdb$field_position
 into :ifields
 do
 begin
 if (sFields <> '') then
 sFields = sFields || ', ';
 sFields = sFields || ibec_formatident(ibec_trim(ifields));
 end

 DropStmt[i] = 'drop index ' || ibec_formatident(ibec_trim(IdxName));
 CreateStmt[i] = 'create ' || ibec_iif(IdxUnique = 1, 'unique ', '')
|| ibec_iif(IdxType = 1, 'descending ', '') ||

 ' index ' || ibec_formatident(ibec_trim(IdxName)) ||
 ' on ' || ibec_formatident(ibec_trim(IdxRelName)) ||
' (' || sFields || ')';

 i = i + 1;
 end

 i = 0;
 while (i <= ibec_high(DropStmt)) do
 begin
 s = DropStmt[i];
 info = s;
 suspend;
 ibec_progress(info);
 execute statement :s;
 commit;

 s = CreateStmt[i];
 info = s;
 suspend;
 ibec_progress(info);

8

IBExpert Tools Menu - IBExpert Command–Line Tools

495

 execute statement :s;
 commit;

 i = i + 1;
 end
end

Recreating indices 2

The following example illustrates how to recreate database indices using AS DATASET:

execute ibeblock
returns (info varchar(1000))
as
begin
 select i.rdb$index_name, i.rdb$relation_name, i.rdb$unique_flag,
 i.rdb$index_inactive, i.rdb$index_type
 from rdb$indices i
 left join rdb$relation_constraints rc on (i.rdb$index_name =
rc.rdb$index_name)
 where (i.rdb$system_flag is null) and (rc.rdb$index_name is null)
 as dataset ds_indices;

 while (not ibec_ds_eof(ds_indices)) do
 begin
 IdxName = ibec_trim(ibec_ds_getfield(ds_indices,0));
 IdxRelName = ibec_trim(ibec_ds_getfield(ds_indices,1));
 IdxUnique = ibec_ds_getfield(ds_indices,2);
 IdxInactive = ibec_ds_getfield(ds_indices,3);
 IdxType = ibec_ds_getfield(ds_indices,4);

 sFields = '';
 for select rdb$field_name from rdb$index_segments
 where rdb$index_name = :IdxName
 order by rdb$field_position
 into :IdxField
 do
 begin
 IdxField = ibec_trim(IdxField);
 if (sFields <> '') then
 sFields = sFields || ', ';
 sFields = sFields || ibec_formatident(IdxField);
 end

 DropStmt = 'drop index ' || ibec_formatident(IdxName);
 CreateStmt = 'create ' || ibec_iif(IdxUnique = 1, 'unique ', '') ||
ibec_iif(IdxType = 1, 'descending ', '') ||

 ' index ' || ibec_formatident(IdxName) ||
 ' on ' || ibec_formatident(IdxRelName) || ' (' ||
sFields || ')';

8

IBExpert Tools Menu - IBExpert Command–Line Tools

496

 info = DropStmt;
 suspend;
 ibec_progress(info);
 execute statement :DropStmt;
 commit;

 info = CreateStmt;
 suspend;
 ibec_progress(info);
 execute statement :CreateStmt;
 commit;

 ibec_ds_next(ds_indices);
 end

 close dataset ds_indices;
end

Building an OLAP cube

The following illustrates the construction of an OLAP cube:

 execute ibeblock
 as
 begin
 SelectSQL = 'select rf.rdb$relation_name, f.rdb$field_type,
f.rdb$field_length, f.rdb$field_precision
 from rdb$relation_fields rf, rdb$fields f
 where rf.rdb$field_source = f.rdb$field_name';

 vDimensions[0] = 'FieldName=RDB$RELATION_NAME; Alias="Table Name"';
 vDimensions[1] = 'FieldName=RDB$FIELD_TYPE; Alias="Field Type';

 vMeasures[0] = 'FieldName=RDB$FIELD_TYPE; Alias="Field Count"; Calc-
Type=ctCount; Format=0';
 vMeasures[1] = 'FieldName=RDB$FIELD_LENGTH; Alias="Total Length";
CalcType=ctSum; Format=0';
 vMeasures[2] = 'FieldName=RDB$FIELD_PRECISION; Alias="Avg Precision";
CalcType=ctAverage';

 Build and save cube in binary format:

 ibec_BuildCube('C:\test_cub.cub', SelectSQL, vDimensions, vMeasures,
null);

Build and save cube in XML format:

 ibec_BuildCube('C:\test_cub.xml', SelectSQL, vDimensions, vMeasures,
null);
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

497

Inserting files into a database

IBEBlock can be used to insert files extremely simply and quickly into your database:

execute ibeblock
as
begin
 MyVar = ibec_LoadFromFile(C:\f.jpg);
 insert into ... values (..., :MyVar);
 commit;
end

Another possible way is to use different SET BLOBFILE statements before each IN-
SERT/UPDATE statement:

SET BLOBFILE 'C:\f.jpg';
INSERT INTO ... VALUES (..., :h00000000_FFFFFFFF);
SET BLOBFILE 'C:\f2.jpg';
INSERT INTO ... VALUES (..., :h00000000_FFFFFFFF);
SET BLOBFILE 'C:\f3.jpg';
INSERT INTO ... VALUES (..., :h00000000_FFFFFFFF);

Inserting file data into a database

The following script should be executed in Script Executive or with IBEScript.

 set names win1251;
 set sql dialect 3;
 set clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create database 'localhost/3060:D:\allscripts.fdb'
 user 'SYSDBA' password 'masterkey'
 page_size 8192 default character set WIN1251;

 create generator gen_script_id;

 create table scripts (
 ID INTEGER NOT NULL PRIMARY KEY,
 FILENAME VARCHAR(2000),
 SCRIPT_TEXT BLOB SUB_TYPE TEXT);

 create trigger script_bi for scripts
 active before insert position 0
 as
 begin
 if (new.id is null) then
 new.id = gen_id(gen_script_id, 1);
 end;

 execute ibeblock
 as
 begin

8

IBExpert Tools Menu - IBExpert Command–Line Tools

498

 ibec_progress('Searching for script files...');
 files_count = ibec_getfiles(files_list, 'D:\',
'*.sql',_gfRecursiveSearch + __gfFullName);

 if (files_count > 0) then
 begin
 i = 0;
 while (i < ibec_high(files_list)) do
 begin
 file_name = files_list[i];
 file_size = ibec_filesize(file_name) / 1024 / 1024; -- File size
in megabytes
 if (file_size < 10) then
 begin
 script_data = ibec_loadfromfile(file_name);
 ibec_progress('Adding script file ' || :file_name);
 insert into scripts (filename, script_text) values (:file_name,
:script_data);
 commit;
 end
 i = i + 1;
 end
 end
 end;

Importing data from a CSV file

The following example creates a simple comma-separated values (CSV) file and im-
ports its data into a database:

 execute ibeblock
 returns (outstr varchar(100))
 as
 begin

First, let's create a simple CSV-file with some data:

 FS = ibec_fs_OpenFile('C:\MyData.csv', __fmCreate);
 if (not FS is null) then
 begin
 s = '1:John:Doe:M';
 ibec_fs_Writeln(FS, s);
 s = '2:Bill:Gates:M';
 ibec_fs_Writeln(FS, s);
 s = '3:Sharon:Stone:F';
 ibec_fs_Writeln(FS, s);
 s = '4:Stephen:King:M';
 ibec_fs_Writeln(FS, s);
 ibec_fs_CloseFile(FS);
 end

If table IBE$$TEST_PEOPLE exists we'll drop it:

8

IBExpert Tools Menu - IBExpert Command–Line Tools

499

 if (exists(select rdb$relation_name from rdb$relations where
rdb$relation_name = 'IBE$$TEST_PEOPLE')) then
 begin
 s = 'DROP TABLE IBE$$TEST_PEOPLE';
 execute statement s;
 commit;
 end

Let's create a new table that will store the imported data:

 s = 'CREATE TABLE IBE$$TEST_PEOPLE (
 ID integer,
 FIRST_NAME varchar(50),
 LAST_NAME varchar(50),
 SEX varchar(1))';
 execute statement s;
 commit;

 i = 0; (-- Just a counter of inserted records)
 FS = ibec_fs_OpenFile('C:\MyData.csv', __fmOpenRead);
 if (not FS is null) then
 begin
 while (not ibec_fs_Eof(FS)) do
 begin
 s = ibec_fs_Readln(FS);
 ValCount = ibec_ParseCSVLine(Vals, s, '', ':',
__csvEmptyStringAsNull);
 INSERT INTO IBE$$TEST_PEOPLE (ID, FIRST_NAME, LAST_NAME, SEX)
VALUES :Vals;
 commit;
 i = i + 1;
 end
 ibec_fs_CloseFile(FS);
 end

 outstr = i || ' records inserted into IBE$$TEST_PEOPLE';
 suspend;
 end

Creating a script from a Database Designer model file

The following IBEBlock illustrates how to create a script from Database Model file:

 execute ibeblock
 as
 begin
 FileName = 'C:\model.grc';
 if ibec_FileExists(FileName) then
 ibec_CreateModelScript(FileName, 'C:\model.sql',
__msoDontQuoteIdents + __msoIncludeDescriptions);
 end

8

IBExpert Tools Menu - IBExpert Command–Line Tools

500

Creating an UPDATE script with domain descriptions

The following IBEBlock creates a script with UPDATE statements for all database do-
mains that have a description:

execute ibeblock
 as
 begin
 FHSQL = ibec_fs_OpenFile('E:\DomDescs.sql', __fmCreate);
 FHBlobs = ibec_fs_OpenFile('E:\DomDescs.lob', __fmCreate);
 if ((not FHSQL is null) and (not FHBlobs is null)) then
 begin
 ibec_fs_Writeln(FHSQL, 'SET BLOBFILE ''E:\DomDescs.lob'';');
 ibec_fs_Writeln(FHSQL, '');
 for select rdb$field_name, rdb$description
 from rdb$fields
 where (rdb$description is not null)
 order by 1
 into :FieldName, :FieldDesc
 do
 begin
 if (FieldDesc <> '') then
 begin
 FieldName = ibec_Trim(FieldName);
 iOffs = ibec_fs_Position(FHBlobs);
 iLen = ibec_fs_WriteString(FHBlobs, FieldDesc);
 sParamName = ':h' || ibec_IntToHex(iOffs, 8) || '_' ||
ibec_IntToHex(iLen, 8);
 UpdStmt = 'UPDATE RDB$FIELDS' || ibec_Chr(13) || ibec_Chr(10)
||
 'SET RDB$DESCRIPTION = ' || :sParamName ||
 ibec_Chr(13) || ibec_Chr(10) ||
 'WHERE (RDB$FIELD_NAME = ''' || FieldName || ''');';
 ibec_fs_Writeln(FHSQL, UpdStmt);
 ibec_fs_Writeln(FHSQL, '');
 end
 end
 ibec_fs_Writeln(FHSQL, 'COMMIT WORK;');
 ibec_fs_CloseFile(FHSQL);
 ibec_fs_CloseFile(FHBlobs);
 end
 commit;
 end;

8.25.2 IBECompare

IBECompare is a command-line tool to compare databases, scripts and table data. It is
new to IBExpert version 2004.04.01.1. The current version (03/2005) is 2005.03.12.

IBECompare.exe can be found in the IBExpert root directory, and needs to be started
from DOS:

8

IBExpert Tools Menu - IBExpert Command–Line Tools

501

c:\Program Files\HK-Software\IBExpert 2004>ibecompare

IBECompare offers the following options:

• -C<config_file> = config file
• -O<output_file> = output file (Result.sql if not specified)
• -V<verbose_file> = verbose file
• -D = compare database metadata and script
• -T = compare table data
• -S = silent mode
• -s = create a config file sample (config_sample.ini)

WARNING: All options are case-sensitive!

Example:

IBECompare -D -Cconfig.ini -OC:\Scripts\result.sql -Vlog.txt

In both cases (i.e. options -D or -T) IBECompare produces an SQL script file. It is nec-
essary to specify an input settings file using the -C option.

You can obtain the template of this file starting IBECompare with the -s option (IBE-
Compare -s). In this case IBECompare will create a config_sample.ini file within the
current directory, which is simple and quick to modify.

It is also possible to create a settings file using Save configuration button in the IBEx-
pert Tools menu / Database Comparer.

The following is an example of an .ini file, for comparing table data:

[MasterDB]
ConnectString=LOCALHOST:C:\MyData\Master.gdb
Username=SYSDBA
Password=masterkey
Charset=WIN_1251
ClientLib=gds32.dll
; Next item will be used while comparing tables
TableName=CUSTOMER

; Instead of MasterDB section you can use MasterScript section:
;[MasterScript]
;ScriptFile=D:\MyScripts\MyData.dql

[TargetDB]
ConnectString=MYSERVER:D:\Data\customer.gdb
Username=SYSDBA
Password=masterkey
Charset=WIN_1251
ClientLib=gds32.dll
; Next item will be used while comparing tables
TableName="Customer"

8

IBExpert Tools Menu - IBExpert Command–Line Tools

502

; Instead of TargetDB section you can use TargetScript section:
;[TargetScript]
;ScriptFile=D:\MyScripts\MyData.dql

[CompareObjects]
Domains=1
Tables=1
Views=1
Triggers=1
Procedures=1
Generators=1
Exceptions=1
Functions=1
Roles=1
Indices=1
Grants=1
Descriptions=1
PrimaryKeys=1
ForeignKeys=1
Uniques=1
Checks=1

[Options]
; Next items will be used while comparing tables
ProcessINSERTs=1
ProcessUPDATEs=1
ProcessDELETEs=1

Should the script generated by IBECompare include a

SET BLOBFILE 'xxx.lob';

command, it is necessary to execute the script using IBEScript or the IBExpert Script
Executive.

SET BLOBFILE is a special extension of script language that allows insert or update
blob values via script.

8.25.3 IBEExtract

IBEEXtract.exe can be found in the IBExpert root directory, and needs to be started
from DOS. The current version (03/2005) is 2005.03.12.

Syntax:

IBEExtract database [options]

• -U<user_name> = user name ("SYSDBA" if not specified).
• -P<password> = password ("masterkey" if not specified).
• -C<character_set> = character set.
• -O<output_file> = output file ("Result.sql" if not specified).

8

IBExpert Tools Menu - IBExpert Command–Line Tools

503

• -F<output_folder> = output folder (for Separate Files mode; current directory, if
not specified).

• -G = set generator values.
• -D = extract data.
• -B = extract blobs (please refer to blob fields for further information about blobs).
• -S = silent mode.
• -V<verbose_file> = verbose file.
• -M<config_file> = use config file.
• -T = generate CREATE DATABASE statement.
• -N = generate CONNECT statement.
• -W = include password into CREATE DATABASE or CONNECT statement.
• -R = extract object descriptions.
• -A<integer_value> = commit after <integer_value> records.
• -Y = extract computed fields separately.
• -X = extract privileges.
• -L = extract privileges only for selected objects.
• -d = date format (native InterBase/Firebird date format <DD-MMM-YYYY>, if not

specified).
• -f = extract into separate files (new to IBExpert version 2004.9.12.1/IBEExtract

version 2.02).
• -s = extract into separate files.
• -r = use REINSERT instead of repeated INSERTs.
• -l = client library file (gds32.dll, if not specified).
• -z = maximum size of resulting files in megabytes (new to IBExpert version

2004.9.12.1/IBEExtract version 2.02).

WARNING! All options are case-sensitive!

Example 1:

IBEExtract localhost:c:\mydata\mydatabase.gdb -OC:\scripts\result.sql -
USYSDBA -Pmasterkey -CWIN1251

Example 2:

IBEExtract "C:\IB Data\my.gdb" -O"My Script.sql" -V"Extract Log.txt"

Since IBExpert version 2003.11.6.1, the problem with extracting exceptions has been
solved.

All options listed here can also be found in IBExpert under Tools / Extract Metadata.

8.25.4 IBEScript

IBEScript.exe can be found in the IBExpert root directory, and needs to be started from
DOS. The current version (03/2005) is 2005.03.12.

Syntax:

IBEScript script_filename [options]

• -S = silent mode

8

IBExpert Tools Menu - IBExpert Command–Line Tools

504

• -V<verbose_file> = verbose output file. If <verbose_file> exists, IBEScript will
overwrite it.

• -v<verbose_file> = verbose output file. If <verbose_file> exists, IBEScript will
append message to this file.

• -E = display only error messages
• -N = continue after error.
• -T = write timestamp into log.
• -D = connections string (use it if your script does not contain CONNECT or CREATE
DATABASE statements).

• -P = connection password (use only with -D option).
• -U = connection user name (use only with -D option).
• -C = character set (use only with -D option).
• -L<1|2|3> = SQL dialect (use only with -D option; 1 if not specified)
• -i = idle priority (new to IBExpert version 2004.9.12.1 / IBEScript version 2.02).

WARNING! All options are case-sensitive!

Since IBExpert version 2003.11.6.1 there is the added possibility to encrypt/decrypt
scripts and to execute encrypted scripts. There are two possible ways to encrypt:

Encrypting without the password. In this case there is no possibility to decrypt an en-
crypted script but it is possible to execute this script with IBEScript.
Encrypting with the password. In this case it possible to decrypt the script and execute it
with IBExpert if the correct password is specified.

The following options control the encrypting and decrypting:

• -e = encrypts a script file and create a file with the extension .esql if the output
file is not specified (no execution will be performed).

• -d = decrypts an encrypted script file if it was encrypted with password (no execu-
tion will be performed).

• -p<password> = encrypt/decrypt password.
• -o<file_name> = output file name for encrypted and decrypted scripts.

Again: all options are case-sensitive!

Example 1:

IBEScript "C:\MyScripts\CreateDB.sql"

Example 2:

IBEScript C:\MyScripts\CreateDB.sql -S -UScriptLog.txt

Support for EXECUTE IBEBLOCK was implemented in IBEScript version 2.02 (released
with IBExpert version 2004.9.12.1). This is unfortunately not available in the free ver-
sion of IBEScript.

8

IBExpert Tools Menu - IBExpert Command–Line Tools

505

IBEScriptDll

New to IBExpert version 2004.12.12.1:

IBEScript.dll (for registered customers only)

For registered customers we've included the IBEScript.dll in the installation archive.
You can use it in your applications to execute scripts from file or from a string buffer.
There is a small demo application illustrating its use in the IBEScriptDll folder.. Please
also refer to the IBEScriptDll Readme.txt.

To be allowed to distribute any of the IBExpert Modules (ibexpert.exe,
ibescript.exe, ibescript.dll, ibeextract.exe and ibecompare.exe) together with
your application, you need:

• IBExpert Site License, if the distribution is located only on computers in your own
company.

• IBExpert VAR License, if the distribution is located on any computer outside your
company.

If you are already an IBExpert customer, you can upgrade to a Site or VAR License and
purchase the 24 month Extension Product.

See www.ibexpert.com PURCHASE area for details.

IBEScriptDll Readme.txt

1. IBEScript.dll exports the following functions:

• ExecScriptFile - executes script from file.
• ExecScriptText - executes script from string buffer.
• CONNECT - connects to the database if there is no CONNECT statement in the script.

2. Examples of the use of ExecScriptFile and ExecScriptText - see demo applica-
tion in the IBEScriptDll folder.

3. Example using the CONNECT function:

procedure TForm1.Button2Click(Sender: TObject);
var
 Hndl : THandle;
 ESP : TExecuteScriptProc;
 CP : TConnectDBProc;
 s : string;
 Res : integer;
begin
 ErrCount := 0;
 StmtCount := 0;
 mLog.Lines.Clear;
 s := mScript.Text;
 if Trim(s) = '' then
 begin

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

506

 ShowMessage('Nothing to do!');
 Exit;
 end;
 try
 Hndl := LoadLibrary(PChar('IBEScript.dll'));
 if (Hndl > HINSTANCE_ERROR) then
 begin
 ESP := GetProcAddress(Hndl, 'ExecScriptText');
 CP := GetProcAddress(Hndl, 'Connect');
 if (@ESP <> nil) and (@CP <> nil) then
 begin
 Pages.ActivePage := tsOutput;
 Res := CP(PChar('db_name=localhost:c:\empty.fdb; pass-
word=masterkey; user_name=SYSDBA;'

+
 'lc_ctype=win1251; sql_role_name=ADMIN;
sql_dialect=3;' +
 'clientlib="c:\program
files\firebird\bin\fbclient.dll"'), @CEH);
 if Res = 0 then
 ESP(PChar(s), @HandleError, @BeforeExec, @AfterExec);
 end;
 end;
 finally
 if Hndl > HINSTANCE_ERROR then
 FreeLibrary(Hndl);
 end;
end;

8.26 InterBase and Firebird Command–Line
Utilities

Several command-line tools are provided with InterBase/Firebird. They perform the
same range of functions as the Server Manager and run on both UNIX and Windows
platforms. Like the Server Manager, they can access servers on any platform that In-
terBase supports. The command-line tools include the following:

• GBAK
• GFIX
• GSEC
• GSTAT
• IBLOCKPR (Windows) GDS_LOCK_PRINT (Unix)
• IBMGR
• ISQL

The majority of the options provided by these command-line tools are also offered by
IBExpert. Please refer to IBECompare, IBEExtract and IBEScript for further information.

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

507

8.26.1 GBAK and GSPLIT

(GBAK.EXE and GSPLIT.EXE)

GBAK is an InterBase/Firebird command line utility, which can be used to back up and
restore databases. GSPLIT backs up and restores multiple file databases. Please refer
to GBAK - Firebird Backup and Restore for further information.

The parameters and options offered by GBAK can be found in the IBExpert Database
Backup and Database Restore menus.

GBAK – Firebird backup and restore

Many thanks to Stefan Heymann (www.destructor.de) for the following overview of op-
tions and examples.

GBAK is Firebird's/InterBase's command-line tool for online backup and restore of a
complete database.

General Syntax:

gbak <options> -user <username> -password <password> <source> <destina-
tion>

Backup

For backups, <source> is the database you want to back up, <destination> is the file
name of the backup file. The usual extension is .fbk for Firebird and .gbk for Inter-
Base.

Only the SYSDBA or the database owner can perform a backup. For multi-file data-
bases, specify only the name of the first file as the database name.

Restore

For restores, <source> is the backup file and <destination> is the name of the data-
base that is to be built up from the backup file. You will have to specify the -C option
for restore.

Options:

(Parts in square brackets are optional)

-b[ackup_database] Back up. This switch is optional. Backup
only

-bu[ffers] Set cache size for restored database Restore
only

-c[reate_database] Restore (mandatory) Restore
only

-co[nvert] Converts external tables to internal ta- Backup

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

508

bles only

-e[xpand] Creates an uncompressed backup Backup
only

-fa[ctor] n Blocking factor for tape device Backup
only

-g[arbage collect] Does not perform garbage collection
(sweeping) during backup

Backup
only

-i[nactive] All indices will be restore as INACTIVE Restore
only

-ig[nore] Ignores checksum errors while backing
up

Backup
only

-k[ill] Does not create shadows that are de-
fined in the backup

Restore
only

-l[imbo] Ignores Limbo transactions while backing
up

Backup
only

-m[etadata] Only backs up metadata (schema). No
table data will be stored

Backup
only

-mo[de] read_write Restores to a read/write database (This
is the default)

Restore
only

-mo[de] read_only Restores to a read-only database Restore
only

-n[o_validity] Does not restore validity constraints. So
you can restore data that does not meet
these constraints
and could not be restored otherwise.

Restore
only

-nt Non-transportable format (use only when
you know you will restore on same plat-
form and database
version)

Backup
only

-o[ne_at_a_time] Restores one table at a time. You can
use this to partially restore databases
with corrupt table data

Restore
only

-ol[d_descriptions] Old-style format Backup
only

-p[age_size] <size> Sets page size of new database. <size>
can be one of 1024, 2048, 4096, 8192.
Default is 1024.

Restore
only

-pa[ssword] <password> Database password

-r[eplace_database] Restores over an existing database. This
can only be performed by the SYSDBA or
the owner of the database
that is overwritten. Do NOT restore over
a database that is in use!

Restore
only

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

509

-role <role> Connect as role

-se[rvice] <host-
name>:service_mgr

Backup: creates the backup file on the
database server, using the Service Man-
ager.
Restore: creates the database from a
backup file on the server, using the Ser-
vice Manager.

-t[ransportable] Creates a transportable backup (trans-
portable between platforms and server
versions)

Backup
only

-u[ser] <username> Database user name

-use_[all_space] Normally, on restore, database pages
will be filled to about 80 %. With the
use_all_space option,
database pages will be filled to 100 %.
(Useful for read-only databases which
will see no more modifications)

Restore
only

-v[erbose] Verbose output of what GBAK is doing

-y <filename> Redirect all output messages to <file-
name>. NOTE: the file must not exist
before running GBAK!

-y suppress_output Quiet mode

-z Show GBAK version and server version

Examples:

A "normal" backup:

gbak -v -t -user SYSDBA -password "masterkey" dbserver:/db/warehouse.fdb
c:\backups\warehouse.fbk

Backup with output to a logfile:

gbak -v -t -user SYSDBA -password masterkey -y c:\backups\warehouse.log
dbserver:/db/warehouse.fdb c:\backups\warehouse.fbk

A "normal" restore:

gbak -c -v -user SYSDBA -password masterkey c:\backups\warehouse.fbk
dbserver:/db/warehouse2.fdb

Restore to an already existing database:

gbak -c -r -v -user SYSDBA -password masterkey c:\backups\warehouse.fbk
dbserver:/db/warehouse.fdb

Create a read-only database:

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

510

gbak -c -v -mode read_only -use_all_space -user SYSDBA -password mas-
terkey c:\backups\warehouse.fbk c:\files\warehousedb.fdb

Multi-file backups:

Syntax for backup:

gbak [options] <database> <target file 1> <size 1> <target file 2> <size
2> ... <target file n>

NOTE: Do not specify a size for the last file. It will always be filled to take up what is
left over, no matter how large. Size can be given in bytes (8192), kilobytes (1024k),
megabytes (5m), or gigabytes (2g)

Syntax for restore:

gbak -c [options] <source file 1> <source file 2> ... <source file n>
<database>

Restoring to a multi-file database:

gbak -c [options] <source file> <db file 1> <size 1> <db file 2> <size 2>
... <db file n>

NOTE: Do not specify a size for the last database file. It can always grow unlimited to
take up the rest. Size can be given in bytes (8192), kilobytes (1024k), megabytes
(5m), or gigabytes (2g)

Restoring from a multi-file backup to a multi-file database:

gbak -c [options] <source file 1> <source file 2> ... <source file n> <db
file 1> <size 1> <db file 2> <size 2> ... <db file n>

8.26.2 GFIX

(GFIX.EXE)

GFIX is an InterBase/Firebird command-line utility, offering a number of options to
validate and repair databases. These options are included in the IBExpert menu items
Services / Database Validation and Database Properties.

The following articles are published here with the kind permission of Stefan Heymann
(http://www.destructor.de/).

General Syntax

gfix [options] -user <username> -password <password> <database> [options]

Further information and examples can be found under the following subjects:

• Database Shutdown using GFIX
• Database Repair and Sweeping using GFIX

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

511

• GFIX - Miscellaneous parameters
• Using GFIX.

Database shutdown using GFIX

by Stefan Heymann.

Database Shutdown

When a database has been shut down, only SYSDBA and the database owner are able
to connect to the database in order to perform administrative tasks.

Options:

-at[tach]
<seconds>

Used with the -shut option. Waits <seconds> seconds for all cur-
rent connections to end. If after <seconds> seconds there are still
connections open, the shutdown will be cancelled.

-f[orce]
<seconds>

Used with the -shut option. Waits <seconds> seconds for all con-
nections and transactions to end. After this time, all connections
and transactions are cancelled and the database is shut down. Use
with caution.

-o[nline] If a -shut operation is pending, it is cancelled. Otherwise, takes a
database back online

-sh[ut] Shut down database. Must be used together with -attach, -force
or -tran.

-tr[an]
<seconds>

Used with the -shut option. Waits <seconds> seconds for all run-
ning transactions to end. If after <seconds> seconds there are still
running transactions, the shutdown will be cancelled.

Examples:

Shut down database, wait 60 seconds until all connections are closed:

gfix -user SYSDBA -password "masterkey" dbserver:/db/mydb.fdb -shut -
attach 60

Note that GFIX will terminate with an error if there are still connections open after 60
seconds.

Shut down database, force shutdown after 60 seconds:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -shut -force
60

Shut down database, force shutdown NOW:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -shut -force
0

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

512

Put database online again:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -online

Further examples can be found under Using GFIX and the subjects included under
GFIX.

Database repair and sweeping using GFIX

by Stefan Heymann.

Options:

-f[ull] Use with the -v option. Examines all records and pages and
releases unassigned record fragments

-h[ousekeeping]
0

Switch off automatic sweeping

-h[ousekeeping]
<n>

Set Sweep Interval to <n> transactions (default is 20000)

-i[gnore] Ignores checksum errors during a validate or sweep

-m[end] Marks corrupt records as unavailable so they are skipped on a
subsequent backup

-n[o_update] Use with the -v option. Examines all records and pages and
reports errors but does not repair them

-s[weep] Forces an immediate sweep

-v[alidate] Check database for validity. At the same time, errors are
reported and repaired

Examples:

Validate database:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -v -f

Sweep database now:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -s

Set sweep interval to 50000 transactions:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -h 50000

Switch off automatic sweeping:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -h 0

Further examples can be found under Using GFIX and the subjects included under
GFIX.

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

513

GFIX – miscellaneous parameters

by Stefan Heymann.

Options:

-b[uffers]
<pages>

Default cache buffers for the database will be set to <pages>
pages

-c[ommit] <id> Commits limbo transaction specified by the given <id>

-c[ommit] all Commits all limbo transactions

-k[ill] Drops shadows and unavailable shadows. Syntax is gfix -k
(no database name).

-l[ist] Display IDs of all Limbo transactions and what would happen
to each transaction if you would use -t on it

-mo[de]
read_write

Set mode of database to read/write (default). Requires ex-
clusive access to database (shutdown)

-mo[de] read_only Set mode of database to read-only. Requires exclusive ac-
cess to database (shutdown)

-pa[ssword]
<password>

Database password

-p[rompt] Use with -l. Prompts for action.

-r[ollback] <id> Rolls back limbo transaction specified by the given <id>

-r[ollback] all Rolls back all limbo transactions

-s[ql_dialect] 1 Sets SQL dialect 1 for the database

-s[ql_dialect] 3 Sets SQL dialect 3 for the database

-t[wo_phase] <id> Performs automated two-phase recovery for limbo transac-
tion with the given <id>

-t[wo_phase] all Performs automated two-phase recovery for all limbo trans-
actions

-user <name> Database username

-w[rite] sync Enables Forced Writes

-w[rite] async Disables Forced Writes

-z Show GFIX and server version

Examples:

Set database to read-only:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -shut -attach
60g

fix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -shut -force 0

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

514

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -mode
read_only

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -online

Set database to SQL dialect 3:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -sql_dialect
3

Enable forced writes:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -write sync

Disable forced writes:

gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -write async

Further examples can be found under Using GFIX and the subjects included under
GFIX.

8.26.3 GSEC

(GSEC.EXE)

GSEC is an InterBase/Firebird command-line utility, which manages server security. It
can be used to add, modify, and delete authorized users on the server. GSEC com-
mands apply to the database server and not to individual databases, as with the ma-
jority of other command-line utilities.

All options offered by GSEC can be found in the IBExpert User Manager and Grant
Manager.

Many thanks to Stefan Heymann (www.destructor.de) for the following overview of
commands and options, and examples.

All database users are stored in the security database named security.fdb in the
Firebird directory. There is at least one user, the system database administrator, SYS-
DBA.

After installation, the SYSDBA password is "masterkey". (Exception: Firebird 1.5 for
Linux)

Only the first 8 characters of a password are significant. The password should not con-
tain space characters.

Invoking GSEC:

GSEC can only be run by the SYSDBA.

To use GSEC for the local machine, use:

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

515

 gsec -user sysdba -password <password> [options]

To use GSEC for a remote machine, use:

 gsec -user sysdba -password <password> -database <databasename>

where <databasename> is the database name of the remote security.fdb database.

You can use GSEC as an interactive command line tool or give all commands on one
command line.

Commands:

di[splay] Displays all users

di[splay] <username> Displays all information for the given
user

a[dd] <username> -pw <password> [op-
tions]

Add a new user

mo[dify] <username> [options] Modify user

de[lete] <username> Delete user

h[elp] Display help

? Display help

q[uit] Quit interactive mode

z Display GSEC version number

If you don't want to invoke the interactive mode, you can enter all commands directly
in the command line. To do that, precede the commands with a dash.

Options:

-pa[ssword] <password> Password of the user who is performing the change

-user <username> User name of the user who is performing the change

-pw <password> Password of target user (or new password)

-fname <first name> Target user's first name

-mname <middle name> Target user's middle name

-lname <last name> Target user's last name

Examples:

Add user Elvis Presley as user ELVIS, password is "Aaron":

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

516

gsec -user SYSDBA -password masterkey
GSEC> add elvis -pw Aaron -fname Elvis -lname Presley
GSEC> quit

Change password of user ELVIS to "chuck":

gsec -user SYSDBA -password masterkey
GSEC> modify elvis -pw chuck
GSEC> quit

Change password of SYSDBA on remote Linux server "harry" to "hamburg":

gsec -user SYSDBA -password masterkey -database
harry:/opt/firebird/security.fdb -modify sysdba -pw hamburg

Change password of SYSDBA on remote Windows server "sally" to "hannover":

gsec -user SYSDBA -password masterkey -database sally:"C:\Program
Files\Firebird\security.fdb" -modify sysdba -pw hannover

Change password of SYSDBA on remote server "jake" on TCP port 3051 to "london":

gsec -user SYSDBA -password masterkey -database
jake/3051:/opt/firebird/security.fdb" -modify sysdba -pw oberstein

Delete user Joe on local server:

gsec -user SYSDBA -password masterkey -delete joe

Notes:

On InterBase systems, the security database is named isc4.gdb.
There will be a warning when a new password is longer than 8 characters.

8.26.4 GSTAT

(GSTAT.EXE)

GSTAT is an InterBase/Firebird command-line utility, which can be used to display da-
tabase statistics related to transaction inventory, data distribution within a database,
and index efficiency.

All information offered by this tool can be found in the IBExpert Services menu item,
Database Statistics.

8.26.5 IBLOCKPR (Windows) and GDS_LOCK_PRINT (Unix)

(IBLOCKPR.EXE on Windows) and gds_lock_print (UNIX)

These utilities display statistics for the InterBase lock manager.

8

IBExpert Tools Menu - InterBase and Firebird Command–Line Utilities

517

8.26.6 IBMGR

(IBMGR.EXE)

IBMGR is a windows-based server management program, and includes the functional-
ities found in GSEC, GBAK and GFIX.

8.26.7 ISQL

ISQL is a program which can be used to run SQL queries on the database. ISQL sup-
ports data definitions and data manipulation commands as well as SQL scripts with
multiple SQL commands within one script. It can be used to create and modify the da-
tabase's metadata, insertion, alteration and deletion of data, data queries and the dis-
play of results (all this can be done in the IBExpert SQL Editor), adding and removal of
user database rights (see IBExpert User Manager and Grant Manager) and execution of
other database administrative functions.

ISQL commands end with ;. Each command must be explicitly committed using the
commit statement.

9

IBExpert Services Menu - Backup Database

519

9 IBExpert Services Menu
The IBExpert Services menu offers the following range of services:

• Database Backup
• Database Restore
• Server Properties/Log
• Activation Certificates
• Database Validation
• Database Statistics
• Database Properties
• Database Shutdown
• Database Online
• Communication Diagnostics

9.1 Backup Database
The IBExpert Services menu item Database Backup allows you to create a backup or
copy of the database, saving it to file. This database copy may be kept simply for secu-
rity reasons, or restored for the reasons detailed in "Why is a Database Backup and
Restore Important?".

A database backup may be performed without having to disconnect the database; us-
ers may continue their work as InterBase/Firebird uses its multigenerational architec-
ture to take a snapshot of the database at a moment in time the backup is requested.
All information generated by committed transactions and present at this moment, is
backed up.

First select the database to be backed up from the pull-down list of registered data-
bases. Then select either an existing backup file name, or add a new backup file using

9

IBExpert Services Menu - Backup Database

520

the Insert File icon (or [Ins] key). The [...] button to the right of this row allows you to
find an existing file or specify the drive, path and backup file name for a new file. The
suffixes .GBK and .FBK are traditionally respectively used for InterBase and Firebird
backup files. A file size only needs to be specified when working with secondary files.
All files in a multifile database are backed up (i.e. both secondary files and shadow
files). InterBase/Firebird understands the links that exist with secondary database files
and with shadows. Whereas the operating system backup works on a file-by-file basis,
InterBase/Firebird always backs up all files in a database.

Backup Options:

Ignore check sum: If this option is checked, check sum errors in the database header
pages, where the database connection properties are stored, are ignored in the
backup. As InterBase and Firebird normally abort the backup when check sum errors
are discovered, this is a way to force a backup when there are problems. Note that
UNIX versions do not use check sums.

Ignore transactions in Limbo: If this option is checked, Transactions in Limbo, i.e.
transactions, that can't be defined as executed or aborted, are ignored in the backup.
Only those most recent, committed transactions are backed up. It allows a database to
be backed up before recovering corrupted transactions. Generally in limbo transactions
should be recovered before a backup is performed.

Backup Metadata only: If this option is checked, only the database's definition (i.e.
the metadata, which provides an empty copy of the database) is saved. (If a database
copy with certain data content is required, then use the IBExpert Script Executive.)

Garbage collection: If this option is checked, garbage collection is executed during
the backup. By disabling this option, the backup can be speeded up considerably. (Re-
fer to garbage collection for further information.)

Old metadata description: If this option is checked, old metadata descriptions are
included into the backup database. This is included for compatibility reasons for older
InterBase versions.

Convert to Tables: This option converts the database data to tables in the backup.
This concerns external files. It is possible in InterBase/Firebird to create a table as an
external file - this option converts them to internal database tables.

Format: Select the data format for the backup database file. Transportable is the rec-
ommended default option, as it allows a restore into different InterBase/Firebird Ver-
sions if wished, i.e. it saves the data and metadata to a generic format, as opposed to
the option Non-Transportable. (Please note that when backing up and restoring, for
example, from InterBase 4 to Firebird 1.5, stored procedures are restored as blobs, so
that they may not initially work.)

Verbose: Checking Verbose provides a detailed protocol of the current database
backup process, by writing step-by-step status information to the output log. Select
the option On Screen or Into File (not forgetting to select or specify a file name for this
protocol) before starting the backup. This option is useful if the backup is failing and
the reason needs to be analyzed.

9

IBExpert Services Menu - Backup Database

521

Then start the backup. If the protocol option On Screen was selected, the backup is
logged on the Output page.

Using the IBExpert menu item Database / Database Registration Info, default backup
file names, paths and drives may be specified if wished, along with default backup and
restore options. This information may be specified when initially registering a database
in IBExpert (see Register Database) or at a later date (see Database Registration Info).

In normal circumstances, the backup should run smoothly without any of the above
options having to be checked. If however, corrupt or damaged data is suspected or
problems have been encountered, alter the Format to Non-Transportable and check the
options Ignore Check Sum and Ignore Transactions in Limbo. Although this will not
provide the usual database compression, it does provide a complete copy of the data-
base, which is important before starting to repair it.

It is also possible to validate the database using Services / Database Validation or
GFIX, before retrying.

9.1.1 Why is a database backup and restore important?

Performing regular backups protects from hardware failures and data corruption, which
cannot be fixed by the InterBase/Firebird maintenance tools. It is important to use the
InterBase/Firebird backup and restore facilities even though most networks include a
facility for data backup and restore across the network, because:

• Operating system backups require exclusive access to the database. The Inter-
Base/Firebird backup runs parallel with concurrent database accesses by other us-
ers. InterBase/Firebird uses its multigenerational architecture to take a snapshot of
the database at a moment in time for the backup. All information generated by
committed transactions and present at this moment is backed up.

9

IBExpert Services Menu - Backup Database

522

• All files in a multifile database are backed up. InterBase/Firebird comprehends the
links between the different database files and shadows. The operating system
backup processes files one after the other and saves them to the specified file or
medium, so that all the various files are backed up in different versions and they
cannot work together correctly anymore when restored. The InterBase/Firebird
backup backs up all database files automatically.

• The different versions of InterBase/Firebird use different database file formats, so
that it is impossible to copy a file directly from one operating system environment
to the required format of another operating system environment. The Inter-
Base/Firebird backup utility allows a transportable backup format, so that this file
can be restored on any desired InterBase/Firebird platform.
Please note: When backing up and restoring, for example, from InterBase 4 to Fire-
bird 1.5, stored procedures are restored as blobs, so that they may not initially
work.

• The InterBase/Firebird backup discards outdated data sets and index files, resulting
in a smaller backup (please refer to garbage collection for more information).

• Empty pages are also automatically removed during a backup and restore, which
reduces the total database size. The transaction number in the TIP is reset to zero
(the total number of transactions that can be recorded in a TIP is approximately 1.3
billion!). The cache works with considerably more efficiency following a backup and
restore as the pages are reordered.
Please note: In Firebird 1.5 the new memory manager allows new data sets to
automatically be stored in old pages, without first having to backup and restore.

• During an InterBase/Firebird backup the integrity and references for all database
objects, e.g. domains, tables, indices, views, triggers, stored procedures, genera-
tors, exceptions, and permissions, are checked.

• Executing a backup and restore is the only way to subsequently alter fundamental
parameters in the database structure, such as the page size and distribution across
secondary files.
It is therefore recommended to not only backup but also restore the database regu-
larly (e.g. once a month).

9.1.2 Garbage collection

When performing a garbage collection, InterBase/Firebird does nothing other than re-
move outdated data sets and index files, which results in a smaller database. Outdated
data sets are stored by InterBase/Firebird for the following reason: InterBase/Firebird
are multigenerational databases. When a data set is altered, this alteration is stored in
the database as a new copy. The old values remain in the database as a back version,
which is the rollback protocol. If the transaction is rolled back after the update, the old
value is ready to resume its function as the valid value. If the transaction is however
committed, and not rolled back, this back version becomes superfluous. In databases
with a lot of update operations this can result in a lot of garbage.

When garbage is collected in InterBase/Firebird, not only the out-of-date update values
are deleted, but all outdated and deleted data set versions, based on the Transaction
Inventory Page (TIP).

A garbage collection is only performed during a database sweep, database backup or
when a SELECT query is made on a table (and not by insert, alter or delete). Whenever
InterBase touches a row, such as during a SELECT operation, the versioning engine
sweeps out any versions of the row where the transaction number is older than the

9

IBExpert Services Menu - Restore Database

523

Oldest Interesting Transaction (OIT). This helps to keep the version history small and
manageable and also keeps performance reasonable.

The sweep interval (i.e. at what interval (in number of transactions) a database sweep
should be automatically conducted) for the garbage collection may be specified under
the IBExpert menu item Services / Database Properties.

The garbage collection may be performed during 24 hour operation online without any
problems (i.e. the server does not need to be shut down). Performance may however
be slower during the database sweep which may not be desirable. If the sweep interval
is specified at zero (0) (see Database Properties), the garbage collection is not per-
formed automatically at all. It could then be carried out, for example, at night as a
sweep or backup using GFIX and the at Windows command or the Linux chron com-
mand.

9.2 Restore Database
The IBExpert Services menu item Restore Database allows you to restore the database
from a backed up file. Before restoring a backup file into a database, it is important to
first disconnect the database! - Otherwise you could end up with a corrupt database
should users try to log in and perform data operations during the restore.

The Files page allows the following specifications:

Restore into: Select to restore into the existing database, or create a new database.
When restoring into the existing database, select it from the list of registered data-
bases; if restoring to a new database, then set the database file name not forgetting
the drive and path.

9

IBExpert Services Menu - Restore Database

524

Specify the backup file name which is to be restored. The [...] button to the right of
this row allows you to find an existing file name, drive, and path. The suffixes .GBK and
.FBK are traditionally respectively used for InterBase and Firebird backup files.

The following restore options may be checked/unchecked as wished:

Deactivate indexes: If this option is checked, database indices are deactivated while
restoring. This option is used to improve restore performance. If this option is not
checked, InterBase/Firebird updates indices after all tables have been populated with
the restored rows. This option may also be necessary if the database contains data
with a unique index, but there are values in the table that are not actually unique. It
can also be used when the field length in one or more tables is to be altered retrospec-
tively; or when an index is simply not working due to some undiscovered inconsisten-
cies.

Don't recreate shadow files: If this option is checked, shadow files are not recreated
while restoring. Restoring without Shadow deletes the shadow definition; to restore it,
it is necessary to recreate the shadow using the CREATE SHADOW statement (please re-
fer to Creating a Shadow for further information). This option is sometimes required if
the destination database does not support shadows, if you are migrating from an ear-
lier version of InterBase where shadows were not supported, or if the machine where
the shadow resides is not available.

Don't enforce validity conditions: When this option is checked, database validity
conditions such as constraints on fields or tables are not restored. This option is useful
if the validity constraints were changed after data had already been entered into the
database. When a database is restored, InterBase/Firebird compares each row with the
metadata; an error message is received if incompatible data is found. Once the offend-
ing data has been corrected, the constraints can be added back.

Commit after each table: If this option is checked, IB Manager commits work after
restoring each table. This allows all those tables to be restored and committed where
there is no corrupted data. It restores metadata and data for each table in turn as a
single transaction and then commits the transaction. This option is useful if corrupt
data is suspected in the backup file, or if the backup is not running to completion.
Normally, InterBase/Firebird restores all metadata and then restores the data.

Should you encounter problems when restoring your database, deactivate this option
and retry.

Replace existing database: If this option is checked the restored database replaces
the existing one. Leaving this option unchecked provides a measure of protection from
accidentally overwriting a database file.

Use All Space: This option should be checked when restoring the database onto a CD,
as all (i.e. 100%) space is then used, as opposed to the usual 80% for databases
which are subject to alterations and stored on hard drives.

Metadata Only: This option produces an empty copy of the database. It may also be
used to restore the framework of a corrupt database, to allow analysis and repair work.

9

IBExpert Services Menu - Restore Database

525

Client Library: This is new in version 2003.11.6.1 and is an added possibility to spec-
ify a client library which will be used while restoring. This option allows the user to
specify whether he requires the InterBase or the Firebird client library for each IBEx-
pert connection. The default client library is gds32.dll.

Page size: Database page size in bytes. This is the only option allowing the page size
for an existing database to be altered.

Verbose: Check Verbose to receive a detailed protocol of the current database backup
process, by writing step-by-step status information to the output log. The options On
Screen or Into File (not forgetting to select or specify a file name for this protocol)
need to be specified before starting the backup. This option is useful if the restore is
failing, and the reason needs to be analyzed.

The restore can then be started. If the protocol option On Screen was selected, the
backup is logged on the Output page.

Under normal circumstances, none of the above restore options should need to be
specified. If inconsistencies between the metadata and the data itself are suspected,
check the Commit After Each Table, Deactivate Indexes, and Don't Enforce Validity
Conditions options.

Please note that InterBase/Firebird does not backup indices. It only backs up the index
definition. When the database is restored InterBase/Firebird uses this definition to re-
generate the indices.

Using the Database Registration dialog, default backup file names, paths and drives
may be specified if wished, along with default backup and restore options. This infor-
mation may be specified when initially registering a database in IBExpert (see Register
Database) or at a later date (see Database Registration Info).

Empty pages are automatically removed during a backup and restore, which reduces
the total database size. The transaction number in the TIP is reset to zero. The cache
works with considerably more efficiency following a backup and restore as the pages
are reordered. It is therefore recommended not only to backup but also to restore the
database regularly (e.g. once a month).

In Firebird 1.5 the new memory manager allows new data sets to automatically be
stored in old pages, without first having to backup and restore.

9.2.1 Database Shadow Files

Shadow files are an exact live copy of the original active database, allowing you to
maintain live duplicates of your production database, which can be brought into pro-
duction in the event of a hardware failure. These shadows are administrated in real
time by the InterBase/Firebird server. They are used for security reasons: should the
original database be damaged or incapacitated by hardware problems, the shadow can
immediately take over as the primary database. It is therefore important that shadow
files do not run on the same server or at least on the same drive as the primary data-
base files. Shadow files are not normally used on Windows platforms, as the shadow
file has to be on the same computer as the active database. These do work however on
LINUX/UNIX.

9

IBExpert Services Menu - Restore Database

526

InterBase allows up to 65,536 (216) database files, including shadow files. However
the operating system used may have a lower limit on the number of simultaneous open
files that the IBServer/FBServer can have. In some cases, the OS provides a means to
raise this limit (refer to your OS documentation for the default open files limit, and the
means to raise it).

Shadow files, as with the main database and secondary files, may not reside on net-
worked or remote file systems (i.e. mapped drives on Windows and NFS files on UNIX).

The number of existing shadow files in a database may be ascertained using the IBEx-
pert Services menu item Database Statistics, or using GSTAT (the shadow count is in-
cluded in the database header page information).

Shadowing offers a number of advantages:

• It provides valuable protection of the database, in addition to the regular backups
which should be maintained, and in addition to InterBase/Firebird's multigenera-
tional architecture.

• If the original database is damaged, the shadow can be activated immediately, with
little lost time.

• Shadowing runs automatically with little or no maintenance.
• You have full control over the shadow's configuration, including its use of hard disk

space and distribution across other available devices.
• Creating a shadow does not require exclusive access to the database.
• Shadow files use the same amount of disk space as the database. As opposed to

log files, which can grow well beyond the size of the database.
• Shadowing does not use a separate process. The database process handles writing

to the shadow.

But there are also some limitations:

• Shadowing only helps to recover from certain types of problems. If a user error or
InterBase/Firebird problem causes the database to be damaged beyond recovery,
then the shadow is identically damaged. But if the database is accidentally deleted
by the user, or a hardware problem on the primary server occurs, the shadow re-
mains intact and can be used immediately.

• Shadowing is not replication. It is one-way writing, duplicating every write opera-
tion on the master database. Client applications cannot access the shadow file di-
rectly.

• The shadow cannot be used to rollback the database to a specific point in time.
When the shadow is used to recover the database, everything up to the point
where the original problem occurred is retrieved.

• Shadowing adds a small performance penalty to database operations. Every action
on the database which modifies metadata or the data itself is mirrored in the
shadow.

• Shadowing does not replace a careful security system within the operating system,
but is one aspect or enhancement of the whole.

• Shadowing also works only for operations that go through the InterBase/Firebird
database services manager (GDS), which processes all SQL and database requests.

• Shadowing can occur only to a local disk. Shadowing to a NFS file system or
mapped drive is not possible. Shadowing to tape or other media is also not possi-
ble.

9

IBExpert Services Menu - Restore Database

527

Tasks for Shadowing:

The main tasks in setting up and maintaining shadows are as follows (please refer di-
rectly to these subjects for further information):

Creating a shadow

(Source: InterBase® 7.1 Operations Guide)

Shadowing begins with the creation of a shadow, using the CREATE SHADOW statement.
This statement has the following syntax:

CREATE SHADOW shadow_number
[AUTO | MANUAL] [CONDITIONAL] shadow_filename

The shadow number identifies a shadow set that collects the primary shadow file and
any secondary files together. The most important function of the shadow number is to
identify the shadow if you decide to drop it (please refer to Deleting a Shadow).

This can be performed without affecting users at all, as it does not require exclusive
access. Before creating the shadow, the following should be considered:

• Shadow location: a shadow should be created on a different disk from the main
database, as shadowing is intended as a recovery mechanism in case of disk fail-
ure. Therefore storing the main database and the shadow on the same disk defeats
the whole purpose of shadowing!

• Distributing the shadow: a shadow can be created as a single-file (shadow file)
or as multiple files (shadow set). To improve space allocation and disk I/O, each file
in a shadow set may be placed on a different disk.

• User access: if a shadow becomes unavailable, user access to the database can be
denied until shadowing is resumed, or access can be allowed (i.e. work can con-
tinue as normal) although any changes made during this period will obviously not
be shadowed. Please refer to auto mode and manual mode for further information.

• Automatic shadow creation: To ensure that a new shadow is automatically cre-
ated, create a conditional shadow. Please refer to conditional shadows for further
information.

Please note: If the IBExpert Services menu item Restore Database dialog option, Don't
Recreate Shadow Files is checked, shadow files are not recreated while restoring. This
deletes the shadow definition; and to restore it, it is necessary to recreate the shadow
using the CREATE SHADOW statement. This option is sometimes required if the destina-
tion database does not support shadows, if you are migrating from an earlier version of
InterBase where shadows are not supported, or if the machine where the shadow re-
sides is not available.

The following sections deal with the creation of shadows with various options:

• Creating Single-file or Multifile Shadows
• Auto Mode and Manual Mode
• Conditional Shadows

9

IBExpert Services Menu - Restore Database

528

These options are not mutually exclusive, e.g. it is possible to create a single-file con-
ditional shadow with the option manual mode.

Creating single–file or multifile shadows

(Source: InterBase® 7.1 Operations Guide)

To create a single-file shadow for the sample database employee.gdb, enter the follow-
ing in the IBExpert SQL Editor:

CREATE SHADOW 1 '/usr/interbase/examples/employee.shd';

The name of the shadow file is employee.shd, and it is identified by the number 1.
It is possible to verify that the shadow has been created by using the isql command:

SHOW DATABASE;
 Database: employee.gdb
 Shadow 1: '/usr/interbase/examples/employee.shd' auto
 PAGE_SIZE 4096
 Number of DB pages allocated = 392
 Sweep interval = 20000

The page size of the shadow is the same as that of the database.

A large database may be shadowed to a multifile shadow if wished, spreading the
shadow files over several disks. Each file in the shadow set needs to be specified by
name and size. This can be specified in two ways, the same as with multifile data-
bases:

• Specify the page on which each secondary file starts
• Specify the length in database pages of each file.

You can specify both but this is redundant. If the information specified is inconsistent,
InterBase/Firebird uses the length value in preference to the starting page value. In
general, it is best to use either length values or starting page number to ensure consis-
tency or legibility.

If the files are specified using the LENGTH keyword, do not specify the length of the fi-
nal file, as InterBase/Firebird sizes the final file dynamically, as needed. Please refer to
secondary files for further information.

The following example creates a shadow set consisting of three files. The primary file,
EMPLOYEE.SHD is 10,000 database pages in length; the second file is 20,000 pages
long, and the final file is left open, to expand as needed.

CREATE SHADOW 1 'employee.shd' LENGTH 10000
 FILE 'emp2.shd' LENGTH 20000
 FILE 'emp3.shd';

The second alternative is to specify the starting page of the files:

9

IBExpert Services Menu - Restore Database

529

CREATE SHADOW 1 'employee.shd'
 FILE 'emp1.shd' STARTING AT 10000
 FILE 'emp2.shd' STARTING AT 30000;

Using the SHOW DATABASE command, the file names, page lengths or starting pages can
be verified:

SHOW DATABASE;
 Database: employee.gdb
 Shadow 1: '/usr/interbase/examples/employee.shd' auto length 10000
 file /usr/interbase/examples/emp1.shd length 2000 starting 10000
 file /usr/interbase/examples/emp2.shd length 2000 starting 30000
 PAGE_SIZE 4096
 Number of DB pages allocated = 392
 Sweep interval = 20000

The page length for secondary files in the main database does not need to correspond
to the page length for the secondary shadow files. As the database grows and its first
shadow file becomes full, updates to the database automatically overflow into the next
shadow file.

Auto mode and manual mode

(Source: InterBase® 7.1 Operations Guide)

A shadow database may become unavailable for the same reasons a database becomes
unavailable (e.g. disk failure, network failure, or accidental deletion). If a shadow has
been created in auto mode and suddenly becomes unavailable, database operations
continue automatically without shadowing. If the shadow was created in manual mode,
further access to the database is denied until the database administrator gives explicit
instructions, as to how work is to be continued.

The benefits of auto mode and manual mode may be compared below:

Mode Advantage Disadvantage

Auto Database operation is uninter-
rupted

Creates a temporary period when the
database is not shadowed.
The database administrator might be
unaware that the database is operating
without a shadow.

Manual Prevents the database from
running unintentionally without
a shadow

Database operation is halted until the
problem is fixed.
Needs intervention of the database
administrator.

Auto mode

The AUTO keyword can be used to create a shadow in auto mode:

CREATE SHADOW 1 AUTO 'employee.shd';

9

IBExpert Services Menu - Restore Database

530

Auto mode is the default, so this does not necessarily need to be specified explicitly.

In auto mode, database operation is uninterrupted even though there is no shadow. To
resume shadowing, it might be necessary to create a new shadow. If the original
shadow was created as a conditional shadow, a new shadow is automatically created.
Please refer to conditional shadows for further information.

Manual mode

The MANUAL keyword can be used to create a shadow in manual mode:

CREATE SHADOW 1 MANUAL 'employee.shd';

Manual mode is useful when continuous shadowing is more important than continuous
operation of the database. When a manual-mode shadow becomes unavailable, further
operations on the database are prevented. To allow work on the database to be re-
sumed, the database owner or SYSDBA must enter the following command:

gfix -kill database

This command deletes metadata references to the unavailable shadow corresponding
to the database. After deleting the references, a new shadow can be created if shad-
owing needs to be resumed.

Shadow information is kept in the metadata of the primary database file. If this file be-
comes unavailable for some reason, then the pointers to the shadow are also broken.
In this situation, the database administrator can use the -active option in the GFIX
utility to convert the original shadow into a new primary database.

Conditional shadows

(Source: InterBase® 7.1 Operations Guide)

A shadow may be defined so that if it replaces a database, the server creates a new
shadow file, and thus allows shadowing to continue uninterrupted. This is termed a
conditional shadow, and is specified using the CONDITIONAL keyword:

CREATE SHADOW 3 CONDITIONAL 'atlas.shd';

Creating a conditional file automatically creates a new shadow in either of two situa-
tions:

• The database or one of its shadow files becomes unavailable.
• The shadow takes over for the database due to hardware failure.

Activating a shadow

(Source: InterBase® 7.1 Operations Guide)

Should the main database become unavailable for whatever reason, the shadow can be
activated, i.e. it takes over the main database and all users now access the shadow as

9

IBExpert Services Menu - Restore Database

531

the main database. This activation may be defined to occur automatically or through
the intervention of the database administrator.

Shadow information is kept in the metadata of the primary database file. If this file be-
comes unavailable for some reason, then the pointers to the shadow are also broken.
To activate the shadow it is necessary to log in as SYSDBA or the database owner, and
use GFIX with the -activate option, to convert the original shadow into a new primary
database.

Important! The first step is to make sure the shadow is not active, i.e. if the main da-
tabase has active transactions the shadow is active. Also check that the main database
is unavailable. If a shadow is activated while the main database is still available, the
shadow can be corrupted by existing attachments to the main database.

To activate a shadow, specify the path name of its primary file. For example, if data-
base employee.gdb has a shadow named employee.shd, enter:

gfix -a[ctivate] shadow_name

The shadow name is the explicit path and name of the shadow's primary file.

Examples:

For a Windows NT server:

gfix -a F:\SHADOW\ORDENT\ORDERS.SHD

For any UNIX server:

gfix -a /usr/shadow/ordent/orders.shd

After a shadow is activated its name should be changed to the name of the original da-
tabase. Then a new shadow can be created if shadowing needs to continue providing
another disk drive is available.

Deleting a shadow

(Source: InterBase® 7.1 Operations Guide)

If a shadow is no longer needed, it can be stopped by simply deleting it. To stop shad-
owing, use the shadow number as an argument with the DROP SHADOW statement. For
example:

DROP SHADOW 1

If you need to look up the shadow number, use the isql command SHOW DATABASE.

Important! DROP SHADOW deletes all shadow references from a database's metadata as
well as the physical files on disk. Once the files have been removed from the disk,
there is no way to recover them. However, as a shadow is merely a copy of an existing
database, a new shadow will be identical to the dropped shadow.

9

IBExpert Services Menu - Server Properties/Log

532

Please note that when a database is dropped/deleted, all secondary and shadow files
are also deleted. The complete structure and all the data is deleted permanently!

Adding files to a shadow/modifying a shadow

(Source: InterBase® 7.1 Operations Guide)

Shadow databases may consist of multiple files. As the shadow grows in size, files may
need to be added to cope with the increase in space requirements.

To modify a shadow database or add a shadow file, first use the DROP SHADOW state-
ment to delete the existing shadow, then use the CREATE SHADOW statement to create a
multifile shadow.

Example:

DROP SHADOW 2
CREATE SHADOW 3 AUTO CONDITIONAL
'F:\SHADOW\ORDENT\ORDERS.SHD' LENGTH 10000
FILE 'F:\SHADOW\OIRDENT\ORDERS2.SHD'

The page length allocated for secondary shadow files need not correspond to the page
length of the database's secondary files. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.

9.3 Server Properties/Log
The Server Properties page displays the following information:

9

IBExpert Services Menu - Server Activation Certificates

533

It includes server version information, configuration information and database informa-
tion, particularly interesting, when working with remote and/or multiple connections.

The log can be started using the Retrieve (green arrow) icon. The log page displays in-
formation either as text:

or in a grid form:

The log may even be printed - the print preview can be opened using the magnifying
glass icon.

9.4 Server Activation Certificates
This option is purely for Borland InterBase v 6.5. It allows new InterBase users to be
registered or existing users to be removed directly in IBExpert, using the Borland In-
terBase certificate keys and IDs, without having to use IBConsole.

9

IBExpert Services Menu - Database Validation

534

9.5 Database Validation
Database validation involves checking the database file to ensure that the various data
structures retain their integrity and internal consistency. The validation process checks
for three different types of problems:

• Corrupt data structures: for example, if a database row spans more than one
page and the pointer that links the first page to the second is damaged or missing,
there is a corrupt data structure. InterBase/Firebird is able to correct this situation,
but the damaged row might be lost.

• Misallocated data pages: for example, a page can be used for transaction inven-
tory, header information, data, blob pointers, or indices. If a page has been flagged
as one type, but actually stores data of a another type, InterBase/Firebird detects
the problem. However InterBase/Firebird cannot recover from this type of problem,
so it will probably be necessary to restore from a backup.

• Orphaned data pages, which are automatically returned to the free space pool.
By default, InterBase/Firebird does not completely fill data pages with records, to
allow space for new records to be quickly inserted. As records are added and de-
leted, some pages are likely to end up with no active records on them. Older Inter-
Base/Firebird versions do not automatically reallocate these pages to the free space
pool.

The IBExpert Database Validation menu item offers those options also available in the
InterBase/Firebird GFIX.

It is advisable to backup the database before validating. If possible it should also be
shut down, so that the backup can be restored if necessary without any loss of transac-
tions which may have been performed since the backup.

The Database Validation menu item can be found in the Services menu. It enables the
database to be validated and verifies the integrity of data structures.

9

IBExpert Services Menu - Database Validation

535

First select the registered database to be validated. The following options are none
other than the GFIX parameters and may be specified as wished:

Limbo Transactions: If this option is checked, the database is checked for transac-
tions in limbo, i.e. transactions, that can't be defined as executed or aborted. Please
refer to transactions in limbo for further information.

Check Database: This option validates the database, but doesn't repair it.

Ignore Checksums: This option ignores all checksum errors. A checksum is a page-
by-page analysis of data to verify its integrity. A bad checksum means that a database
page has been randomly overwritten (for example, due to a system crash).

Kill Shadows: This option kills all unavailable shadow files.

Mend Database: This prepares a corrupt database for backup and repairs any data-
base corruption if possible.

Sweep Database: This option can be checked to perform a database sweep (see da-
tabase sweep for more information about sweeps).

Validate Database: (default value). This option validates the database structure.

Validate Full: This validates record fragments. Note: This feature is not available in
InterBase versions older than the version 6.

Output: Check Verbose to receive an extended report about the current database vali-
dation process. Select whether this report should be displayed on screen or saved to
file (not forgetting of course to specify drive, path and file name).

Then start the database validation using the green arrow icon or [F9].

Output:

9

IBExpert Services Menu - Database Statistics

536

If no corruption is detected, a message is displayed informing that no database valida-
tion errors were detected. If corruption is detected that can be repaired, a report is
displayed showing the number and types of errors found. Note that sometimes, irrepa-
rable database corruption is found, such as damage to the database header or space
allocation tables.

Please refer to Database Corruption for further information concerning the recovery of
corrupt databases.

9.6 Database Statistics
The IBExpert Database Statistics retrieves and displays important database statistical
information, which can be exported to numerous file formats or printed. This menu
item can be found in the IBExpert Services menu.

First select a registered database from the pull-down list on the toolbar, or alterna-
tively open an existing statistics file to view and analyze.

If wished, alter the default value Retrieve all Statistics, by selecting one of the follow-
ing options:

• Stop retrieving after header page statistics
• Stop retrieving after log page statistics
• Stop retrieving after user indexes statistics
• Stop retrieving after data tables statistics
• Stop retrieving after system tables and indexes statistics

Since IBExpert version 2004.8.5 there is the added option to analyze average record
and version length (Firebird 1.5, InterBase 7). Simply check the box below the toolbar.

Then simply click the Retrieve Statistics icon (green arrow) or press [F9] to start the
retrieval process.

9

IBExpert Services Menu - Database Statistics

537

The database's statistical summary is displayed both in grid form:

as well as text:

The following information is displayed for all tables in the database: table name, pages,
size (bytes), slots, fill (%), DP usage (%) and fill distribution (an optimal page fill is
around 80%).

9

IBExpert Services Menu - Database Properties

538

Below the table grid, an index grid displays the statistics for all indices for a selected
table. The following information is displayed for indices: index name, fields, unique, ac-
tive, sorting order, statistics, depth, leaf buckets, nodes, average data length, total
dup and fill distribution.

The text summary provides certain additional information (see illustration above) as
well as a statistical summary broken down by table, containing the information already
mentioned in the grid summary.

This information can be exported (see Export Data) to save the information to file, or
printed out.

9.7 Database Properties
The Database Properties Editor can be started from the IBExpert Services menu. It can
be used to specify certain properties and view others appertaining to the database
specified in the Database pull-down list (in the upper part of the editor).

There are two tabs labeling the General page and the Active Users page.

9.7.1 General

The General page displays the following information for the selected database:

9

IBExpert Services Menu - Database Properties

539

(1) Page Size: displays the current specified page size. The page size can only be al-
tered by performing a database backup followed by a restore (IBExpert menu: Services
/ Restore Database) and redefining the database page size.

(2) SQL Dialect: shows which SQL dialect was specified at the time of database regis-
tration. This may be altered here, if wished (although watch out for possible dialect in-
congruencies, for example, the different date and time types).

(3) Sweep Interval: This displays the number of transactions which may be made in
the database before an automatic garbage collection is executed by InterBase/Firebird.
If this number is specified at zero (0) it is not performed automatically at all. It could
then be carried out, for example, at night as a sweep or backup using GFIX and the at
Windows command or the Linux chron command. Please refer to database sweep for
further information.

(4) ODS Version: The ODS (= On-Disk Structure) version shows with which database
version the database was created, e.g. InterBase 5 = ODS version 9, InterBase 6 =
ODS version 10.0, InterBase 6.5 = ODS version 10.1, InterBase 7 = ODS version 11.
Firebird versions start at ODS version 10.0.

(5) Forced Writes: This enables the forced writing onto disk mode. when committing.
Please refer to forced writes for further information.

(6) Read Only: A database can be set to Read Only when, for example, saving the
database onto a CD, or in the case of a reference or archive database. The Read Only
property is forced in the TIP page, by preventing all insert, alter and delete commands.

(7) Buffers: Here it is possible to specify how much cache the database server should
reserve. A good number of buffer pages is 10,000 (based on a 4K page size to allow
40MB cache).

The amount of buffers/cache reserved can be viewed in IBExpert here (default =
2,048). If this is increased the database can load considerably more pages. Please re-
fer to buffers for details.

Buffers

The buffers/cache can be set using the IBExpert menu item Database Properties, found
in the Services menu, or using the command-line utility GFIX. The amount of buff-
ers/cache reserved can be viewed in IBExpert under Services / Database Properties.
The IBExpert Performance Analysis also displays the number of data pages that are be-
ing held as cache on the server (from InterBase 6 onwards the standard is 2,048). This
can be altered for the current database if wished.

If this is increased the database can load considerably more pages. For instance, it is
much more efficient to load 10,000 pages, than loading 2,000 and then exchanging for
new pages once the 2,000 have been loaded. The only limit to amount of cache is the
physical size of the RAM (e.g. 10,000 x 4K page size). The total KB is calculated ac-
cording to the current database page size. For an alteration to become effective, it is
therefore necessary for all users to disconnect from the database and then reconnect.
Buffers are only reserved if they are really necessary.

9

IBExpert Services Menu - Database Properties

540

Database sweep / sweep interval

When a database is swept, all old invalid data is removed from the data pages, thus
reducing the total size of the database and making room for new data sets.

A database sweep performs a garbage collection in the database, and is performed
automatically during a database backup or when a SELECT query is made on a table
(and not by INSERT; ALTER or DELETE). Furthermore database sweeps are, as stan-
dard, executed automatically after every 20,000 operations. With very consistent data-
bases however a database sweep can be started unnecessarily and thus cost unneces-
sary performance losses during normal user processing. The default database sweep
interval value of 20,000 (operations) can be overwritten using the IBExpert Services
menu item Database Properties.

Under Database Properties / Sweep Interval the number of operations can be specified
before a database sweep should be automatically performed. A database sweep or
backup can be performed during 24 hour operation online without any problems (i.e.
the server does not need to be shut down). This however does slow performance dur-
ing the sweep which may not be desired.

If the sweep interval is specified at zero (0) it is not performed automatically at all. It
could then be performed explicitly, for example, at night as a sweep or backup using
GFIX and the at Windows command or the Linux chron command.

Forced writes

This enables the forced writing mode on disk. If the forced writes option is selected all
data is saved immediately to disk, i.e. every time a commit is made everything is writ-
ten to the hard drive, and then to the TIP (=Transactions Inventory Page).

Without forced writes the process is minimally quicker, but when working on a Win-
dows platform, Windows decides what should be saved to file, where and when, and
the data pages are saved to file last i.e. the TIP changes are written first, and then the
data sets - which could possibly lead to inconsistencies. Firebird 1.5 has however made
a number of improvements in this area, so that using forced writes for this reason is no
longer quite so important.

Using forced writes is therefore recommendable in the case of instable systems (e.g.
laptops). In normal circumstances with a secure system however, it should not be nec-
essary to activate it.

9.7.2 Active Users

9

IBExpert Services Menu - Database Shutdown

541

This page displays those users logged in to the current database with an open attach-
ment. If an application has several attachments, or a single user is connected more
than once, this is also visible here. This is important should the database need to be
shut down at short notice.

9.8 Database Shutdown
There are a few occasions when a database needs to be shut down. For example, when
a new foreign key needs to be inserted the database should be shut down in order to
avoid the annoying message "Object in use". A registered database can be shut down
simply and quickly using the IBExpert Services menu item Database Shutdown.

Select the registered database which is to be shut down. Then select one of the follow-
ing options, to specify how active transactions should be dealt with:

Forced: In this mode all transactions, that are still active at the stated time, are
aborted regardless of their type or importance, and all users are forcefully discon-
nected. As InterBase/Firebird transactions function stably and securely, there are very
few areas of application where this forced mode should not be used.

Deny new transactions: In this mode all transactions must be executed by the
stated time. Any new transactions that are started are blocked. If there are any trans-
actions that are still active by the stated time, the database shutdown is not executed.

Deny new attachments: With this option all active user attachments must finish their
work by the stated time. If some attachments are still active by the stated time, the
database shutdown is not executed.

Wait: The period of time (in seconds) until the shutdown is executed can be specified
here.

9

IBExpert Services Menu - Database Online

542

Then simply click Shutdown to shutdown the database. To bring the database back
online, choose the IBExpert Services menu item Database Online.

9.9 Database Online
The IBExpert Service menu item Database Online is used to bring a database back
online again after it has been shut down (please refer to Database Shutdown for fur-
ther information).

Simply select a registered database and bring the database online.

9.10 Communication Diagnostics
The Communication Diagnostics dialog can be started from the IBExpert Services
menu. It also appears automatically when registering a database and the Test Connect
button is pressed. IBExpert's Communication Diagnostics delivers a detailed protocol of
the test connect to a registered InterBase/Firebird server and the results:

This is particularly useful when attempting to connect to a remote database server, as
detailed status information concerning the various steps taken to make the connection
is displayed, indicating problem areas if the connection is not achieved. If using an
alias path for a remote connection, please refer to the article "Remote database con-
nect using an alias".

The following protocols are supported:

9

IBExpert Services Menu - Communication Diagnostics

543

• TCP/IP (worldwide standard)
• SPX - which used to be used by Novell; now even Novell supports TCP/IP. a
• NetBEUI - which is not really a network protocol, it simply accesses the line. It is

slow as it makes everything available everywhere and anyone can access the in-
formation. This is also purely a Windows protocol.

Should problems occur, switch to the relevant protocol page and test again.

The TCP/IP protocol offers the following services:

21 and FTP: Each port receives a name. With Firebird this is actually optional, with In-
terBase: Win\System32\ drivers\etc\services -> ftp (= the name for-) 21/tcp.

3050: This is the standard port for InterBase and Firebird. However this is sometimes
altered for obvious reasons of security, or when other databases are already using this
port. If a different port is to be used for the InterBase/Firebird connection, the port
number needs to be included as part of the server name. For example, if port number
3055 is to be used, the server name is SERVER/3055.

gds_db: For InterBase: name = gds_db = 3050 / tcp (a different port to the stan-
dard 3050 can be specified if wished). If this entry is nonexistent Firebird does not
care; InterBase however does! The name gds_db has to be present.

Ping: can be used if the connection was unsuccessful and the reason is not known.
This DOS command checks which input is correct, and works regardless of whether In-
terBase.exe or Firebird.exe is installed. The results show whether a database has
been found, and at which address. This should, as a rule, always work unless of course
the server uses a Firewall which does not allow a Ping to be answered. In this case, use
the service FTP (as a rule the same as the 21 service).

Note: in DOS the TRACERT command lists the protocol route. TCP/IP intelligently takes
another direction if one or part of the lines on the quickest route is blocked or down.

9

IBExpert Services Menu - Communication Diagnostics

544

10

IBExpert PlugIns Menu - Communication Diagnostics

545

10 IBExpert PlugIns Menu
The IBExpert PlugIns menu is intended for user-specified menu items for third party
components. Two Delphi PlugIn examples are delivered as part of IBExpert and can be
found in the IBExpert/PlugIn directory. Should you have problems finding these files
they can also be downloaded free of charge from the web:
www.ibexpert.com/download (a direct link can be found under IBExpert Help /IBExpert
Direct). You need to have Delphi, InterBase or Firebird and, of course, IBExpert in-
stalled.

Installation of the components is explained in detail in the Readme.txt files enclosed.

11

IBExpert Windows Menu - Windows Manager

547

11 IBExpert Windows Menu
The IBExpert Windows menu offers a number of options to visually arrange all open
windows in IBExpert.

Please note that all open windows are also displayed as buttons on the Windows bar
(directly above the status bar), and in the DB Explorer on the Windows page (please
refer to Windows Manager for further information).

11.1 Windows Manager
The DB Explorer Windows Manager can be opened using the IBExpert Windows menu
item Windows Manager, by using the key combination [Alt + O], or simply by clicking
on the Window tab heading directly in the DB Explorer.

For more information regarding this, please refer to DB Explorer / Windows Manager.

11.2 Close All
Close All is an option to close all open windows with one simple mouse click, ideal when
closing all open work for one project or database, before beginning work on a new pro-
ject or database, or finally finishing work for the day (...or night!).

11.3 Cascade / Tile / Minimize / Arrange
The IBExpert Windows menu offers the following options, for arranging all open win-
dows:

• Cascade - all open windows are arranged one behind the other, in a cascading
format, displaying the title bar of each window.

• Tile Horizontally - all open windows are displayed adjacently, one below the
other.

• Tile Vertically - all open windows are displayed adjacently, one next to the other.
• Minimize All - this option minimizes all open windows simply and quickly with a

single mouse click.
• Arrange - this option arranges the windows as currently viewed, e.g. all minimized

windows are arranged in a horizontal row alongside each other.

If the SDI User Interface has been specified under Environment Options / User Inter-
face, then only the Cascade option is offered here.

12

IBExpert Help - Cascade / Tile / Minimize / Arrange

549

12 IBExpert Help
The IBExpert Help Menu offers a number of provisions to offer support for IBExpert.

Since IBExpert version 2004.2.26.1, there is a new context-sensitive help system.
Pressing [F1] in any of the IBExpert forms now opens a new web-based Help page. It
is also possible to download all Help Pages from
http://www.ibexpert.info/documentation/documentation.zip and unzip this in the IBEx-
pert main directory with subdirectories (there must be a new subdirectory called
documentation). If a local Help document is available, it will be opened in the browser.
Otherwise the browser will open the page from our web server. If you have any com-
ments or questions please use our newsgroup (please see below).

The complete help files (beta version 1.1) are also available directly online:
http://www.ibexpert.info/documentation/

The first view displays the Help structure. If you are looking for help about a specific
subject use the SEARCH function, or the index.

To integrate the online Help Files into IBExpert itself, follow these five steps:

• Download the help file
(http://www.ibexpert.info/documentation/documentation.zip)

• If you have an older version of IBExpert, delete the Help directory.
• Create a new directory: Documentation in the IBExpert main directory.
• Extract and copy the documentation.zip file into the IBExpert\Documentation di-

rectory.
• When you start IBExpert and press [F1] from any dialog, the DB Explorer or the

SQL Assistant, it will open an html file in C:\program files\HK-
Software\IBExpert 2.0\Documentation\helpcontext showing you the relevant
help information.

Should you not be able to find a solution to your problem here, please use one of our
newsgroups:

Username: ibexpert
Password: ibexpert

news://ibexpert.info/interbase.ibexpert.de German language
news://ibexpert.info/interbase.ibexpert.en English language
news://ibexpert.info/interbase.ibexpert.ru Russian language
news://ibexpert.info/interbase.ibexpert.fr French language

or send us an email to support@ibexpert.com or use our Bug Track System in the
IBExpert Help Menu.

Should you have any comments or queries directly regarding the Help documentation,
or wish to contribute you own articles, please contact documentation@ibexpert.com

Please also refer to our series of online tutorial films, demonstrating the more impor-
tant IBExpert features, found on our website www.ibexpert.com on the DEMO page.

12

IBExpert Help - IBExpert Customer Area

550

12.1 IBExpert Customer Area
New to IBExpert version 2005.3.12.1, this menu item allows all registered users of full
versions (not the Trial Version or Personal Edition) direct access to the protected cus-
tomer area, without having to search for their current registration keys.

Simply click the menu item, and IBExpert uses your registration keys to automatically
access the online IBExpert Customer Area. This does nothing other than open a URL
such as the following example:

http://1234567887654321:ibexpert@www.ibexpert.com/customer

where 1234567887654321 is a combination of Key A and Key B which is already stored
in the registry. (There is no point testing the above link, as the keys quoted are for ex-
ample only!).

Warning: Although this function works faultlessly with browsers such as Firefox, prob-
lems may be experienced with Windows Internet Explorer. In this case, it is necessary
to access the protected customer area under http://www.ibexpert.com/download/ in
the usual way, by inputting your customer keys and password, and then download the
customer_area.reg to the local drive and then merge in regedit (Windows menu Start
/ Execute; type regedit, right-click menu item Merge and merge the files) .

Alternatively it is possible to create the following registry key manually:

• In Windows click the bottom left menu Start.
• Execute.
• Type "regedit" and enter (or click OK).
• HKEY_LOCAL_MACHINE ist the root-key. Open the folders, SOFTWARE, Microsoft,

Internet Explorer, Main and FeatureControl.
• Here you need to add a new feature "FeatureControl".
• You should then add FEATURE_HTTP_USERNAME_PASSWORD_DISABLE and using

the right-click menu in the empty right dialog area, select New and then Key, and
type "IExplore.exe" in the input field.

• On the left you will now find a new folder, IExplore.exe, in the FeatureControl list.
Highlight this, use the context-sensitive right-click menu to select New / DWORD
value.

• Add new DWORD with name "IExplore.exe" and value "" ("IEx-
plore.exe"=dword:00000000).

12.2 What Is New?
IBExpert 2005.03.12

1. Blob Editor:

• Added support for PNG (Portable Network Graphics) images.

2. Script Executive:

• Executing of INSERT/UPDATE/EXECUTE PROCEDURE statements WITHOUT parameters
is up to 10 times faster now.

12

IBExpert Help - What Is New?

551

• Added support for following Firebird 2 features:

CREATE SEQUENCE
DROP SEQUENCE
ALTER SEQUENCE

• Fixed problem with the occasional hanging of the Script Executive.
• Extended syntax of OUTPUT command:

 1.
 output 'E:\data.sql'
 as insert into mytable commit after 1000;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

 2.
 output 'E:\data.sql'
 as reinsert into mytable
 commit after 2000;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

 3.
 output 'E:\data.sql'
 as execute procedure myproc;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

 ASINSERT option is available for compatibility.

3. Table Data Comparer:

• Now works up to 5 times faster. Many thanks to Nickolay Samofatov for useful hints
and suggestions.

4. Database Comparer:

• Fixed some problems while comparing scripts with following declarations:

DECLARE VARIABLE MyVar CHAR;
WHERE ... CONTAINING
FOR EXECUTE STATEMENT ...
EXECUTE STATEMENT ... INTO ...

5. SP/Trigger Editor, SP Debugger:

• Added support for following Firebird 2 features:

DECLARE <cursor_name> CURSOR FOR ...
OPEN <cursor_name>
FETCH <cursor_name> INTO ...
CLOSE <cursor_name>

12

IBExpert Help - What Is New?

552

LEAVE <label>
NEXT VALUE FOR <generator>

6. SQL Editor:

• Fixed problem with error message display when executing INSERTEX statements.

7. Data Grid, Input Parameters Window:

• Fixed problem with input of date values when the system date format is dd-MMM-yy.

8. Database Designer:

• Added possibility to lock/unlock visual objects to protect them against casual modi-
fication of size and position. Use objects context-sensitive (i.e. right-click) menu to
lock/unlock them.

9. IBEBlock:

• SELECT ... EXPORT AS ... implemented. Examples of usage:

1.
SELECT * FROM RDB$FIELDS
EXPORT AS HTML INTO 'E:\TestExport.html'
OPTIONS 'ColorShema=MSMoney; FontFace=Verdana';

Possible ColorShemes are BW, Classic, ColorFull, Gray, MSMoney, Murky,
Olive, Plain, Simple.

2.
SELECT * FROM RDB$FIELDS
EXPORT AS XLS INTO 'E:\TestExport.xls' OPTIONS '';

3.
SELECT * FROM RDB$FIELDS
EXPORT AS TXT INTO 'E:\TestExport.txt'
OPTIONS 'OmitCaptions';

4.
SELECT * FROM RDB$FIELDS
EXPORT AS CSV INTO 'E:\TestExport.txt'
OPTIONS 'OmitCaptions; Delimiter=";"';

5.
SELECT * FROM RDB$FIELDS
EXPORT AS XML INTO 'E:\TestExport.xml'
OPTIONS 'Encoding=windows-1251; MemoAsText; StringAsText';

• FOR ... DO loops implemented. Examples of usage:

EXECUTE IBEBLOCK
RETURNS (I INTEGER)

12

IBExpert Help - What Is New?

553

AS
BEGIN
 FOR I = 0 TO 100 DO
 SUSPEND;
END

It is possible to use CONTINUE statement within FOR loop to proceed to the next itera-
tion of FOR:

EXECUTE IBEBLOCK
RETURNS (I INTEGER)
AS
BEGIN
 FOR I = 0 TO 100 DO
 BEGIN
 IF (I < 20) THEN
 CONTINUE; -- SUSPEND will not be executed
 SUSPEND;
 END
END

• EXECUTE IBEBLOCK statement implemented. Using this statement you can call other
IBEBlocks from the main block. Examples of usage:

1.
EXECUTE IBEBLOCK
AS
BEGIN
 ...
 MyFunc = 'EXECUTE IBEBLOCK (
 IntVal INTEGER)
 RETURNS (
 Square INTEGER)
 AS
 BEGIN
 Square = IntVal * IntVal;
 END';
 EXECUTE IBEBLOCK MyFunc (2) RETURNING_VALUES :Square;
 ...
END

2.
EXECUTE IBEBLOCK

AS
BEGIN
 ...
 MyFunc = ibec_LoadFromFile('C:\MyBlocks\Square.ibeblock');
 EXECUTE IBEBLOCK MyFunc (2) RETURNING_VALUES :Square;
 ...END

12

IBExpert Help - What Is New?

554

• Default values and comments for input/output parameters and variables imple-
mented. Example:

EXECUTE IBEBLOCK (

 CodeDir VARCHAR(1000) = 'C:\MyBlocks\' COMMENT 'Path to my IBEBlocks',
 SQLDialect INTEGER = 3 COMMENT 'Database SQL Dialect')
RETURNS (
 TotalTime DOUBLE PRECISION = 0 COMMENT 'Total time spent')
AS
DECLARE VARIABLE MyVar INTEGER = 0 COMMENT 'Just a comment'
BEGIN
 ...END

Comments for input parameters will be displayed in Description column of Request
Input Parameters form.
Comments for output variables will be used as column captions of the result dataset.
Comments for local variables are ignored.

• New examples added:

ODBC Access
Table Data Comparer using cursors
User forms in IBEBlock

 Use following URL to download IBEBlock examples:
www.ibexpert.com/download/ibeblockex.zip

10. All console tools (IBEScript, IBECompare, IBEExtract) were updated. Cur-
rent version is 2005.3.12.

11. Many other bug fixes and small improvements...

12. Distribution of IBExpert Modules

• To be allowed to distribute any of the IBExpert Modules (ibexpert.exe,
ibescript.exe, ibescript.dll, ibeextract.exe and ibecompare.exe) together
with your application, you need:

IBExpert Site License, if the distribution is located only on computers in your own com-
pany.
IBExpert VAR License, if the distribution is located on any computer outside your com-
pany.

If you are already an IBExpert customer, you can upgrade to a Site or VAR License and
directly buy the 24 month Extension Product.

See www.ibexpert.com Purchase Area for Details.

Some functions of the new IBExpert Modules do not work on non-licensed computers,
so you can only use them where your IBExpert License is valid.

12

IBExpert Help - What Is New?

555

Customers with a Site License are allowed to use them on every computer in their
company. Simply copy the License file to the path, where the module (such as
ibescript.exe) should run.

VAR License customers may also integrate these modules and the License file in their
Software installation.

IBExpert 2005.02.12

1. SQL Editor:

• Added support for the INSERTEX command (importing data from a comma-
separated values file).

2. Database Comparer:

• Fixed problem with incorrect updating of computed fields.
• Fixed problem with missing descriptions of view fields after recreating a view.

3. User Manager:

• Fixed problem with changing of password.
• Added Refresh button to refresh a list of users.

4. Database Designer:

• Fixed problem with missing AS keyword in SP/trigger bodies. It will be inserted
automatically if it doesn't exist.

5. Log Manager:

• Now uses 64-bit ID's when working with SQL Dialect 3 databases.

6. Table Editor:

• Fixed problem with the maximum length of constraint names (was 27, now ex-
panded to 31).

7. Editor Options:

• Added possibility to disable Code Insight while editing an object description.
• Added possibility to customize color of IBEBlock function names.

8. IBExpert Main Window:

• There was a problem with a second instance of IBExpert when one was disabled in
options: it remained in the memory. It's fixed.

9. Services | Database Monitoring (InterBase 7.x):

• Added possibility to define different monitor queries for SQL Dialect 1 and SQL Dia-
lect 3.

12

IBExpert Help - What Is New?

556

• Added possibility to commit/rollback transactions, shutdown attachments and can-
cel statements.

10. Data Grid:

• Fixed problem with the display of empty blob field values. Now IBExpert displays
them as <NULL>.

• Added possibility to recalculate the number of filtered records automatically when
the filter condition is changed.

11. Extract Metadata:

• Fixed problem with occasional incorrect script file names when "Limit file size" op-
tion is enabled.

• Fixed "out of memory" problem when extracting metadata of a database with sev-
eral thousand triggers.

• Fixed problem with extracting charset of UDF parameters.

12. UDF Editor

• Fixed problem with parameter charsets.

13. SP Debugger:

• Fixed problem with restoring of debugger window properties.

14. EXECUTE IBEBLOCK:

• Fixed some problems with incorrect handling of BLOB and NUMERIC values.
• Added support for ROW_COUNT/ROWS_AFFECTED variables.
• Additional functions and examples were added. More info about IBEBlock may be

found here: www.ibexpert.info/documentation

15. Code Insight:

• Now also supports IBEBlock constants and functions.

16. Environment Options | Tools:

• Added "Revoke existing privileges before autogranting" option. If this is enabled,
existing privileges of an object (SP, trigger, view) will be deleted before granting it
new privileges.

17. Many other bug fixes and small improvements...

18. Distribution of IBExpert Modules

• To be allowed to distribute any of the IBExpert modules (ibexpert.exe,
ibescript.exe, ibescript.dll, ibeextract.exe and ibecompare.exe) together
with your application, you need:

• an IBExpert Site License, if the distribution is located only on computers in your
own company

12

IBExpert Help - What Is New?

557

• an IBExpert VAR License, if the distribution is located on any computer outside your
company

If you are already an IBExpert customer, you can upgrade to Site or VAR License and
purchase the 24 month Extension Product.

See http://www.ibexpert.com/ Purchase Area for details.

IBExpert 2004.12.12

1. IBEScript.dll (for registered customers only

For registered customers we've included the IBEScript.dll in the installation archive.
You can use it in your applications to execute scripts from file or from a string buffer.
There is a small demo application illustrating its use in the IBEScriptDll folder.. Please
also refer to the IBEScriptDll Readme.txt.

 To be allowed to distribute any of the IBExpert Modules (ibexpert.exe,
ibescript.exe, ibescript.dll, ibeextract.exe and ibecompare.exe) together with
your application, you need:

• IBExpert Site License, if the distribution is located only on computers in your own
company.

• IBExpert VAR License, if the distribution is located on any computer outside your
company.

If you are already an IBExpert customer, you can upgrade to a Site or VAR License and
purchase the 24 month Extension Product.

See www.ibexpert.com PURCHASE area for details.

2. Table Editor:

• Added support for the InterBase 7.5 temporary tables feature.

3. SQL Editor:

• Fixed the problem with missing columns/parameters/variables while creating an
SP/View from SELECT.

4. Table Data Comparer:

• The problem with the incorrect WHERE clause when a primary key consists of more
than one column has been fixed.

5. Extract Metadata:

• Fixed the problem with the incorrect GRANT statement when there are UP-
DATE/REFERENCE privileges on separate columns.

• The problem with incorrect file names when the Limit File Size option used has now
been solved.

• Added support for the InterBase 7.5 temporary tables feature.

12

IBExpert Help - What Is New?

558

6. Database Explorer:

• Recent page: fixed the problem with sorting on Last Used column if the system
short date format is dd-MMM-yy.

• Added support for InterBase 7.5 embedded user authentication. There is now a
separate node for embedded users in the Database Explorer. It is possible to cre-
ate, alter and delete embedded users using the DB Explorer context menu.

• Added option to activate/deactivate only selected procedures/triggers. Just select
the required SP/triggers holding the [Ctrl + Shift] keys and choose the Deacti-
vate/Activate item in the DB Explorer context menu.

7. User Manager:

• Added support for the InterBase 7.5 embedded user authentication.

8. Database Designer:

• Reverse Engineering. Added Do not remove foreign keys marked as non-Generate
option. It is useful to prevent fake relationships from being deleted.

• Fixed the problem with saving modifications when adding a column with Generate
= FALSE.

• Added the option to drag ‘n’ drop objects from the DB Explorer (Diagrams page) to
subject areas to include them as members of this area. It is also possible to drag
objects from the list of objects in the Subject Areas Manager.

• The problem with enabling the Save button following modification of generators and
exceptions has been fixed.

• Generation of the Update script has been improved. Now IBExpert analyzes excep-
tions and procedures as well. Fixed the problem with updating the description of
triggers.

• Fixed the problem with modification of Notes when the properties panel is un-
docked.

• The problem concerning the incorrect creation of primary key names has been
fixed.

9. IBEExtract:

• Fixed the problem with quoting identifiers that correspond to the keywords.

10. Log Manager:

• Sometimes the bodies of logging triggers were empty. It's now fixed.
• Added the possibility to generate a log script for several tables simultaneously (Log

Data tab / Log to Script). Just select the required tables holding the [Ctrl + Shift]
keys.

11. EXECUTE IBEBLOCK:

• Fixed problem with using blob values in DML statements.

12. Console tools:

12

IBExpert Help - What Is New?

559

• IBEScript, IBEExtract and IBECompare were updated. Current version of all console
tools is 2004.12.12.

13. Other minor bug fixes and small improvements...

IBExpert 2004.10.30

1. NEW: OLAP and Data Warehouse Technology in IBExpert:

Here is a brief description how to use the new IBExpert Data Analysis. Please refer to
IBExpert Tools menu / Data Analysis for a more detailed documentation.

• Connect IBExpert to the Employee example database.
• Run the following SQL Statement SELECT * FROM SALES.
• On the Result Page click the Data Analysis Tool button.
• From left field lists choose Cust_No and drag ´n' drop it in the Dimensions.
• Select Sales_Rep and drag ´n' drop it in the Dimensions.
• Select Ship_Date and drag ´n' drop it in the Dimensions, but change Alias Name

and Display Name to Ship_Date_Month and change Wrap To to Month.
• Select Total_Value and drag ´n' drop it in the Measures.
• Click the Build Cube icon or [F9].
• Now you can drag ´n' drop all Dimensions to the Columns Area on the top or in the

Rows Area on the left.

To see what else is possible, take a look at Data Analysis or refer to
http://www.pivotcube.com/.

We also plan to create a free runtime version where *.cub files can be opened also
outside IBExpert.

So stay tuned ...

(this functionality is not available in the Personal Edition.)

2. Fixed the problem with incorrect support for XP themes that cause "list index
of bounds (x)" error.

3. Data Grids:

Fixed the problem with including computed fields into INSERT/UPDATE statements using
"Copy record as INSERT/UPDATE".

4. Table Editor:

There was a problem with adding/altering field descriptions introduced in 2004.09.12.
It's fixed.

5. Database Designer:

• Sometimes there was an AV while creating an update script. It's fixed.
• IBExpert now uses templates (Options / Templates) to create foreign key names

and names of check constraints.

12

IBExpert Help - What Is New?

560

6. IBEScript was updated. Current version is 2.1

7. IBEExtract was updated. Current version is 2.03

8. Some improvements were made to make initial databases opening faster while
working with slow internet connections.

9. 50 MB Bug in Personal Edition is removed

10. Some other minor bug fixes and improvements...

IBExpert 2004.9.12

1. Since this version IBExpert stores all its files (IBExpert.stg, IBExpert.tb, IBEx-
pert.scm etc.) in the user home directory (for example, C:\Documents and Set-
tings\<User_Name>\Application Data\HK-Software\IBExpert\). Existing files will
be moved to this directory automatically when the new version is started for the first
time.

2. Data Grids:

• Added support for UNICODE. It is possible to display data in unicode, but there is
no possibility to edit it directly in the grid. To edit data in unicode use the Form
View or the modal editor connected with string cell. To display data as unicode click
the Display data as Unicode button on the toolbar above the data grid or press F3.
This feature is unfortunately not available in the IBExpert Personal Edition.

• The Form View has been completely redesigned. It now also displays field descrip-
tions. It is also possible to select alternative layouts (classic or compact), the com-
pact alternative for those who prefer a more compact and faster interface. Visual
options now also include specification of Memo Height and Memo Word Wrap.

3. Database Explorer:

A separate node has been added for database indices. It is also possible to display sys-
tem indices (indices for system tables). Use the IBExpert menu item Database Regis-
tration Info / DB Explorer / Additional / Show System Indices to enable/disable the
display of system indices.

4. SP/Trigger Debugger:

There is now the added feature allowing initialization of Parameters/Variables using
values in any data grid. Just drag and drop a cell value from any data grid onto the
corresponding node in the Parameters/Variables list to initialize the variable with the
value of the data cell. You can initialize multiple variables/parameters by holding the
[Ctrl] key when dropping. In this case IBExpert searches for the corresponding pa-
rameter/variable (by name) for each field in the data record, and if the parame-
ter/variable is found it will be initialized with the value of the field with the same name.

5. Database Designer:

12

IBExpert Help - What Is New?

561

Added Model Navigator to navigate models quickly. Use the corresponding tab in the
SQL Assistant (Model Navigator) and of the Database Explorer (Diagrams).

SET NAMES, SET SQL DIALECT, CREATE DATABASE statements were removed from re-
sulting CREATE DATABASE script. Use the model Prescript to specify necessary init
statements.

6. IBExpert Database Menu:

Added Recreate Database feature. This drops the database, along with all its contents,
and creates it again (after confirmation, of course) using the parameters of the data-
base just dropped.

7. Extract Metadata:

• Additional mode added: Extract into separate files. (Please do not confuse it with
the mode of the same name in previous versions of IBExpert; this was renamed
"VCS files"!). The Separate Files mode extracts metadata (and data, if specified)
into a set of files: two files with metadata (_ibe$start_.sql and
ibe$finish.sql), files containing table data (one or more files for each database
table) and a runme.sql file, that consists of a number of INPUT <file_name>
statements in the correct order.

• A Limit File Size option has been added. This defines the maximum file size of the
resulting script(s). When specified, and the maximum size is reached, IBExpert
automatically creates the next file with suffixes 0001, 0002 etc.

8. IBEExtract:

• Added -f option (extract into separate files).
• Added -z option (maximum size of resulting files (in megabytes).
• The current version is 2.02.

9. IBEScript:

• Added -i options (idle priority).
• Support for EXECUTE IBEBLOCK implemented (unfortunately not available in the free

version of IBEScript).
• Current version is 2.02.

10. IBECompare was updated to 1.45

11. EXECUTE IBEBLOCK:
In this version we introduce to you a new powerful feature - EXECUTE IBEBLOCK. What
is IBEBLOCK? It is a set of DDL, DML and other statements that are executed on the
server and on the client side and include some specific constructions applicable only in
IBExpert or IBEScript (excluding free versions of products).

With EXECUTE IBEBLOCK you will be able:

• To work with different connections within the single IBEBLOCK at the same time.
• Move (copy) data from one database to another.
• Join tables from different databases.

12

IBExpert Help - What Is New?

562

• Compare data from different databases and synchronize them.
• Populate a table with test data using random values or values from other tables or

even from other databases.
• ... and much more!

The syntax of IBEBLOCK is similar to that of stored procedures, but there are many
important extensions. For example:

• You can use EXECUTE STATEMENT with any server, including InterBase 5.x, 6.x, 7.x.
• You can use one-dimensional arrays (lists) of untyped variables and access them by

index.
• It isn't necessary to declare variables before using them.
• You can use data sets (temporary memory tables) to store data.
• ... and much more!

You can debug IBEBLOCKs in the same way as stored procedures and triggers.

IBEScript supports EXECUTE IBEBLOCK too.

For examples of using EXECUTE IBEBLOCK, please refer to IBEBLOCK Examples.

12. Changed Installer:

Now only the full Install version is uploaded, all tools from the old zip archives are in-
stalled with this installer in the IBExpert main directory.

13. Many minor bug fixes and small improvements...

IBExpert 2004.8.5

1. Database Designer:

• Now processes generators and triggers while generating the update database
script.

• It also takes into account view dependencies while creating the script.
• The problem with incorrect definition of integer fields has been fixed (sometimes

IBExpert included CHARACTER SET clause)
• There was an AV when copying selected objects twice and more. It's fixed.
• Fixed the problem with undo after modifying link points.

2. Stored Procedure Editor:

• Fixed the problem with missing user privileges in the stored procedure script.
• Lazy Mode: added the option to select domains as the data type for input/output

parameters and variables. In this case IBExpert copies information from the domain
definition to the native data type of the parameter/variable.
It is also possible to drag 'n' drop domain from the Database Explorer.

3. Database Explorer:

• Added the possibility to store server info (server type, server name, server version,
connection protocol) and client library name for database folders.

12

IBExpert Help - What Is New?

563

4. Database Statistics:

• A new feature has been added to analyze average record and version length (Fire-
bird 1.5, InterBase 7).

• Some visual improvements.

5. Search Metadata:

• Added the possibility to search in object descriptions.
• Fixed the problem with AV when closing the window after disconnecting from the

database.

6. Script Executive:

• There was a problem with the execution of INPUT statements: they are executed in
another transaction. It's fixed.

7. Test Data Generator:

• Fixed the problem with generating integer values when min and max values were
set to -2147483648 and 2147483647 accordingly.

• Also fixed problems with generating NUMERIC and TIME values.

8. Data Grid:

• Added feature to calculate aggregate functions (COUNT, SUM, MIN, MAX, AVG) on nu-
meric and datetime columns. You should click the Show summary footer button on
the toolbar of the data view to display the summary footer. After this it is possible
to select an aggregate function for each numeric/datetime column separately.
IMPORTANT: all calculations are done on client side so do not use this feature on
huge datasets with millions of records because IBExpert will fetch all records from
the server to calculate aggregates.

9. Table Data Comparer:

• Now an error will be raised if there is no primary key defined for the reference ta-
ble.

10. Shortcuts:

• Fixed the problem with missing shortcuts when choosing non-english localization in
Options / Environment Options. The default shortcuts map is created automatically
when IBExpert is started. Don't forget that it is possible to change most of the de-
fault shortcuts using [Ctrl + Alt + Shift + L] combination in the majority of the
IBExpert windows.

11. Console tools:

• IBECompare was updated. Current version is 1.4.
• IBEScript was updated. Current version is 1.90
• IBEExtract was updated. Current version is 1.94

12

IBExpert Help - What Is New?

564

12. Many other bug fixes and small improvements...

IBExpert 2004.6.17

(Bug fixes and improvements since 2004.4.1)

1. IBExpert:

 * IBExpert prevented Windows (2000/XP) to logoff/shutdown. It's fixed.

2. Log Manager:

 * Added templates for data logging triggers.

 See Options / General Templates / Data Logging Triggers for more details.

3. Database Designer:

• Fixed problem with copying/pasting of model objects. Now it's possible to
copy/paste between diagrams.

• IBExpert ignored the Generate property for views and table constraints. It's fixed.
• Added the option to specify font character set for model objects. See Model Options

/ General / Font Character Set.

4. Database Comparer:

• Fixed some problems with domains while comparing scripts.

5. SQL Editor:

• The problem with the displaying of error messages while executing a query in the
background has been fixed.

6. SP Editor:

• Fixed problem with autogranting privileges for recursive procedures.
• Added Script page. It includes the CREATE PROCEDURE statement, stored procedure

and parameter descriptions and GRANT statements.

7. Extract Metadata:

• Fixed problem with extracting computed blob fields.

8. SP Debugger:

• Fixed some problems with EXECUTE STATEMENT and FOR EXECUTE STATEMENT.
• The problem with conditional breakpoints (didn't work after Reset Procedure) has

been fixed.
• Fixed problem with default values of variables (Firebird 1.5).
• Fixed some problems with handling of DOUBLE PRECISION values.

12

IBExpert Help - What Is New?

565

9. Database Explorer:

• Fixed the problem with drag 'n' dropping of domains from one database into an-
other (incorrect length of VARCHAR domains).

• There was a problem with including computed fields into INSERT/UPDATE state-
ments while dragging a table node into the code editor. It's fixed.

10. Query Builder:

• There was an AV after table deletion from the work area. It's fixed.

11. Table Editor:

• There was a problem with autogranting privileges for autoincrement triggers. It's
fixed.

12. Table Data Comparer:

• Fixed the problem while comparing tables where all fields are included into the pri-
mary key.

13. Script Executive:

• Fixed a problem with stopping script execution after the first error in input file (IN-
PUT sql_script_file).

14. Data View:

• The order of edit controls in the Form View now corresponds to the order of col-
umns in the Grid View.

15. IBEScript was updated. Current version is 1.88.

16. IBEExtract was updated. Current version is 1.92.

17. IBECompare was updated. Current version is 1.3.

18. New languages added and other language files updated.

19. Many other minor bug fixes and small improvements.

IBExpert v. 2004.04.01.1

1. Database Comparer:

• Added a feature allowing script comparison.
• Added the option to store and load settings into/from file. It is possible to store set-

tings into an external file and use it together with IBECompare (see below).

2. IBECompare is a command-line tool to compare databases, scripts and table data.

12

IBExpert Help - What Is New?

566

• IBECompare is a command-line version of corresponding IBExpert tools: Database
Comparer and Table Data Comparer.

• Use -D option to compare database metadata and script.
Use -T option to compare table data.
In both cases IBECompare produces an SQL script file.

• It is necessary to specify an input settings file using the -C option. You can get the
template of this file starting IBECompare with the -s option (IBECompare -s). In
this case IBECompare will create a config_sample.ini file within the current direc-
tory. Also you can create a settings file using Save configuration button in IBExpert
/ Tools / Database Comparer.

3. Script Executive:

• Fixed the problem with non-standard terminators handling.
• Added support for the EXECUTE BLOCK statement (Firebird 2).

4. SQL Editor:

• Now displays real parameter types and offers different editors for different parame-
ter types while executing queries with parameters.

• Added support for the EXECUTE BLOCK statement (Firebird 2).

5. SP/Trigger Debugger:

• Trace Into for SELECT FROM SP implemented.
• Fixed problem with EXECUTE STATEMENT ... INTO :VAR (value of VAR was never

modified).
• Added support for default values of input parameters (Firebird 2).

6. Database Restore:

• Fixed the problem with the Commit after each table option. In previous versions
IBExpert restored databases without this flag when the corresponding checkbox
was checked.

7. Grant Manager:

• The problem with long object names (> 31 chars; IB 7) has been fixed.

8. Database Designer:

• Fixed the problem with extracting table and view descriptions while reverse engi-
neering (they were always empty).

9. Database Registration Info / Additional:

• Added Disable plan request in SQL Editor and Disable performance analysis options.

10. Extract Metadata:

• It is now possible to extract table data into separate files (TABLE_1.sql, TA-
BLE_2.sql, TABLE_3.sql etc.).

12

IBExpert Help - What Is New?

567

• Added support for default values of input parameters (Firebird 2).

11. IBEExtract was updated. Current version is 1.9.

12. IBEScript was updated. Current version is 1.86.

13. New Languages added and other language files updated.

14. Install path was changed, please copy all files from old IBExpert Directory to
the new \Program Files\HK-Software\IBExpert 2004 or just uninstall old version
before installing newest version (if you use the IBExpert User Database, files do not
need to be copied).

15. Many other bug fixes and small improvements...

IBExpert v. 2004.2.26.1

1. Data Grid:

• It is now possible to customize highlighting of NOT NULL columns captions. Use Op-
tions / Environment Options / Grid to customize color and font style of not null col-
umns.

2. Script Executive:

• Added Save As button. Changed the behavior of the Save button.

3. Code Editors:

• Drag 'n' dropping from the DB Explorer and SQL Assistant has been greatly im-
proved. Now, when you drag an object node(s) from DB Explorer or SQL Assistant
IBExpert will offer you various versions of text to be inserted into the code editor.

• It is now possible to customize the highlighting of variables. Use Options / Editor
Options / Colors to choose color and font style for variables.

4. Tools:

• Table Data Comparer has been implemented. It allows you to compare the data of
two tables in different databases and get a difference script which will include cor-
responding INSERT, UPDATE and DELETE statements. The tables may have different
names but they must have the same structure.

5. Project View:

• Added the possibility to sort items in alphabetical order. Use the right-click context
menu item Sort child nodes alphabetically.

6. Extract Metadata:

• Added the Decode domains option. If enabled, the domain types will be inserted as
comments just after the domain names. For example:

12

IBExpert Help - What Is New?

568

 CREATE TABLE Z (
 B BOOL /* INTEGER DEFAULT 0 CHECK (VALUE IN (0, 1)) */);

7. New Help System

• Pressing F1 in any of the IBExpert forms now opens a new web-based Help page. It
is also possible to download all Help Pages from
http://www.ibexpert.info/documentation/ibexpert_documentation.zip and unzip this
in the IBExpert main directory with subdirectories. (There must be a new subdirec-
tory called documentation). If a local Help document is available, it will be opened
in the browser. Otherwise the browser will open the page from our web server. For
any comments please use our newsgroups.

8. A lot of small bug fixes and improvements...

IBExpert v. 2004.1.22.1

1. Database Designer:

• Now supports working with generators.
• Fixed some problems with printing.

2. Data Grid:

• Added highlighting of mandatory (NOT NULL) fields while working with live queries.
Captions of not null fields are in bold.

3. Table Editor:

• Added support for external tables.

4. Extract Metadata:

• Added possibility to extract date/timestamp/time values with ANSI-prefixes:

 INSERT INTO MY_TABLE (DATE_FIELD, TIME_FIELD, TIMESTAMP_FIELD)
 VALUES (date '01.01.2004', time '12:15:45',
 timestamp '01.01.2004 12:15:45');

5. Database Comparer was updated.

6. Log Manager:

• Added the option to Allow comparing BLOBs in BEFORE UPDATE trigger.

7. Other bug fixes and small improvements..

IBExpert v. 2003.12.18.1

1. Database Designer:

12

IBExpert Help - What Is New?

569

• This now displays borders of pages (printable parts) with dashed lines. You can cus-
tomize the page options (size, headers and footers etc.) using the Print Preview
form.

• Added possibility to define pre- and postscripts for your database model. The pre-
script will be inserted into model script just after the CREATE DATABASE or the CON-
NECT statement. The postscript will be added to the end of the model script.

• It is now possible to define pre- and postscripts for each table separately.
• Fixed the problem with the BOOLEAN data type.

2. Database Registration Info:

• It is now possible to execute sql scripts before and after connecting to the database
and before and after disconnecting from the database.

• There is a new option on the Additional page - Always prompt for a user name and
password. If this option is on IBExpert will display a login prompt dialog each time
you try to connect to the database.

3. Script Executive, IBEScript:

• INSERTEX was improved, some problems with quoted identifiers while working with
SQL dialect 3 have been fixed.

• Fixed the problem with incorrect error handling while executing SELECT statements.
• IBEScript was updated accordingly. The current version is 1.80.

4. Export Data Into Script:

• New feature allowing the export of data as a set of EXECUTE PROCEDURE statements.

5. Data Grid:

• Added the possibility to copy selected record(s) to clipboard as UPDATE state-
ment(s). This will only work if there is a live query with a primary key.

6. Many small bug fixes and improvements...

IBExpert v. 2003.11.6.1

1. New Version Numbering:

• The version number now corresponds with the date of the build.

2. Table Editor:

• Indices page: fixed the problem with the incorrect display of indices sorting.
• Fields page: the field dependencies list now includes indices, primary and foreign

keys.
• Constraints page: added support for the new Firebird feature - user-defined con-

straint index names.
• Added the possibility to change field default values. Because the server itself does-

n't allow the alteration of field default values using ALTER TABLE we have imple-
mented a kind of workaround:

12

IBExpert Help - What Is New?

570

First, IBExpert creates the temporary field with the new DEFAULT value:

ALTER table ADD IBE$$TEMP_COLUMN column_type DEFAULT new_default

Secondly, IBExpert copies the RDB$DEFAULT_SOURCE and RDB$DEFAULT_VALUE values of
the newly created temporary field into RDB$DEFAULT_SOURCE and RB$DEFAULT_VALUE of
the field which should be altered:

UPDATE RDB$RELATION_FIELDS F1
SET
F1.RDB$DEFAULT_VALUE = (SELECT F2.RDB$DEFAULT_VALUE
 FROM RDB$RELATION_FIELDS F2
 WHERE (F2.RDB$RELATION_NAME = 'table')
 (F2.RDB$FIELD_NAME ='IBE$$TEMP_COLUMN')),
F1.RDB$DEFAULT_SOURCE = (SELECT F3.RDB$DEFAULT_SOURCE
 FROM RDB$RELATION_FIELDS F3
 WHERE (F3.RDB$RELATION_NAME = 'table')
 (F3.RDB$FIELD_NAME ='IBE$$TEMP_COLUMN'))
WHERE (F1.RDB$RELATION_NAME = 'table')
 (F1.RDB$FIELD_NAME = 'column')

After that IBExpert drops the temporary field:

ALTER TABLE table DROP IBE$$TEMP_COLUMN

3. Blob Viewer:

• Added syntax highlighting for SQL. This is useful if your blobs contain SQL queries.
• Added As BLR page. This allows blobs with the subtype 2 to be displayed (for ex-

ample, RDB$PROCEDURE_BLR of RDB$PROCEDURES table) as BLR.

4. SP Debugger:

• Fixed problem with ROW_COUNT (Firebird).

5. Script Executive:

• OUTPUT command now supports extracting data into SQL scripts as a set of INSERT
statements. Two options are available to control this: ASINSERT and INTO.
Examples of usage:

OUTPUT 'C:\MyScripts\Data.sql';
 SELECT * FROM MY_TABLE;
 OUTPUT;

This will produce a set of the following INSERTs:

 INSERT INTO MY_TABLE (...) VALUES (...)

OUTPUT 'C:\MyScripts\Data.sql';
 SELECT * FROM MY_TABLE INTO "MyTable";
 OUTPUT;

12

IBExpert Help - What Is New?

571

This will produce a set of the following INSERTs:

 INSERT INTO "MyTable" (...) VALUES (...)

• A full description of all IBExpert's extensions of script language can be found here:
 www.ibexpert.com/documentation under: Tools / Script Executive / Script Lan-
guage Extensions.

6. Database Restore:

• It is now possible to specify a client library which will be used while restoring. De-
fault client library is gds32.dll.

7. Database Designer:

• View Editor and Note Editor were redesigned. They are no longer modal.
• Fixed the problem with memory leaks while displaying foreign key marks.
• A lot of bugfixes...

8. Code Editors:

• Added the possibility to customize highlighting for double-quoted string. Use Op-
tions / Editor Options / Colors to customize this.

• Added the possibility to customize highlighting for conditional executing directives.
• Code Parameters: now IBExpert displays the list of fields to be inserted when you

type the VALUES part of INSERT statements.
• Fixed some problems with Code Insight.

9. View Editor:

• Recreate Script now correctly restores descriptions of view fields.

10. Main Menu:

Added Grid menu item. It contains the following items:

• Apply best fit: Save grid data as... Saves grid data into TXT, XLS, HTML or XML
formats. This works only with data set grids (field and index grids in the Table Edi-
tor, the parameters/variables grid in the Stored Procedure Editor when working in
lazy mode), and doesn't work with SQL Assistant lists, the constraint list in Table
Editor etc.

• Copy current record to clipboard: Copies the current record of any grid/list into
the clipboard. Values are delimited with the tab character.

• Copy all to clipboard: Copies the content of any grid (including column captions)
into the clipboard. Values are delimited with the tab character.

11. IBEScript:

Added possibility to encrypt/decrypt scripts and to execute encrypted scripts. There are
two possible ways to encrypt:

12

IBExpert Help - What Is New?

572

• Encrypting without the password. In this case there is no possibility to decrypt an
encrypted script but it is possible to execute this script with IBEScript.

• Encrypting with the password. In this case it possible to decrypt the script and exe-
cute it with IBExpert if there is correct password specified.

The following options control the encrypting and decrypting:

 -e - encrypts a script and creates a file with extension "esql" if the output file is
not specified.
 -d - decrypts the encrypted script if it was encrypted with password.
 -p<password> - password for encrypting/decrypting.
 -o<file_name> - output file name.

The current version is 1.76.

12. IBEExtract:

• Fixed the problem with the extraction of exceptions.
• The current version is 1.85.

13. Database Comparer:

• Added the option to stop the comparison process.

14. User Database:

• Fixed the problem with using Firebird Embedded while working with the IBExpert
User Database.

15. A lot of further bug fixes and small improvements...

IBExpert v.2.5.0.61

1. Script Executive, IBEScript:

• NOFIELDNAMES option is now obsolete. This means that there will be no column cap-
tions in the output file by default. If you wish to include column captions use
FIELDNAMES option.

• Added the option to define non-printable characters as a delimiters. For example, if
you need the [Tab] character as a delimiter use:

DELIMITER #9 (decimal representation of tab char)

or

DELIMITER $9 (hexadecimal representation of tab char)

• Added customization of the delimiter char for the INSERTEX command (DELIMITER
option). If the DELIMITER option is missing a comma will be used as the delimiting
character.

• Conditional executing of script statements has now been implemented. The syntax
is the same as in Delphi:

12

IBExpert Help - What Is New?

573

 {$IfExists <select_statement>}
 {$Else}
 {$EndIf}

At present IBExpert supports the following conditional directives:

$IfExists
$IfNotExists (shortened form is $IfNExists)
$Else
$EndIf

When the Script Executive (IBEScript) encounters a $IfExists or $IfNotExists direc-
tive it tries to execute specified <select_statement> and, depending on how many
records this select returns (0 or >0), executes or skips the next block of statements.

For example, the following script tests the existence of MY_TABLE table in the database
and, if MY_TABLE exists, a new field will be added into it. If there is no MY_TABLE table
in the database it will be created.

 {$IfExists SELECT RDB$RELATION_NAME FROM RDB$RELATIONS
 WHERE RDB$RELATION_NAME = 'MY_TABLE'}
 ALTER TABLE MY_TABLE ADD NEW_FIELD INTEGER;
 {$ELSE}
 CREATE TABLE MY_TABLE (
 ID INTEGER NOT NULL,
 NEW_FIELD INTEGER);
 {$ENDIF}

Conditional directives within statements will be ignored. This means that the following
will not work:

 CREATE TABLE MY_TABLE (
 {$IfExists ...}
 ID INTEGER NOT NULL,
 {$ENDIF}
 NEW_FIELD INTEGER);

To test existence of standard database objects you can use the following syntax:

 {$IfExists|IfNotExists DOMAIN|TABLE|VIEW|TRIGGER|PROCEDURE|
 EXCEPTION|GENERATOR|UDF|ROLE object_name}

For example:

 {$IfExists TABLE MY_TABLE}
 ALTER TABLE MY_TABLE ADD NEW_FIELD INTEGER;
 {$ELSE}
 CREATE TABLE MY_TABLE (
 ID INTEGER NOT NULL,
 NEW_FIELD INTEGER);
 {$ENDIF}

12

IBExpert Help - What Is New?

574

• IBEScript has been updated accordingly. The current version is 1.72.

2. Table Editor:

• Added the possibility to drag 'n' drop fields from the Database Explorer tree and the
SQL Assistant into the field list in the Table Editor. This allows you to quickly and
easily copy field definitions from one table to another.

3. Database Designer:

• Added support of exceptions and stored procedures.
• Increased flexibility with regard to the customization of the table layout. It is possi-

ble to toggle on/off displaying of field name, field type, not null flag, field descrip-
tion and foreign key mark in any combination. It is also possible to display the table
description instead of, or together with the table name.

• Copy/Paste features have been improved.
• Added a feature allowing the export of models into BMP/WMF. There is an Export

button in the Database Designer local menu for this.
• IBExpert now stores printing options between sessions.
• Fixed some bugs with drawing of links.

4. Options / Environment Options / SQL Editor:

• Added the option Get plan before statement execution.

5. Tools / SP / Trigger Analyzer:

• Added the option to analyze views too.

6. SP / Trigger Debugger:

• Fixed some problems with the debugging of nested procedures.

7. SQL Editor:

• Added the option to quickly change transaction isolation level for a separate SQL
Editor. There is a corresponding button on the SQL Editor toolbar which allows you
to choose one of the following isolation levels: Snapshot, Read Committed, Read-
Only Table Stability, Read-Write Table Stability.

• Execute in the background with own thread is also now possible.

8. Export Into Script:

• While exporting data as INSERT statements it's now possible to add a corresponding
CREATE TABLE statement into the beginning of the script.

9. User Manager:

• Added AC (Active Connections) column into users list. It shows how many active
connections a user has to the specified database. This works only with active data-
bases.

12

IBExpert Help - What Is New?

575

10. Options / Environment Options / Associations:

• Added the option to associate IBExpert with grc-files (database models).

11. Many other bug fixes and small improvements...

IBExpert v.2.5.0.49

Minor bug fixes and improvements.

IBExpert v.2.5.0.47

1. Script Executive:

• It is now possible to execute only a selected part of the script. When there is a se-
lected text within the script, only the selected part will be executed.

• Statements page: Added the options to mark/unmark for the execution of all or
only selected statements. Use the popup menu in the statements grid for this.

• Fixed the bug that, in some cases, incorrectly interpreted the SET TERM statement.
• The INSERTEX command (import from CSV-files) now also allows a colon as delim-

iter.
• IBEScript is also updated. Current version is 1.62.

2. Dependencies Viewer:

• It is now possible to drop objects directly from the dependencies tree. Use the
popup menu in the dependencies tree to drop selected objects. You can also mul-
tiselect objects for dropping.

3. Object Editors, Dependencies Page:

• Added the possibility to drop objects directly from the dependencies tree. Use the
popup menu in the dependencies tree to drop selected objects. You can also mul-
tiselect objects for dropping.

4. Options / Environment Options / Associations:

• Added the option to associate IBExpert with .fdb and .ib files.

5. Database Registration Info / Additional:

• Added the option Open database when IBExpert starts.

6. Data Export / XML Export:

• Added the possibility to export string fields, memo fields and timestamp fields as
text (instead of MIME encoded data). Also added an option to specify encoding
charset for fields exported as text. Many thanks to Karsten Strobel for the corre-
sponding improvements of the XML export component!

7. Extract Metadata:

12

IBExpert Help - What Is New?

576

• Added Exclude IBExpert (IBE$*) objects.

8. SP / Trigger parser:

• Fixed the problem with EXECUTE STATEMENT.
• Fixed problems with ROW_COUNT, CURRENT_TRANSACTION and CURRENT_CONNECTION

variables.
• The problem with single line comments (Firebird) which begin from position > 0 has

been fixed.

9. Trigger Editor:

• Fixed some problems with interpreting Firebird universal triggers type.

10. Trigger Debugger:

Added the possibility to initialize NEW/OLD variables from a table record:

• Start the Trigger Debugger (Debug Trigger button in the Trigger Editor).
• Go to the SQL Editor page.
• Modify offered statement if necessary (default is SELECT * FROM trigger_table).
• Click the Run button or [F9]) to execute the statement.
• Highlight the necessary record (you can use filters as in the regular SQL Editor).
• Choose Init NEW variables or [Ctrl + Shift + N] or Init OLD variables or [Ctrl + Shift

+ O] from the Debugger menu.

11. Stored Procedure Editor:

Added a feature to declare easily and quickly unknown variables. For example, you can
write your procedure as

CREATE PROCEDURE MY_PROC
 AS BEGIN MY_VAR = 5;
 VAR_OUT = MY_VAR;
 SUSPEND;
END

and click the Compile button. Of course, this procedure is incorrect and you will get two
Unknown variable error messages:

• Unknown variable: MY_VAR
• Unknown variable: VAR_OUT

Now just use the popup menu in the parser messages list and select the corresponding
item for each unknown variable to obtain the correct procedure text:

CREATE PROCEDURE MY_PROC
 RETURNS (VAR_OUT INTEGER)
 AS DECLARE VARIABLE MY_VAR INTEGER;
 BEGIN MY_VAR = 5; VAR_OUT = MY_VAR;
 SUSPEND;
END

12

IBExpert Help - Contents

577

Added the possibility to easily and quickly remove unused variables. For example, you
can write your procedure as:

CREATE PROCEDURE MY_PROC
 RETURNS (VAR_OUT INTEGER)
 AS DECLARE VARIABLE MY_VAR INTEGER;
 BEGIN VAR_OUT = 5;
 SUSPEND;
END

and click the Compile button. You will receive a parser message: - Variable 'MY_VAR' is
declared, but never used. Just use the popup menu in the parser messages list to
quickly remove a declaration of the unused variable.

12. Global:

Added [Shift + Ctrl + F12] shortcut. This displays a plain list of current database ob-
jects with the option to sort, filter, incrementally search objects and, of course, select
the desired object.

13. Many other minor bug fixes and improvements...

12.3 Contents
The IBExpert online documentation can be viewed online under
http://www.ibexpert.info/documentation/. It can be downloaded from
http://www.ibexpert.info/documentation/documentation.zip. (For download instruc-
tions please refer to the IBExpert Help menu.)

The first view displays the Help structure. For a complete list of contents click on IN-
DEX at the top of the page to display the index. If you are looking for help about a
specific subject use the SEARCH function

In the meantime, should you be unable to find a solution to your problem here, please
use one of our newsgroups (in English, German, French and Russian). Should you have
any comments or queries directly regarding the Help documentation, or wish to con-
tribute your own articles, please contact documentation@ibexpert.com.

12.4 Additional Help Files
This menu item has been included for third party help files, intended for those third
party components included in the IBExpert PlugIns menu. Such Help files can be in-
stalled using the IBExpert Options menu: Environment Options / Additional Help.

The installed help files appear here as an additional menu item.

12.5 Product Home Page
The IBExpert Help menu item Product Home Page does none other than open the
www.ibexpert.com homepage, which provides product information, news, support,
downloads, plugins, purchase and a contact email, in English, German and Russian
languages.

12

IBExpert Help - Send bug reports to

578

12.6 Send bug reports to
The IBExpert Help menu item Send Bug Reports To allows you to inform us at IBExpert
of any bugs discovered or suggestions you may wish to make. The From, To and Re
fields are automatically filled; it is merely necessary to type in the message, if possible
with an example, in order to enable us to reproduce the operations leading to the prob-
lem, and send.

All bug reports can be followed in the Bug Track System.

12.7 Bug Track System
The IBExpert Bug Track System was introduced on the 28.04.2003 in version 2.5.0.38.
It allows all users to post and follow all bugs discovered and their current status.

There are currently two bug track groups: English and Russian. Each bug reported re-
ceives a number and priority. It is also possible to follow the status (i.e. closed, found,
fixed), follow correspondence (by clicking on the + button or using the [+] key), and
view the IBExpert version and date including the fix.

If you want to post a bug directly from the Bug Track System (as an alternative to the
IBExpert Help menu item Send Bug Reports To), it is first necessary to specify your
signature. Simply click on the Configure Bug Tracking System icon, to spring to the En-
vironment Options / IBExpert Bug Track window and input the required information.

Using either the Bug Track pull-down menu or the relevant icons in the toolbar, it is
possible to reply to items and send and receive.

12.8 About
The IBExpert Help menu item About calls the so-called IBExpert splash screen, includ-
ing the IBExpert logo and current installed version number, with a full copy of the
software license on the second page (click the License tab).

Since October 2003 we have introduced a new version numbering system based on the
date, as opposed to the more traditional version numbering system.

12

IBExpert Help - IBExpert Direct

579

12.9 IBExpert Direct
The IBExpert Help menu item IBExpert Direct... provides all users with news concern-
ing IBExpert, such as new versions, documentation, downloads, plugins, newsgroups,
as well as contact addresses and a direct link to the IBExpert home page,
http://www.ibexpert.com/.

The Configure IBExpert Direct icon opens the Options / Environment Options / IBExpert
Direct dialog, where it is possible to specify how often the network should be polled for
new items, and to configure a proxy server if wished.

12.10 Download Firebird / Purchase InterBase
These last three items in the IBExpert Help menu provide direct links to the software
producers, for those wishing to purchase or download InterBase or Firebird.

• Download InterBase Open Edition - currently invalid.
• Buy Borland InterBase - opens the link: http://www.borland.com/interbase/. By

clicking DOWNLOADS, it is possible to download the newest trial version (currently
InterBase 7.5, November 29, 2004). By clicking PURCHASE, you can gain access to
the online web shop, or search for your nearest retailer. Please refer to InterBase
7.5 trial version for further details.

• Download Firebird - opens the link: http://firebird.sourceforge.net/. Please refer to
download and install Firebird for further details.

I

SQL Language Reference - Firebird SQL

581

I SQL Language Reference
Here is some basic information regarding DDL, DML and stored procedure and trigger
language. Refer to the InterBase SQL Language Reference handbook for detailed in-
formation.

Please also refer to the IBExpert Tools menu: Script Executive / Script Language Ex-
tensions for IBExpert's own invaluable extensions.

I.1 Firebird SQL
Every database management system has its own idiosyncrasies in the ways it imple-
ments SQL. Firebird adheres to the SQL standard more rigorously than any other
RDBMS except possibly its 'cousin', InterBase®. Developers migrating from products
that are less standards-compliant often wrongly suppose that Firebird is quirky, which
is really not true at all.

The following excerpts have been taken from the Firebird Quick Start Guide, © IB-
Phoenix Publications 2002, 2003. Many thanks to Paul Beach (www.ibphoenix.com)!

I.1.1 String delimiter symbol

Strings in Firebird are delimited by a pair of single quote symbols 'I am a string'
(ASCII code 39 NOT 96). If you used earlier versions of Firebird's relative, InterBase®,
you might recall that double and single quotes were interchangeable as string delimit-
ers. Double quotes cannot be used as string delimiters in Firebird.

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002, 2003.

I.1.2 Double–quoted identifiers

Before the SQL-92 standard, it was not legal to have object names (identifiers) in a da-
tabase that duplicated keywords in the language, were case-sensitive or contained
spaces. SQL-92 introduced a single new standard to make any of them legal, provided
that the identifiers were defined within pairs of double-quote symbols (ASCII 34) and
were always referred to using double-quote delimiters.

The purpose of this “gift” was to make it easier to migrate metadata from non-
standard RDBMSs to standards-compliant ones. The down-side is that, if you choose to
define an identifier in double quotes, its case-sensitivity and the enforced double-
quoting will remain mandatory.

Firebird does permit a slight relaxation under a very limited set of conditions: if the
identifier which was defined in double-quotes 1) was defined as all upper-case, 2) is
not a keyword and 3) does not contain any spaces, then it can be used in SQL un-
quoted as long as it is used in all upper-case.

Unless you have a compelling reason to define quoted identifiers, it is usually recom-
mended that you avoid them. Firebird happily accepts a mix of quoted and unquoted
identifiers - so there is no problem including that keyword which you inherited from a
legacy database, if you need to.

I

SQL Language Reference - Firebird SQL

582

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

I.1.3 Apostrophes in strings

If you need to use an apostrophe inside a Firebird string, you can “escape” the apos-
trophe character by preceding it with another apostrophe.

For example, this string will give an error:

'Joe's Emporium'

because the parser encounters the apostrophe and interprets the string as ‘Joe’ fol-
lowed by some unknown keywords.

To make this a legal string, double the apostrophe character:

'Joe''s Emporium'

Notice that this is TWO single quotes, not one double-quote.

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

I.1.4 Concatenation of strings

The concatenation symbol in SQL is two ‘pipe’ symbols (ASCII 124, in a pair with no
space between). In SQL, the ‘+’ symbol is an arithmetic operator and it will cause an
error if you attempt to use it for concatenating strings. The following expression pre-
fixes a character column value with the characters ‘Reported by:’:

'Reported by: ' || LastName

Take care with concatenations. Be aware that Firebird will raise an error if your expres-
sion attempts to concatenate two or more char or varchar columns whose potential
combined lengths would exceed the maximum length limit for a char or a varchar
(32KB).

Please also refer to expressions involving NULL, for further information concerning con-
catenation in expressions.

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

I.1.5 Division of an integer by an integer

Firebird accords with the SQL standard by truncating the result (quotient) of an inte-
ger/integer calculation to the next lower integer. This can have bizarre results unless
you are aware of it.

For example, this calculation is correct in SQL:

1 / 3 = 0

I

SQL Language Reference - DDL – Data Definition Language

583

If you are upgrading from a RDBMS which resolves integer/integer division to a float
quotient, you will need to alter any affected expressions to use a float or scaled nu-
meric type for either dividend, divisor, or both.
For example, the calculation above could be modified thus in order to produce a non-
zero result:

1.000 / 3 = 0.333

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

I.1.6 Expressions involving NULL

In SQL, NULL is not a value. It is a condition, or state, of a data item, in which its value
is unknown. Because it is unknown, null cannot behave like a value. When you try to
perform arithmetic on NULL, or involve it with values in other expressions, the result of
the operation will always be NULL. It is not zero or blank or an “empty string” and it
does not behave like any of these values.

Here are some examples of the types of surprises you will get if you try to perform cal-
culations and comparisons with NULL:

1 + 2 + 3 + NULL = NULL
if (a = b) then
MyVariable = 'Equal'
else
MyVariable = 'Not equal';

will return ‘Not equal’ if both a and b are null.

if (a <> b) then
MyVariable = 'Not equal'
else
MyVariable = 'Equal';

will also return ‘Not equal’ if both a and b are null.

FirstName ||' ' || LastName

will return NULL if either FirstName or LastName is NULL.

Source: Firebird Quick Start Guide, © IBPhoenix Publications 2002,2003

I.2 DDL – Data Definition Language
DDL is the abbreviation for Data Definition Language.

The task of DDL is database definition, i.e. the predefinition and manipulation of the
metadata.

Using different DDL commands, the database metadata can be created, altered and de-
leted. For example table structure, use of indices, the activation of exceptions and con-

I

SQL Language Reference - DDL – Data Definition Language

584

struction of procedures can all be defined by DDL commands. DDL commands are a
subarea of SQL; the range of the SQL language is composed of DDL and DML together.

Important: In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a terminat-
ing symbol for the statement, so it must be included.

The source of all definitions included in this section is the Borland InterBase Language
Reference.

I.2.1 ALTER

ALTER is the SQL command used to modify database objects, i.e. databases, domains,
tables, views, triggers, procedures, generators, UDFs etc. can all be changed using the
ALTER command.

The different versions of the ALTER command serve to extend or change an already de-
fined structure, the type of alteration defined as an additional attribute of the com-
mand. This allows, for example, the metadata in already defined tables, stored proce-
dures or triggers to be manipulated.

A database object can be altered in IBExpert using the DB Explorer right mouse button
menu (Edit ...) or simply by double-clicking on the object to be altered.

I

SQL Language Reference - DDL – Data Definition Language

585

Alterations can of course also be made directly in the SQL Editor.

I.2.2 COMMIT

The COMMIT command makes a transaction's changes to the database permanent. It is
used to start all transactions.

COMMIT is used to end a transaction and:

• Write all updates to the database.
• Make the transaction's changes visible to subsequent SNAPSHOT transactions or
READ COMMITTED transactions.

• Close open cursors, unless the RETAIN argument is used.

After executing a transaction with [F9] or the

icon, and all operations in the transaction have been successfully performed by the
server, the changes to the database must be explicitly committed. This can be done
using [Ctrl + Alt + C] or the

I

SQL Language Reference - DDL – Data Definition Language

586

icon.

Of course, those competent in SQL can also enter the command directly in SQL Editor.

Syntax:

COMMIT [WORK] [TRANSACTION name] [RELEASE] [RETAIN [SNAPSHOT]];

WORK - an optional work used for compatibility with other relational databases that
require it.

TRANSACTION name - Commits a transaction name to database. Without this option,
COMMIT affects the default transaction.

RELEASE - Available for compatibility with earlier versions of InterBase/Firebird.

RETAIN [SNAPSHOT] - Commits changes and retains current transaction context.

The transaction name is only valid in an embedded SQL application using SQL or DSQL,
where more than one transaction can be active at a time.

A transaction ending with COMMIT is considered a successful termination. Always use
COMMIT or ROLLBACK to end the default transaction. Tip: after read-only transactions,
which make no database changes, use COMMIT rather than ROLLBACK. The effect is the
same, but the performance of subsequent transactions is better and the system re-
sources used by them are reduced.

This statement is not valid inside a trigger, because a trigger is started automatically
as part of a larger transaction, with other triggers perhaps firing after it. It is also not
valid inside a stored procedure because the procedure might be invoked from a trigger.

In IBExpert it is possible to force all commands to be automatically committed, by
checking the Autocommit Transactions box in the Database Properties dialog / Addi-
tional (menu item: Database / Database Registration Info...):

I

SQL Language Reference - DDL – Data Definition Language

587

However, this is
NOT recommended, as it is all too easy to accidentally drop a database (instead of a
database field for example), as the developer is no longer asked for confirmation, be-
fore committing.

I.2.3 CONNECT

A connection can be made to one or more existing databases using the CONNECT com-
mand.

The connection parameters can be specified in IBExpert using the menu item Database
/ Register Database. Here a specified connection may also be tested. the IBExpert
menu item Services / Communication Diagnostics may be used to analyze connection
problems. It delivers a detailed protocol of the test connect to a registered Inter-
Base/Firebird server and the results. IBExpert also offers toolbar icons for connecting,
reconnecting and disconnecting to a registered database.

The CONNECT statement initializes the database data structures and determines if the
database is on the originating node (local database) or on another node (remote data-
base). An error message occurs if InterBase/Firebird cannot locate the database. The
CONNECT statement attaches to the database and verifies the header page. The data-
base file must contain a valid database, and the on-disk structure (ODS) version num-
ber of the database must be recognized by the installed InterBase version on the
server.

It is possible to specify a cache buffer for the process attaching to a database. In SQL
programs, a database must first be declared with the SET DATABASE command, before
it can be opened with the CONNECT statement. When attaching to a database, CONNECT
uses the default character set (NONE), or one specified in a previous SET NAMES state-
ment.

A subset of CONNECT features is available in ISQL (see syntax below). ISQL can only be
connected to one database at a time. Each time the CONNECT statement is used to con-

I

SQL Language Reference - DDL – Data Definition Language

588

nect to a database, previous attachments are disconnected. ISQL does not use SET
DATABASE.

Syntax ISQL form:

CONNECT 'filespec' [USER 'username'][PASSWORD 'password']
 [CACHE int] [ROLE 'rolename']

SQL form:

CONNECT [TO] {ALL | DEFAULT} config_opts
 | db_specs config_opts [, db_specs config_opts...];
<db_specs> = dbhandle
 | {'filespec' | :variable} AS dbhandle
<config_opts> = [USER {'username' | :variable}]
 [PASSWORD {'password' | :variable}]
 [ROLE {'rolename' | :variable}]
 [CACHE int [BUFFERS]]

• {ALL | DEFAULT} - Connects to all databases specified with SET DATABASE; op-
tions specified with CONNECT TO ALL affect all databases.

• 'filespec' Database file name - can include path specification and node. The
filespec must be in quotes if it includes spaces.

• dbhandle - Database handle declared in a previous SET DATABASE statement;
available in embedded SQL but not in isql.

• :variable Host-language variable specifying a database, user name, or password;
available in embedded SQL but not in isql.

• AS dbhandle - Attaches to a database and assigns a previously declared handle to
it; available in embedded SQL but not in isql.

• USER {'username' | :variable} String or host-language variable that optionally
specifies a user name for use when attaching to the database. The server checks
the user name against the security database. User names are case insensitive on
the server. PC clients must always send a valid user name and password.

• PASSWORD {‘password’ | :variable} - String or host-language variable, up to 8
characters in size, that specifies password for a user listed in the security data-
base, if used, for use when attaching to the database. The server checks the user
name and password against the security database. Case sensitivity is retained for
the comparison. PC clients must always send a valid user name and password.

• ROLE {‘rolename’ | :variable} String or host-language variable, up to 67 charac-
ters in size, which optionally specifies the role that the user adopts on connection to
the database. The user must have previously been granted membership in the role
to gain the privileges of that role. Regardless of role memberships granted, the
user has the privileges of a role at connect time only if a ROLE clause is specified in
the connection. The user can
adopt at most one role per connection, and cannot switch roles except by recon-
necting.

• CACHE int [BUFFERS] - Sets the number of cache buffers for a database (default
is 75), which determines the number of database pages a program can use at the
same time. Values for int:
• Default: 256
• Maximum value: system-dependent

I

SQL Language Reference - DDL – Data Definition Language

589

This can be used to set a new default size for all databases listed in the CONNECT
statement that do not already have a specific cache size, or specify a cache for a
program that uses a single database. The size of the cache persists as long as the
attachment is active. A decrease in cache size does not affect databases that are al-
ready attached through a server. Do not use the filespec form of database name
with cache assignments.

Example:

CONNECT C:\DB01\DB01.GDB USER SYSDBA PASSWORD masterkey

In the above example a connection is made to the InterBase database DB01.GDB in the
C:\DB01 directory on a Windows NT Server.

When making a connection to a UNIX server the path definitions need to be adapted
accordingly:

CONNECT /usr/db01/db01.gdb USER SYSDBA PASSWORD masterkey

If the user details are not specified when performing the CONNECT command, the rele-
vant system variables for establishing the connection to the specified database are
used. This can have the consequence, that if these variables have undefined values, a
database connection is not made, and instead an appropriate error message appears.

I.2.4 CREATE

CREATE is the SQL command used to create database objects, i.e. databases, domain,
tables, views, triggers, procedures, generators, UDFs etc. can all be defined using the
CREATE command.

A database object can be created in IBExpert using the DB Explorer right mouse button
menu (New ...), the Database menu, or the respective New Database Object icon.

I

SQL Language Reference - DDL – Data Definition Language

590

It can of course also be created, by those who are competent in SQL, directly in the
SQL Editor. The CREATE command syntax can be found under the respective subjects
(e.g. Create Database, Create Domain, Create Table, etc.).

I.2.5 DECLARE EXTERNAL FUNCTION (incorporating a new
UDF library)

In order to use an already defined or programmed UDF (User Defined Function) within
an InterBase/Firebird database, this has to be explicitly declared using the DECLARE
EXTERNAL FUNCTION command.

The DECLARE EXTERNAL FUNCTION command syntax is as follows:

DECLARE EXTERNAL FUNCTION name [datatype | CSTRING (int)

[, datatype | CSTRING (int) …]]
 RETURNS {datatype [BY VALUE] | CSTRING (int) | PARAMETER n} [FREE_IT]
ENTRY_POINT <External_Function_Name>
 MODULE NAME <Library_Name>;

By declaring the UDF, the database is informed of the following for an existing UDF
(<External_Function_Name>):

• name - Name of the UDF to use in SQL statements. It can be different to the name
of the function specified after the ENTRY_POINT keyword.

• datatype - Data type of an input or return parameter. All input parameters are
passed to a UDF by reference. Return parameters can be passed by value. It cannot
be an array element.

I

SQL Language Reference - DDL – Data Definition Language

591

• CSTRING (int) - Specifies a UDF that returns a null-terminated string int bytes in
length.

• RETURNS - Specifies the return value of a function.
• BY VALUE - Specifies that a return value should be passed by value rather than by

reference.
• PARAMETER n - Specifies that the nth input parameter is to be returned. Used

when the return data type is a blob.
• FREE_IT - Frees memory of the return value after the UDF finishes running.
• <External_Function_Name> - Quoted string that contains the function name as

it is stored in the library that is referenced by the UDF. The entryname is the actual
name of the function as stored in the UDF library. It does not have to match the
name of the UDF as stored in the database.

• <Library_Name> - Quoted specification identifying the library that contains the
UDF. The library must reside on the same machine as the InterBase/Firebird server.
On any platform, the module can be referenced with no path name if it is in. <In-
terBase/Firebird_home>/UDF or <InterBase/Firebird_home>/intl. If the li-
brary is in a directory other than <InterBase/Firebird_home>/UDF or <Inter-
Base/Firebird_home>/intl, you must specify its location in InterBase/Firebird’s con-
figuration file (ibconfig) using the EXTERNAL_FUNCTION_DIRECTORY parameter. It
is not necessary to supply the extension to the module name.

The UDF name in the database does not have to correspond to the original function
name. The input parameters are basically transferred BY REFERENCE. In the case of the
return parameters it is also possible to specify the form BY VALUE, using the optional
BY VALUE parameter.

Note: Whenever a UDF returns a value by reference to dynamically allocated memory,
you must declare it using the FREE_IT keyword in order to free the allocated memory.

To specify a location for UDF libraries in a configuration file, enter the following for
Windows platforms:

EXTERNAL_FUNCTION_DIRECTORY D:\Mylibraries\InterBase

For UNIX, the statement does not include a drive letter:

EXTERNAL_FUNCTION_DIRECTORY \Mylibraries\InterBase

The InterBase/Firebird configuration file is called ibconfig or firebird.conf on all
platforms.

Examples:

The following isql statement declares the TOPS() UDF to a database:

DECLARE EXTERNAL FUNCTION TOPS
 CHAR(256), INTEGER, BLOB
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'te1' MODULE_NAME 'tm1';

This example does not need the FREE_IT keyword because only cstrings, CHAR and
VARCHAR return types require memory allocation.

I

SQL Language Reference - DDL – Data Definition Language

592

The next example declares the LOWERS() UDF and frees the memory allocated for the
return value:

DECLARE EXTERNAL FUNCTION LOWERS VARCHAR(256)
 RETURNS CSTRING(256) FREE_IT
 ENTRY POINT 'fn_lower' MODULE_NAME 'udflib';

In the example below (taken from the RFunc library) a function SUBSTR is declared,
which calculates the substring of strings, from character i1 and length maximum i2:

DECLARE EXTERNAL FUNCTION SUBSTR
 CSTRING(256),
 INTEGER,
 INTEGER
RETURNS CSTRING(256)
ENTRY_POINT 'fn_substr' MODULE_NAME 'rfunc';

ENTRY_POINT

ENTRY_POINT is a term used in the declaration of an external function.

Syntax:

ENTRY_POINT <External_Function_Name>

The entry point is a text which specifies when the function should jump into a starting
address from a DLL.

MODULE NAME

The DLL name of a UDF is entered as the last parameter when declaring an external
function.

Syntax:

MODULE NAME <Library_Name>

It specifies in which UDF library the UDF can be found (<Library_Name>). Whether the
file suffix needs to be entered or not, and how, is dependent upon the operating sys-

I

SQL Language Reference - DDL – Data Definition Language

593

tem. For example, Linux requires the suffix .SO (Shared Object Library); in Windows
.DLL (Dynamic Link Library).

RETURNS

RETURNS is a term used in the declaration of an external function. Here the output pa-
rameters are specified (i.e. data type and in which form).

Syntax:

RETURNS <Return_Type>

RETURN parameters can also be specified in the form BY VALUE, using the optional BY
VALUE parameter.

I.2.6 DESCRIBE

Provides information about columns that are retrieved by a dynamic SQL (DSQL)
statement, or information about the dynamic parameters that a statement passes.
Available in gpre.

This feature is available in IBExpert in most object editors (please refer to Table Editor
/ Description for further information).

Syntax:

DESCRIBE [OUTPUT | INPUT] statement
 {INTO | USING} SQL DESCRIPTOR xsqlda;

• OUTPUT [Default] - Indicates that column information should be returned in the
XSQLDA.

• INPUT - Indicates that dynamic parameter information should be stored in the
XSQLDA

• statement - A previously defined alias for the statement to DESCRIBE. Use PREPARE
to define aliases.

• {INTO | USING} SQL DESCRIPTOR xsqlda - Specifies the XSQLDA to use for
the DESCRIBE statement.

DESCRIBE has two uses:

• As a describe output statement, DESCRIBE stores into an XSQLDA a description of
the columns that make up the select list of a previously prepared statement. If the
PREPARE statement includes an INTO clause, it is unnecessary to use DESCRIBE as
an output statement.

• As a describe input statement, DESCRIBE stores into an XSQLDA a description of the
dynamic parameters that are in a previously prepared statement. DESCRIBE is one
of a group of statements that process DSQL statements.

Statement Purpose

PREPARE Prepares a DSQL statement for execution.

I

SQL Language Reference - DDL – Data Definition Language

594

DESCRIBE Fills in the XSQLDA with information about the statement.

EXECUTE Executes a previously prepared statement.

EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it.

Separate DESCRIBE statements must be issued for input and output operations. The
INPUT keyword must be used to store dynamic parameter information.

Important: When using DESCRIBE for output, if the value returned in the sqld field in
the XSQLDA is larger than the sqln field, you must:

• Allocate more storage space for XSQLVAR structures.
• Reissue the DESCRIBE statement.

Note The same XSQLDA structure can be used for input and output if desired.

Example:

The following embedded SQL statement retrieves information about the output of a SE-
LECT statement:

EXEC SQL
 DESCRIBE Q INTO xsqlda

The following embedded SQL statement stores information about the dynamic parame-
ters passed with a statement to be executed:

EXEC SQL
 DESCRIBE INPUT Q2 USING SQL DESCRIPTOR xsqlda;

I.2.7 DISCONNECT

The DISCONNECT command detaches an application from one or more databases, de-
fined by its/their database handle, and frees the relevant sources. Available in gpre.

In IBExpert there is a toolbar icon to execute this command (or alternatively use the
IBExpert menu item Database / Disconnect from Database).

Syntax:

DISCONNECT ;

• ALL|DEFAULT - Either keyword detaches all open databases.
• dbhandle - Previously declared database handle specifying a database to detach.

DISCONNECT closes a specific database identified by a database handle or all databases,
releases resources used by the attached database, zeroes database handles, commits
the default transaction if the gpre -manual option is not in effect, and returns an error
if any non-default transaction is not committed.

I

SQL Language Reference - DDL – Data Definition Language

595

Before using DISCONNECT, commit or roll back the transactions affecting the database
to be detached.

Examples:

The following embedded SQL statements close all databases:

EXEC SQL
DISCONNECT DEFAULT;

EXEC SQL
DISCONNECT ALL;

The following embedded SQL statements close the databases identified by their han-
dles:

EXEC SQL
DISCONNECT DB1;

EXEC SQL
DISCONNECT DB1, DB2;

I.2.8 DROP

DROP is the SQL command used to delete database objects, i.e. databases, domains,
tables, views, triggers, procedures, generators, UDFs etc. can all be deleted using the
DROP command.

A database object can be dropped in IBExpert using the DB Explorer right mouse but-
ton menu (Drop ...). IBExpert requires confirmation of this command, as it is irreversi-
ble.

The DROP command can of course also be used directly in the SQL Editor. More infor-
mation can be found under the respective subjects (e.g. Drop Database, Drop Domain,
Drop Table, etc.).

Syntax:

DROP <database_object_type> <object_name>;

Example:

DROP TABLE Customer;

I

SQL Language Reference - DDL – Data Definition Language

596

I.2.9 END DECLARE SECTION

Identifies the end of a host-language variable declaration section. Available in gpre.

Syntax:

END DECLARE SECTION;

The END DECLARE SECTION command is used in embedded SQL applications to identify
the end of host-language variable declarations for variables used in subsequent SQL
statements.

Example:

The following embedded SQL statements declare a section and single host-language
variable:

EXEC SQL
 BEGIN DECLARE SECTION;
 BASED_ON EMPLOYEE.SALARY salary;

EXEC SQL
 END DECLARE SECTION;

I.2.10 EVENT

Please refer to the following:

• EVENT INIT statement
• EVENT WAIT statement

EVENT INIT

EVENT INIT is the first step in the InterBase two-part synchronous event mechanism:

• EVENT INIT registers an application’s interest in an event.
• EVENT WAIT causes the application to wait until notified of the event’s

occurrence.

EVENT INIT registers an application’s interest in a list of events in parentheses. The list
should correspond to events posted by stored procedures or triggers in the database. If
an application registers interest in multiple events with a single EVENT INIT, then
when one of those events occurs, the application must determine which event oc-
curred. The command EVENT INIT is only required by embedded SQL programmers,
and not required when programming the BDE.

Events are posted by a POST_EVENT call within a stored procedure or trigger. The event
manager keeps track of events of interest. At commit time, when an event occurs, the
event manager notifies interested applications.

The EVENT INIT command is constructed as follows:

I

SQL Language Reference - DDL – Data Definition Language

597

Syntax:

EVENT INIT request_name [dbhandle]
 [('string' | :variable [, 'string' | :variable …]);

• request_name - Application event handle.
• dbhandle - Specifies the database to examine for occurrences of the events; if

omitted, dbhandle defaults to the database named in the most recent SET DATA-
BASE statement.

• ‘string’ - Unique name identifying an event associated with event_name.
• :variable - Host language character array containing a list of event names to asso-

ciate with.

Example:

The following embedded SQL statement registers interest in an event:

EXEC SQL
 EVENT INIT ORDER_WAIT EMPDB ('new_order');

EVENT WAIT

Causes an application to wait until notified of an event’s occurrence. Available in gpre.

Syntax:

EVENT WAIT request_name;

• request_name - Application event handle declared in a previous EVENT INIT
statement.

EVENT WAIT is the second step in the InterBase/Firebird two-part synchronous event
mechanism. After a program registers interest in an event, EVENT WAIT causes the
process running the application to sleep until the event of interest occurs.

Examples:

The following embedded SQL statements register an application event name and indi-
cate the program is ready to receive notification when the event occurs:

EXEC SQL
 EVENT INIT ORDER_WAIT EMPDB ('new_order');

EXEC SQL
 EVENT WAIT ORDER_WAIT;

I.2.11 EXECUTE

The EXECUTE command performs a specified SQL statement. The statement can be any
SQL data definition, manipulation, or transaction management statement. Once it is
prepared, a statement can be executed any number of times.

I

SQL Language Reference - DDL – Data Definition Language

598

SQL commands can be executed using the [F9] key or following icon:

enabling the SQL code to be executed and tested before finally committing.

Should a part of the text have been highlighted, only the marked portion is executed,
which often causes an error message. If the execution has been successful, the SQL
can be committed using the respective icon or [Ctrl + Alt + C].

Syntax:

EXECUTE [TRANSACTION transaction] statement
 [USING SQL DESCRIPTOR xsqlda] [INTO SQL DESCRIPTOR xsqlda];

• request_name - Application event handle declared in a previous EVENT INIT
statement.

• TRANSACTION transaction - Specifies the transaction under which execution oc-
curs: This clause can be used in SQL applications running multiple, simultaneous
transactions to specify which transaction controls the EXECUTE operation.

• USING SQL DESCRIPTOR - Specifies those values corresponding to the prepared
statement’s parameters should be taken from the specified XSQLDA. It need only
be used for statements that have dynamic parameters.

• INTO SQL DESCRIPTOR - Specifies that return values from the executed state-
ment should be stored in the specified XSQLDA. It need only be used for DSQL
statements that return values.

• xsqlda - XSQLDA host-language variable.

Note If an EXECUTE statement provides both a USING DESCRIPTOR clause and an INTO
DESCRIPTOR clause, then two XSQLDA structures must be provided.

EXECUTE carries out a previously prepared DSQL statement. It is one of a group of
statements that process DSQL statements.

• PREPARE - Readies a DSQL statement for execution.
• DESCRIBE - Fills in the XSQLDA with information about the statement.
• EXECUTE - Executes a previously prepared statement.
• EXECUTE IMMEDIATE - Prepares a DSQL statement, executes it once, and dis-

cards it (please refer to EXECUTE IMMEDIATE statement for further information).

Before a statement can be executed, it must be prepared using the PREPARE state-
ment. The statement can be any SQL data definition, manipulation, or transaction
management statement. Once it is prepared, a statement can be executed any number
of times.

Example:

The following embedded SQL statement executes a previously prepared DSQL state-
ment:

EXEC SQL
 EXECUTE DOUBLE_SMALL_BUDGET;

I

SQL Language Reference - DDL – Data Definition Language

599

The next embedded SQL statement executes a previously prepared statement with pa-
rameters stored in an XSQLDA:

EXEC SQL
 EXECUTE Q USING DESCRIPTOR xsqlda;

The following embedded SQL statement executes a previously prepared statement with
parameters in one XSQLDA, and produces results stored in a second XSQLDA:

EXEC SQL
 EXECUTE Q USING DESCRIPTOR xsqlda_1 INTO DESCRIPTOR xsqlda_2;

EXECUTE IMMEDIATE

Prepares a dynamic SQL (DSQL) statement, executes it once, and then discards it.
Available in gpre.

Syntax:

EXECUTE IMMEDIATE [TRANSACTION transaction]
 {:variable | 'string'} [USING SQL DESCRIPTOR xsqlda];

• TRANSACTION transaction - Specifies the transaction under which execution oc-
curs.

• :variable - Host variable containing the SQL statement to execute.
• ‘string’ - A string literal containing the SQL statement to execute.
• USING SQL DESCRIPTOR - Specifies that values corresponding to the statement’s

parameters should be taken from the specified XSQLDA.
• xsqlda - XSQLDA host-language variable:

EXECUTE IMMEDIATE prepares a DSQL statement stored in a host-language variable or
in a literal string, executes it once and discards it. To prepare and execute a DSQL
statement for repeated use, use PREPARE and EXECUTE instead of EXECUTE IMMEDIATE.

The TRANSACTION clause can be used in SQL applications running multiple, simultane-
ous transactions to specify which transaction controls the EXECUTE IMMEDIATE opera-
tion.

The SQL statement to execute must be stored in a host variable or be a string literal. It
can contain any SQL data definition statement or data manipulation statement that
does not return output.

USING DESCRIPTOR enables EXECUTE IMMEDIATE to extract the values of a statement’s
parameters from an XSQLDA structure previously loaded with appropriate values.

Example:

The following embedded SQL statement prepares and executes a statement in a host
variable:

EXEC SQL
 EXECUTE IMMEDIATE :insert_date;

I

SQL Language Reference - DDL – Data Definition Language

600

EXECUTE PROCEDURE

Calls a specified stored procedure. Available in gpre, DSQL, and isql.

In IBExpert a procedure can be executed in the Stored Procedure Editor or SQL Editor
using the [F9] key or following icon:

Syntax SQL form:

EXECUTE PROCEDURE [TRANSACTION transaction]
 name [:param [[INDICATOR]:indicator]]
 [, :param [[INDICATOR]:indicator] …]
 [RETURNING_VALUES :param [[INDICATOR]:indicator]
 [, :param [[INDICATOR]:indicator] …]];

DSQL form:

EXECUTE PROCEDURE name [param [, param …]]
 [RETURNING_VALUES param [, param …]]

isql form:

EXECUTE PROCEDURE name [param [, param …]]

• TRANSACTION transaction - Specifies the TRANSACTION under which execution
occurs.

• name - Name of an existing stored procedure in the database.
• param - Input or output parameter; can be a host variable or a constant.
• RETURNING_VALUES: param - Host variable which takes the values of an output

parameter.
• [INDICATOR] :indicator - Host variable for indicating NULL or unknown values.

EXECUTE PROCEDURE calls the specified stored procedure. If the procedure requires in-
put parameters, they are passed as host-language variables or as constants. If a pro-
cedure returns output parameters to a SQL program, host variables must be supplied
in the RETURNING_VALUES clause to hold the values returned.

In isql, do not use the RETURN clause or specify output parameters. isql will automati-
cally display return values.

Note: in DSQL, an EXECUTE PROCEDURE statement requires an input descriptor area if it
has input parameters and an output descriptor area if it has output parameters.

In embedded SQL, input parameters and return values may have associated indicator
variables for tracking NULL values. Indicator variables are integer values that indicate
unknown or NULL values of return values.

An indicator variable that is less than zero indicates that the parameter is unknown or
NULL. An indicator variable that is zero or greater indicates that the associated pa-
rameter is known and not NULL.

I

SQL Language Reference - DDL – Data Definition Language

601

Examples:

The following embedded SQL statement demonstrates how the executable procedure,
DEPT_BUDGET, is called from embedded SQL with literal parameters:

EXEC SQL
 EXECUTE PROCEDURE DEPT_BUDGET 100
 RETURNING_VALUES :sumb;

The next embedded SQL statement calls the same procedure using a host variable in-
stead of a literal as the input parameter:

EXEC SQL
 EXECUTE PROCEDURE DEPT_BUDGET :rdno
 RETURNING_VALUES :sumb;

I.2.12 GRANT

GRANT is the SQL statement, used to assign privileges to database users for specified
database objects. Grants can be assigned and revoked using the IBExpert Grant Man-
ager, the relevant object editors' Grants pages, or the SQL Editor.

InterBase/Firebird offers the following access privileges at database object level:

Privilege Allows user to:

SELECT Read data.

INSERT Write new data.

UPDATE Modify existing data.

DELETE Delete data.

ALL Select, insert, update, delete data, and reference a primary key from
a foreign key. (Note: does not include references or code for Inter-
Base 4.0 or earlier).

EXECUTE Execute or call a stored procedure.

REFERENCES Reference a primary key with a foreign key.

role Use all privileges assigned to the role (please refer to Role for further
information).

PUBLIC is used to assign a set of privileges to every user of the database. Using the
PUBLIC keyword does not grant the specified rights to stored procedures, only to all
database users. Procedures need to be specified explicitly. Please note: PUBLIC is really
public! This GRANT option enables all users to access and manipulate a database object
with PUBLIC rights, even certain system files.

Table Interactions:

Many operations require that the user has rights to linked tables, in order for Inter-
Base/Firebird to process updates.

I

SQL Language Reference - DDL – Data Definition Language

602

• If foreign key constraints exist between two tables, then an UPDATE, DELETE or IN-
SERT operation on the first table requires SELECT or REFERENCES privileges on the
referenced table. Tip: Make it easy: if read security is not an issue, GRANT REFER-
ENCES on the primary key table to PUBLIC. If you grant the REFERENCES privilege, it
must, at a minimum, be granted to all columns of the primary key. When REFER-
ENCES is granted to the entire table, columns that are not part of the primary key
are not affected in any way. When a user defines a foreign key constraint on a table
owned by someone else, InterBase/Firebird checks that the user has REFERENCES
privileges on the referenced table. The privilege is used at runtime to verify that a
value entered in a foreign key field is contained in the primary key table. You can
grant REFERENCES privileges to roles.

• If there is a check constraint within a table, an UPDATE or INSERT operation also re-
quires SELECT privileges on the same table.

• If a constraint includes one or more queries, an UPDATE or INSERT operation also
requires SELECT privileges on the table or tables used in the SELECT.

IBExpert allows privileges to be granted on objects at the time of creation directly in
the objects editor's Grants page (please refer to Table Editor / Grants page for further
details). Dependencies upon or from other objects are also displayed in the individual
object editors, to show visually any object interactions, which may need to be taken
into consideration when assigning user permissions. Refer to Table Editor / Dependen-
cies page for further information. All objects or a filtered selection of objects can be
displayed and processed in the IBExpert Grant Manager.

Privileges can be granted to a role as well as to users or stored procedures, tables,
views and triggers.

The GRANT statement can be used in gpre, DSQL and isql. The syntax is as follows:

GRANT privileges ON [TABLE] {tablename | viewname}
 TO {object|userlist [WITH GRANT OPTION]|GROUP UNIX_group}
 | EXECUTE ON PROCEDURE procname TO {object | userlist}
 | role_granted TO {PUBLIC | role_grantee_list}[WITH ADMIN OPTION];

<privileges> = ALL [PRIVILEGES] | privilege_list

<privilege_list> = {
 SELECT
 | DELETE
 | INSERT
 | UPDATE [(col [, col …])]
 | REFERENCES [(col [, col …])]
}[, privilege_list …]

<object> = {
 PROCEDURE procname
 | TRIGGER trigname
 | VIEW viewname
 | PUBLIC
}[, object …]

I

SQL Language Reference - DDL – Data Definition Language

603

<userlist> = {
 [USER] username
 | rolename
 | UNIX_user
}[,userlist …]

<role_granted> = rolename [, rolename …]

<role_grantee_list> = [USER] username [, [USER] username …]

• privilege_list - Name of privilege to be granted; valid options are SELECT, DELETE,
INSERT, UPDATE, and REFERENCES.

• col - Column to which the granted privileges apply.
• tablename - Name of an existing table for which granted privileges apply.
• viewname - Name of an existing view for which granted privileges apply.
• GROUP unix_group - On a UNIX system, the name of a group defined in
/etc/group.

• object - Name of an existing procedure, trigger, or view; PUBLIC is also a permit-
ted value.

• userlist - A user in the InterBase/Firebird security database (admin.ib or by de-
fault) or a rolename created with CREATE ROLE.

• WITH GRANT OPTION - Passes GRANT authority for privileges listed in the GRANT
statement to userlist (please refer to GRANT AUTHORITY for further information).

• rolename - An existing role created with the CREATE ROLE statement
• role_grantee_list - A list of users to whom rolename is granted; users must be in

the InterBase security database.
• WITH ADMIN OPTION - Passes grant authority for roles listed to
role_grantee_list.

Important: In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a terminat-
ing symbol for the statement, so it must be included.

To grant privileges to a group of users, create a role using the CREATE ROLE statement.
Please refer to Role for details.

On UNIX systems, privileges can be granted to groups listed in /etc/groups and to
any UNIX user listed in /etc/passwd on both the client and server, as well as to indi-
vidual users and to roles.

Examples:

GRANT insert, update, delete
 ON customer
 TO Janet, John
 WITH GRANT OPTION;

or:

GRANT references
 ON customer
 TO PUBLIC;

I

SQL Language Reference - DDL – Data Definition Language

604

If different levels of access are to be assigned to different objects and different people,
separate GRANT statements have to be used.

This embedded SQL statement grants EXECUTE privileges for a procedure to another
procedure and to a user:

EXEC SQL
 GRANT EXECUTE ON PROCEDURE GET_EMP_PROJ
 TO PROCEDURE ADD_EMP_PROJ, LUIS;

The following example creates a role called administrator, grants UPDATE privileges
on table1 to that role, and then grants the role to user1, user2, and user3. These us-
ers then have UPDATE and REFERENCES privileges on table1:

CREATE ROLE administrator;
GRANT UPDATE ON table1 TO administrator;
GRANT administrator TO user1, user2, user3;

I.2.13 PREPARE

The PREPARE statement prepares a dynamic SQL (DSQL) statement for execution.
Available in gpre.

The IBExpert SQL Editor toolbar icon Prepare Query or [Ctrl + F9] may also be used to
prepare a query.

Syntax:

PREPARE [TRANSACTION transaction] statement
 [INTO SQL DESCRIPTOR xsqlda] FROM {:variable | 'string'};

• TRANSACTION - transaction name of the transaction under control of which the
statement is executed.

• statement - Establishes an alias for the prepared statement that can be used by
subsequent DESCRIBE and EXECUTE statements.

• INTO xsqlda - Specifies an XSQLDA to be filled in with the description of the select
list columns in the prepared statement.

• :variable | `string’ - DSQL statement to PREPARE; can be a host-language vari-
able or a string literal.

PREPARE readies a DSQL statement for repeated execution by:

• Checking the statement for syntax errors.
• Determining data types of optionally specified dynamic parameters.
• Optimizing statement execution.
• Compiling the statement for execution by EXECUTE.

PREPARE is part of a group of statements that prepare DSQL statements for execution.

Statement Purpose

PREPARE Prepares a DSQL statement for execution.

I

SQL Language Reference - DDL – Data Definition Language

605

DESCRIBE Fills in the XSQLDA with information about the statement.

EXECUTE Executes a previously prepared statement.

EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it.

After a statement is prepared, it is available for execution as many times as necessary
during the current session. To prepare and execute a statement only once, use EXE-
CUTE IMMEDIATE.

STATEMENT establishes a symbolic name for the actual DSQL statement to prepare. It is
not declared as a host language variable. Except for C programs, gpre does not distin-
guish between uppercase and lowercase in statement, treating “B” and “b” as the same
character. For C programs, use the gpre -either_case switch to activate case sensitiv-
ity during preprocessing.

If the optional INTO clause is used, PREPARE also fills in the extended SQL descriptor
area (XSQLDA) with information about the data type, length, and name of select list
columns in the prepared statement. This clause is useful only when the statement to
prepare is a SELECT.

Note: The DESCRIBE statement can be used instead of the INTO clause to fill in the
XSQLDA for a select list.

The FROM clause specifies the actual DSQL statement to PREPARE. It can be a host lan-
guage variable, or a quoted string literal. The DSQL statement to PREPARE can be any
SQL data definition, data manipulation, or transaction-control statement.

Examples:

The following embedded SQL statement prepares a DSQL statement from a host vari-
able statement. Because it uses the optional INTO clause, the assumption is that the
DSQL statement in the host variable is a SELECT.

EXEC SQL
 PREPARE Q INTO xsqlda FROM :buf;

Note: The previous statement could also be prepared and described in the following
manner:

EXEC SQL
 PREPARE Q FROM :buf;

EXEC SQL
 DESCRIBE Q INTO SQL DESCRIPTOR xsqlda;

I.2.14 REVOKE

REVOKE is the SQL statement, used to withdraw those rights already assigned to data-
base users or objects for database objects. Rights can be revoked using the IBExpert
Grant Manager, the relevant object editors' Grants pages, or the SQL Editor.

I

SQL Language Reference - DDL – Data Definition Language

606

The following rules apply when revoking user privileges:

• Only the user who granted the privilege or the SYSDBA may revoke it.
• Revoking a privilege has no effect on any other privileges granted by other users.

However, if multiple users have the ability to grant privileges, one user might have
received a specific privilege from more than one source. If only one of them is re-
voked, the other remains in effect.

• If a privilege, which was originally granted using the WITH GRANT OPTION clause, is
revoked, any subsequent users to which the same privilege had been granted in
turn lose their privileges too.

• The ALL keyword can be used to revoke all granted privileges to an object, even if
the user has not been granted all available privileges in the first place. REVOKE ALL
however has no effect on the EXECUTE privilege, which must always be explicitly re-
voked.

• If a privilege is granted to all users using the PUBLIC option, this grant can only be
revoked using the same PUBLIC option.

The SQL syntax is as follows:

REVOKE [GRANT OPTION FOR] privilege ON [TABLE] {tablename | viewname}
 FROM {object | userlist | rolelist | GROUP UNIX_group}
 | EXECUTE ON PROCEDURE procname FROM {object | userlist}
 | role_granted FROM {PUBLIC | role_grantee_list}};
<privileges> = ALL [PRIVILEGES] | privilege_list
<privilege_list> = {
 SELECT
 | DELETE
 | INSERT
 | UPDATE [(col [, col …])]
 | REFERENCES [(col [, col …])]
 }[, privilege_list …]
<object> = {
 PROCEDURE procname
 | TRIGGER trigname
 | VIEW viewname
 | PUBLIC
 }[, object …]
<userlist> = [USER] username [, [USER] username …]
<rolelist> = rolename [, rolename]
<role_granted> = rolename [, rolename …]
<role_grantee_list> = [USER] username [, [USER] username …]

• privilege_list - Name of privilege to be granted; valid options are SELECT, DELETE,
INSERT, UPDATE, and REFERENCES.

• GRANT OPTION FOR - Removes grant authority for privileges listed in the REVOKE
statement from userlist; cannot be used with object.

• col - Column for which the privilege is revoked.
• tablename - Name of an existing table for which privileges are revoked.
• viewname - Name of an existing view for which privileges are revoked.
• GROUP unix_group - On a UNIX system, the name of a group defined in
/etc/group.

I

SQL Language Reference - DDL – Data Definition Language

607

• object - Name of an existing database object from which privileges are to be re-
voked.

• userlist - A list of users from whom privileges are to be revoked.
• rolename - An existing role created with the CREATE ROLE statement.
• role_grantee_list - A list of users to whom rolename is granted; users must be in

the InterBase security database (admin.ib by default).

For example, to revoke INSERT and UPDATE privileges from Janet and John:

REVOKE INSERT, UPDATE
 ON PROJ_DEPT_BUDGET
 FROM Janet, John

To revoke all privileges from every user, use the PUBLIC option, for example:

REVOKE ALL
 ON PROJ_DEPT_BUDGET
 FROM PUBLIC;

I.2.15 ROLLBACK

If a transaction's operations did not all complete successfully or satisfactorily, it is pos-
sible to roll back the transaction. A rollback restores the data to the state it was in be-
fore the transaction started. All changes made by insertions, updates and deletions are
reversed.

The ROLLBACK is performed in IBExpert using the

icon or [Ctrl + Alt + R].

Rolling back can of course also be specified by issuing the following statement:

ROLLBACK [TRANSACTION name];

The transaction name is only required in embedded SQL applications using SQL or
DSQL, where more than one transaction can be active at any one time.

It is important to note that when a transaction is rolled back, the changes performed
by that transaction are not immediately deleted. Instead, InterBase flags the transac-
tion associated with that entry as having been rolled back in the Transaction Inventory
Page (TIP). Subsequent queries must then reconstruct the row using the version his-
tory.

When InterBase/Firebird performs a garbage collection or database sweep, the server
detects that the row entry for the current version does not in fact contain the complete
current version. It is then updated and the various data segments and version history
relinked to ensure that the current version of the row is stored in the correct place, so
that back versions do not need to be read each time.

I

SQL Language Reference - DDL – Data Definition Language

608

I.2.16 SET

The SET statement includes the following:

• SET DATABASE statement
• SET GENERATOR statement
• SET NAMES statement
• SET SQL DIALECT statement
• SET STATISTICS statement
• SET TERM terminator
• SET TRANSACTION statement

SET DATABASE

The SET DATABASE command creates a so-called database handle when creating em-
bedded SQL applications for a specified database. It is available in gpre.

As it is possible to access several databases with embedded SQL applications, the de-
sired database can be explicitly specified with the aid of the handle. The SET DATABASE
command is only required by embedded SQL programmers and is not necessary for
programming the BDE.

SET DATABASE has the following syntax:

SET DATABASE DB_Handle =
 [GLOBAL | STATIC | EXTERN]
 [COMPILETIME] [FILENAME] "<db_Name>"
 [USER "UserName" PASSWORD "PassString"]
 [RUNTIME] [FILENAME] {"<DB_Name>"|:VarDB}
 [USER {"Name"| :VarName}
 PASSWORD {"Password"| :VarPassWord=};

• DB_Handle - This is the name of the database handle, defined by the application.
It is an alias (usually an abbreviation) for a specified database. It must be unique
within the program, follow the file syntax conventions for the server where the da-
tabase resides, and be used in subsequent SQL statements that support database
handles. For example, they can be used in subsequent CONNECT, COMMIT and ROLL-
BACK statements, or can also be used within transactions to differentiate table
names when two or more attached databases contain tables with the same names.

The optional parameters GLOBAL, STATIC and EXTERN can be used to specify the validity
range of the database declaration. Following rules apply for the validity range:

• Global: The database declaration is visible for all modules (default).
• Static: Limits the database declaration to the current module (i.e. limit the data-

base handle availability to the code module where the handle is declared).
• Extern: References a global database handle in another module, rather than actu-

ally declaring a new handle.
• Compiletime - Identifies the database used to look up column references during

preprocessing. If only one database is specified in SET DATABASE, it is used both at
runtime and compiletime.

I

SQL Language Reference - DDL – Data Definition Language

609

• Runtime - Specifies a database to use at runtime if different thatn the one speci-
fied for use during preprocessing. And if necessary, different standard users can be
specified for both situations. InterBase/Firebird sets the same database for runtime
and development time as standard, if the optional parameters COMPILETIME and
RUNTIME are not used.

• <DB_Name> - Represents a file specificationfor the database to associate with
db_handle. It is platform-specific.

• :VarDB - This is the host-language variable containing a database specification,
user name, or password.

• USER and PASSWORD - Valid user name and password on the server where the
database resided. Required for PC client attachments, optional for all others.

Example:

EXEC SQL
 SET DATABASE EMPDB = 'employee.gdb'
 COMPILETIME "Test.gdb"
 RUNTIME :db_runtime;

SET GENERATOR

The SET GENERATOR command sets a new start value for an existing generator.

The SET GENERATOR command syntax is composed as follows:

SET GENERATOR Gen_Name TO int_value;

As soon as the function GEN_ID() enters or alters a value in a table column, this value
is calculated from the int_value plus the increment defined by the GEN_ID() step pa-
rameter.

Example:

SET GENERATOR CUST_ID_GEN TO 1030;

Assuming that the step parameter in the function GEN_ID() is given the value 1, the
next customer would receive the customer number 1031.

This statement can also be easily and quickly performed using IBExpert's Generator
Editor (please refer to Alter Generator for further information):

I

SQL Language Reference - DDL – Data Definition Language

610

SET NAMES

The SET NAMES statement specifies an active character set to use for subsequent data-
base attachments. Available in gpre, and isql.

Syntax:

SET NAMES [charset | :var];

• charset - Name of a character set that identifies the active character set for a
given process; default: NONE.

• :var - Host variable containing string identifying a known character set name. Must
be declared as a character set name. SQL only.

SET NAMES specifies the character set to use for subsequent database attachments in
an application. It enables the server to translate between the default character set for
a database on the server and the character set used by an application on the client.

SET NAMES must appear before the SET DATABASE and CONNECT statements it is to af-
fect.

Tip: Use a host-language variable with SET NAMES in an embedded application to spec-
ify a character set interactively.

Choice of character sets limits possible collation orders to a subset of all available colla-
tion orders. Given a specific character set, a specific collation order can be specified
when data is selected, inserted, or updated in a column. If a default character set is
not specified, the character set defaults to NONE.

Using character set NONE means that there is no character set assumption for columns;
data is stored and retrieved just as it is originally entered. You can load any character
set into a column defined with NONE, but you cannot load that same data into another
column that has been defined with a different character set. No transliteration is per-
formed between the source and destination character sets, so in most cases, errors oc-
cur during assignment.

Example:

The following statements demonstrate the use of SET NAMES in an embedded SQL ap-
plication:

EXEC SQL
 SET NAMES ISO8859_1;

EXEC SQL
 SET DATABASE DB1 = 'employee.gdb';

EXEC SQL
 CONNECT;

The next statements demonstrate the use of SET NAMES in isql:

I

SQL Language Reference - DDL – Data Definition Language

611

SET NAMES LATIN1;
 CONNECT 'employee.gdb';

SET SQL DIALECT

SET SQL DIALECT declares the SQL dialect for database access.

n is the SQL dialect type, either 1, 2, or 3. If no dialect is specified, the default dialect
is set to that of the specified compile-time database. If the default dialect is different
than the one specified by the user, a warning is generated and the default dialect is set
to the user-specified value. Available in gpre and isql.

Syntax:

SET SQL DIALECT n;

where n is the SQL dialect type, either 1, 2, or 3.

SQL Dia-
lect:

Used for:

 1 InterBase 5 and earlier compatibility.

 2 Transitional dialect used to flag changes when migrating from dialect 1
to dialect 3.

 3 Current InterBase/Firebird; allows you to use delimited identifiers, exact
NUMERICs, and DATE, TIME, and TIMESTAMP data types.

SET STATISTICS

SET STATISTICS enables the selectivity of an index to be recomputed. Index selectiv-
ity is a calculation, based on the number of distinct rows in a table, which is made by
the InterBase/Firebird optimizer when a table is accessed. It is cached in memory,
where the optimizer can access it to calculate the optimal retrieval plan for a given
query. For tables where the number of duplicate values in indexed columns radically
increases or decreases, periodically recomputing index selectivity can improve per-
formance. Available in gpre, DSQL, and isql.

Only the creator of an index can use SET STATISTICS .

Note: SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER IN-
DEX.

Syntax:

SET STATISTICS INDEX name;

• name - Name of an existing index for which to recompute selectivity.

Example:

The following embedded SQL statement recomputes the selectivity for an index:

I

SQL Language Reference - DDL – Data Definition Language

612

EXEC SQL
 SET STATISTICS INDEX MINSALX;

It is possible to recompute the selectivity for all indices using the IBExpert Database
menu item Recompute Selectivity of all Indices.

SET TRANSACTION

SET TRANSACTION starts a transaction, and optionally specifies its database access,
lock conflict behavior, and level of interaction with other concurrent transactions ac-
cessing the same data. It can also reserve locks for tables. As an alternative to reserv-
ing tables, multiple database SQL applications can restrict a transaction’s access to a
subset of connected databases. Available in gpre, DSQL and isql.

Important: applications preprocessed with the gpre -manual switch must explicitly
start each transaction with a SET TRANSACTION statement.

Syntax:

SET TRANSACTION [NAME transaction]
 [READ WRITE | READ ONLY]
 [WAIT | NO WAIT]
 [[ISOLATION LEVEL]]
 [RESERVING reserving_clause
 | USING dbhandle [, dbhandle …]];
<reserving_clause> = table [, table …]
 [FOR [SHARED | PROTECTED] {READ | WRITE}] [, reserving_clause]

• NAME transaction - Specifies the name for this transaction. Transaction is a pre-
viously declared and initialized host-language variable. SQL only.

• READ WRITE [Default] - Specifies that the transaction can read and write to ta-
bles.

• READ ONLY - Specifies that the transaction can only read tables.
• WAIT [Default] - Specifies that a transaction wait for access if it encounters a

lock conflict with another transaction.

I

SQL Language Reference - DDL – Data Definition Language

613

• NO WAIT - Specifies that a transaction immediately return an error if it encounters
a lock conflict.

• ISOLATION LEVEL - Specifies the isolation level for this transaction when at-
tempting to access the same tables as other simultaneous transactions; default:
SNAPSHOT.

• RESERVING reserving_clause - Reserves lock for tables at transaction start.
• USING dbhandle [, dbhandle …] - Limits database access to a subset of avail-

able databases; SQL only.

Examples:

The following embedded SQL statement sets up the default transaction with an isola-
tion level of READ COMMITTED. If the transaction encounters an update conflict, it waits
to get control until the first (locking) transaction is committed or rolled back.

EXEC SQL
 SET TRANSACTION WAIT ISOLATION LEVEL READ COMMITTED;

The next embedded SQL statement starts a named transaction:

EXEC SQL
 SET TRANSACTION NAME T1 READ COMMITTED;

The following embedded SQL statement reserves three tables:

EXEC SQL
 SET TRANSACTION NAME TR1
 ISOLATION LEVEL READ COMMITTED
 NO RECORD_VERSION WAIT
 RESERVING TABLE1, TABLE2 FOR SHARED WRITE,
 TABLE3 FOR PROTECTED WRITE;

I.2.17 WHENEVER

WHENEVER traps for SQLCODE errors and warnings. Every executable SQL statement re-
turns a SQLCODE value to indicate its success or failure. If SQLCODE is zero, statement
execution is successful. A non-zero value indicates an error, warning, or not found
condition. Available in gpre.

If the appropriate condition is trapped, WHENEVER can:

• Use GOTO label to jump to an error-handling routine in an application.
• Use CONTINUE to ignore the condition.

WHENEVER can help limit the size of an application, because the application can use a
single suite of routines for handling all errors and warnings.

WHENEVER statements should precede any SQL statement that can result in an error.
Each condition to trap for requires a separate WHENEVER statement. If WHENEVER is
omitted for a particular condition, it is not trapped.

I

SQL Language Reference - DML – Data Manipulation Language

614

Tip Precede error-handling routines with WHENEVER … CONTINUE statements to prevent
the possibility of infinite looping in the error-handling routines.

Syntax:

WHENEVER {NOT FOUND | SQLERROR | SQLWARNING}
 {GOTO label | CONTINUE};

• NOT FOUND - Traps SQLCODE = 100, no qualifying rows found for the executed
statement.

• SQLERROR - Traps SQLCODE < 0, failed statement.
• SQLWARNING - Traps SQLCODE > 0 AND < 100, system warning or informational

message.
• GOTO label - Jumps to program location specified by label when a warning or error

occurs.
• CONTINUE - Ignores the warning or error and attempts to continue processing.

Example:

In the following code from an embedded SQL application, three WHENEVER statements
determine which label to branch to for error and warning handling:

EXEC SQL
 WHENEVER SQLERROR GO TO Error; /* Trap all errors. */

EXEC SQL
 WHENEVER NOT FOUND GO TO AllDone; /* Trap SQLCODE = 100 */

EXEC SQL
 WHENEVER SQLWARNING CONTINUE; /* Ignore all warnings. */

I.3 DML – Data Manipulation Language
DML is the abbreviation for Data Manipulation Language. DML is a collection of SQL
commands that can be used to manipulate a database's data.

DML is part of the SQL language commands, which execute queries with database ob-
jects and changes to their contents. The various DML commands can be used to create,
edit, evaluate and delete data in a database.

DML commands are a subarea of SQL; the range of the SQL language is composed of
DML and DDL together.

I.3.1 SIUD

SIUD is the abbreviation for SELECT, INSERT, UPATE, DELETE, which are the four DML
commands used for data manipulation.

I

SQL Language Reference - DML – Data Manipulation Language

615

SELECT

Retrieves a single row that satisfies the requirements of the search condition. The
same as standard singleton SELECT, with some differences in syntax. Available in trig-
gers and stored procedures.

<select_expr> = <select_clause> <from_clause>
[<where_clause>] [<group_by_clause>]
[<having_clause>]
[<union_expression>] [<plan_clause>]
[<ordering_clause>]
<into_clause>;

Description In a stored procedure, use the SELECT statement with an INTO clause to re-
trieve a single row value from the database and assign it to a host variable. The SE-
LECT statement must return at most one row from the database, like a standard single-
ton SELECT. The INTO clause is required and must be the last clause in the statement.

The INTO clause comes at the end of the SELECT statement to allow the use of UNION
operators. UNION is not allowed in singleton SELECT statements in embedded SQL.

Example:

The following statement is a standard singleton SELECT statement in an embedded ap-
plication:

EXEC SQL
 SELECT SUM(BUDGET), AVG(BUDGET)
 INTO :TOT_BUDGET, :AVG_BUDGET
 FROM DEPARTMENT
 WHERE HEAD_DEPT = :HEAD_DEPT

To use the above SELECT statement in a procedure, move the INTO clause to the end
as follows:

SELECT SUM(BUDGET), AVG(BUDGET)
 FROM DEPARTMENT
 WHERE HEAD_DEPT = :HEAD_DEPT
 INTO :TOT_BUDGET, :AVG_BUDGET;

INSERT

Adds one or more new rows to a specified table. Available in gpre, DSQL, and isql.

Syntax:

INSERT [TRANSACTION transaction] INTO object [(col [, col …])]
 {VALUES (val [, val …]) | select_expr};

<object> = tablename | viewname

I

SQL Language Reference - DML – Data Manipulation Language

616

<val> = {:variable | constant | expr
 | function | udf ([val [, val …]])
 | NULL | USER | RDB$DB_KEY | ?} [COLLATE collation]

<constant> = num | 'string' | charsetname 'string'

<function> = CAST (val AS datatype)
 | UPPER (val)
 | GEN_ID (generator, val)

Argument Description

expr A valid SQL expression that results in a single column value.

select_expr A SELECT that returns zero or more rows and where the number of
columns in each row is the same as the number of items to be in-
serted.

Notes on the INSERT statement:

• In SQL and isql, you cannot use val as a parameter placeholder (like “?”).
• In DSQL and isql, val cannot be a variable.
• You cannot specify a COLLATE clause for Blob columns.

Important: In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a terminat-
ing symbol for the statement, so it must be included.

Argument Description

TRANSACTION
transaction

Name of the transaction that controls the execution of the
INSERT.

INTO object Name of an existing table or view into which to insert data.

col Name of an existing column in a table or view into which to
insert values.

VALUES (val [,
val …])

Lists values to insert into the table or view; values must be
listed in the same order as the target columns.

select_expr Query that returns row values to insert into target columns.

Description:

INSERT stores one or more new rows of data in an existing table or view. INSERT is one
of the database privileges controlled by the GRANT and REVOKE statements.

Values are inserted into a row in column order unless an optional list of target columns
is provided. If the target list of columns is a subset of available columns, default or
NULL values are automatically stored in all unlisted columns.

If the optional list of target columns is omitted, the VALUES clause must provide values
to insert into all columns in the table.

I

SQL Language Reference - DML – Data Manipulation Language

617

To insert a single row of data, the VALUES clause should include a specific list of values
to insert.

To insert multiple rows of data, specify a select_expr that retrieves existing data from
another table to insert into this one. The selected columns must correspond to the col-
umns listed for insert.

Important:

It is legal to select from the same table into which insertions are made, but this prac-
tice is not advised because it may result in infinite row insertions.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify
which transaction controls the INSERT operation. The TRANSACTION clause is not avail-
able in DSQL or isql.

Examples:

The following statement, from an embedded SQL application, adds a row to a table, as-
signing values from host-language variables to two columns:

EXEC SQL
 INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
 VALUES (:emp_no, :proj_id);

The next isql statement specifies values to insert into a table with a SELECT statement:

INSERT INTO PROJECTS
 SELECT * FROM NEW_PROJECTS
 WHERE NEW_PROJECTS.START_DATE > '6-JUN-1994';

UPDATE

Changes the data in all or part of an existing row in a table, view, or active set of a
cursor. Available in gpre, DSQL, and isql.

Syntax SQL form:

UPDATE [TRANSACTION transaction] {table | view}
 SET col = val [, col = val …]
 [WHERE search_condition | WHERE CURRENT OF cursor]
 [ORDER BY order_list]
 [ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]];

DSQL and isql form:

UPDATE {table | view}
 SET col = val [, col = val …]
 [WHERE search_condition
 [ORDER BY order_list]
 [ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]]

I

SQL Language Reference - DML – Data Manipulation Language

618

<val> = {
 col [array_dim]
 | :variable
 | constant
 | expr
 | function
 | udf ([val [, val …]])
 | NULL
 | USER
 | ?}
 [COLLATE collation]

<array_dim> = [[x:]y [, [x:]y …]]

<constant> = num | 'string' | charsetname 'string'

<function> = CAST (val AS datatype)
 | UPPER (val)
 | GEN_ID (generator, val)

<expr> = A valid SQL expression that results in a single value.
<search_condition> = See CREATE TABLE for a full description.

Notes on the UPDATE statement:

• In SQL and isql, you cannot use val as a parameter placeholder (like “?”).
• In DSQL and isql, val cannot be a variable.
• You cannot specify a COLLATE clause for Blob columns.

Argument Description

TRANSACTION
transaction

Name of the transaction under control of which the state-
ment is executed.

table | view Name of an existing table or view to update.

SET col = val Specifies the columns to change and the values to assign to
those columns.

WHERE
search_condition

Searched update only; specifies the conditions a row must
meet to be modified.

WHERE CURRENT OF
cursor

Positioned update only; specifies that the current row of a
cursor’s active set is to be modified.
• Not available in DSQL and isql.

ORDER BY or-
der_list

Specifies columns to order, either by column name or ordinal
number in the query, and the sort order (ASC or DESC) for
the returned rows.

ROWS value
 [TO up-
per_value]
 [BY
step_value]

• value is the total number of rows to return if used by
itself.
• value is the starting row number to return if used with TO.
• value is the percent if used with PERCENT.
• upper_value is the last row or highest percent to return.

I

SQL Language Reference - DML – Data Manipulation Language

619

 [PERCENT][WITH
TIES]

• If step_value = n, returns every nth row, or n percent
rows.
• PERCENT causes all previous ROWS values to be interpreted
as percents.
• WITH TIES returns additional duplicate rows when the last
value in the ordered sequence is the same as values in sub-
sequent rows of the result set; must be used in conjunction
with ORDER BY.

Description:

UPDATE modifies one or more existing rows in a table or view. UPDATE is one of the da-
tabase privileges controlled by GRANT and REVOKE.

For searched updates, the optional WHERE clause can be used to restrict updates to a
subset of rows in the table. Searched updates cannot update array slices.

Important:

Without a WHERE clause, a searched update modifies all rows in a table.

When performing a positioned update with a cursor, the WHERE CURRENT OF clause
must be specified to update one row at a time in the active set.

Note: When updating a blob column, UPDATE replaces the entire blob with a new value.

Examples:

The following isql statement modifies a column for all rows in a table:

UPDATE CITIES
 SET POPULATION = POPULATION * 1.03;

The next embedded SQL statement uses a WHERE clause to restrict column modification
to a subset of rows:

EXEC SQL
 UPDATE PROJECT
 SET PROJ_DESC = :blob_id
 WHERE PROJ_ID = :proj_id;

DELETE

Removes rows in a table or in the active set of a cursor. Available in gpre, DSQL, and
isql.

Syntax SQL and DSQL form:

Important: Omit the terminating semicolon for DSQL.

I

SQL Language Reference - DML – Data Manipulation Language

620

DELETE [TRANSACTION transaction] FROM table
 {[WHERE search_condition] | WHERE CURRENT OF cursor}
 [ORDER BY order_list]
 [ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]];

<search_condition> = Search condition as specified in SELECT.

isql form:

DELETE FROM TABLE [WHERE search_condition];

Argument Description

TRANSACTION trans-
action

Name of the transaction under control of which the state-
ment is executed; SQL only.

table Name of the table from which to delete rows.

WHERE
search_condition

Search condition that specifies the rows to delete; without
this clause, DELETE affects all rows in the specified table or
view.

WHERE CURRENT OF
cursor

Specifies that the current row in the active set of cursor is to
be deleted.

ORDER BY or-
der_list

Specifies columns to order, either by column name or ordi-
nal number in the query, and the sort order (ASC or DESC)
for the returned rows.

ROWS value
[TO upper_value]
[BY step_value]
[PERCENT][WITH
TIES]

• value is the total number of rows to return if used by
itself
• value is the starting row number to return if used with TO
• value is the percent if used with PERCENT
• upper_value is the last row or highest percent to return
• If step_value = n, returns every nth row, or n percent
rows
• PERCENT causes all previous ROWS values to be interpreted
as percents
• WITH TIES returns additional duplicate rows when the last
value in the ordered sequence is the same as values in sub-
sequent rows of the result set; must be used in
conjunction with ORDER BY.

DELETE specifies one or more rows to delete from a table or updatable view. DELETE is
one of the database privileges controlled by the GRANT and REVOKE statements.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify
which transaction controls the DELETE operation. The TRANSACTION clause is not avail-
able in DSQL or isql.

For searched deletions, the optional WHERE clause can be used to restrict deletions to a
subset of rows in the table.

Important:

I

SQL Language Reference - Stored Procedure and Trigger Language

621

Without a WHERE clause, a searched delete removes all rows from a table.

When performing a positioned delete with a cursor, the WHERE CURRENT OF clause must
be specified to delete one row at a time from the active set.

Examples:

The following isql statement deletes all rows in a table:

DELETE FROM EMPLOYEE_PROJECT;

The next embedded SQL statement is a searched delete in an embedded application. It
deletes all rows where a host-language variable equals a column value.

EXEC SQL
 DELETE FROM SALARY_HISTORY
 WHERE EMP_NO = :emp_num;

The following embedded SQL statements use a cursor and the WHERE CURRENT OF op-
tion to delete rows from CITIES with a population less than the host variable, min_pop.
They declare and open a cursor that finds qualifying cities, fetch rows into the cursor,
and delete the current row pointed to by the cursor.

EXEC SQL
 DECLARE SMALL_CITIES CURSOR FOR
 SELECT CITY, STATE
 FROM CITIES
 WHERE POPULATION < :min_pop;

EXEC SQL
 OPEN SMALL_CITIES;

EXEC SQL
 FETCH SMALL_CITIES INTO :cityname, :statecode;
 WHILE (!SQLCODE)
 {EXEC SQL
 DELETE FROM CITIES
 WHERE CURRENT OF SMALL_CITIES;
 EXEC SQL
 FETCH SMALL_CITIES INTO :cityname, :statecode;}
EXEC SQL
 CLOSE SMALL_CITIES;

I.4 Stored Procedure and Trigger Language
The InterBase/Firebird procedure and trigger language includes all the constructs of a
basic structured programming language, as well as statements unique to working with
table data. The SQL SELECT, INSERT, UPDATE and DELETE statements can be used in
stored procedures exactly as they are used in a query, with only minor syntax changes
(refer to Using DML statements). Local variables or input parameters can be used for
all of these statements in any place that a literal value is allowed.

I

SQL Language Reference - Stored Procedure and Trigger Language

622

Other statements that are specific to stored procedures include, among others, error
handling and raising exceptions. Please refer to the relevant sections for further infor-
mation.

Note that the string concatenation operator in InterBase/Firebird procedure and trigger
language is || (a double vertical bar, or pipe), and not the + that is used in many pro-
gramming languages. Please refer to concatenation of strings for further information.

I.4.1 Supported Firebird 2 features

Since IBExpert version 2005.03.12 the following Firebird 2 features are also supported:

• DECLARE <cursor_name> CURSOR FOR ...
• OPEN <cursor_name>
• FETCH <cursor_name> INTO ...
• CLOSE <cursor_name>
• LEAVE <label>
• NEXT VALUE FOR <generator>

I.4.2 Using DML statements

The SQL Data Manipulation Language (DML), consists primarily of the SELECT, INSERT,
UPDATE and DELETE statements.

Statements that are not recognized or permitted in the stored procedures and trigger
language include DDL statements such as CREATE, ALTER, DROP, and SET as well as
statements such as GRANT, REVOKE, COMMIT, and ROLLBACK.

Wherever a literal value is specified in an INSERT, UPDATE or DELETE statement, an in-
put or local variable can be substituted in place of this literal. For example, variables
can be used for the values to be inserted into a new row, or the new values in an UP-
DATE statement. They can also be used in a WHERE clause, to specify the rows that are
to be updated or deleted.

I.4.3 Using SELECT statements

InterBase/Firebird supports an extension to the standard SELECT statement, to solve
the problem of what to do with the results when using a SELECT statement inside a
stored procedure. The INTO clause appoints variables that receive the results of the
SELECT statement. The syntax is as follows:

SELECT <result1, result2, ..., resultN>
FROM ...
WHERE ...
GROUP BY ...
INTO : <Variable1, : Variable2, ..., VariableN>;

The INTO clause must be the final clause in the SELECT statement. A variable must be
given for each result generated by the statement. Important: this form of SELECT
statement can generate only one row. Therefore the ORDER BY clause is unnecessary
here.

I

SQL Language Reference - Stored Procedure and Trigger Language

623

To use a SELECT that generates more than one row within a stored procedure, use the
FOR SELECT statement.

I.4.4 SET TERM terminator or terminating character

Normally InterBase processes a script step by step and separates two statements by a
semicolon. Each statement between two semicolons is parsed, interpreted, converted
into an internal format and executed. This is not possible in the case of stored proce-
dures or triggers where there are often multiple commands which need to be succes-
sively executed, i.e. there are several semicolons in their source codes. So if CREATE
PROCEDURE … was called, InterBase/Firebird assumes that the command has finished
when it arrives at the first semi colon.

In order for InterBase(Firebird to correctly interpret and transfer a stored procedure to
the database, it is necessary to temporarily alter the terminating character using the
SET TERM statement. The syntax for this is as follows (Although when using the IBEx-
pert templates this is not necessary, as IBExpert automatically inserts the SET TERM
command):

SET TERM NEW_TERMINATOR OLD_TERMINATOR

Example:

SET TERM ^;
CREATE PROCEDURE NAME
 AS
 BEGIN
 <procedure body>;
 END^
SET TERM ;^

Before the first SET TERM statement appears, InterBase/Firebird regards the semicolon
as the statement terminating character and interprets and converts the script code up
until each semicolon.

Following the first SET TERM statement, the terminator is switched and all following
semicolons are no longer interpreted as terminators. The CREATE PROCEDURE statement
is then treated as one statement up until the new terminating character, and parsed
and interpreted.

The final SET TERM statement is necessary to change the terminating character back
to a semicolon, using the syntax:

SET TERM OLD_TERMINATOR NEW_TERMINATOR

(refer to above example: SET TERM ;^).

The statement must be concluded by the previously defined temporary termination
character. This concluding statement is again interpreted as a statement between the
two last termination characters. Finally the semicolon becomes the termination charac-
ter for use in further script commands.

I

SQL Language Reference - Stored Procedure and Trigger Language

624

It is irrelevant which character is used to replace the semi colon; however it should be
a seldom-used sign to prevent conflicts e.g. ^, and not * or + (used in mathematical
formulae) or ! (this is used for "not equal": A!=B).

I.4.5 SUSPEND

SUSPEND is used in stored procedures; it acts as if it was a data set, i.e. returns the
named data set visually as a result.

It suspends procedure execution until the next FETCH is issued by the calling applica-
tion and returns output values, if there are any, to the calling application. It prevents
the stored procedure from terminating until the client has fetched all the results. This
statement is not recommended for executable procedures.

I.4.6 BEGIN and END statement

As well as defining the contents of the stored procedure, these keywords also delimit a
block of statements which then executes as a single statement. This means that BEGIN
and END can be used to enclosed several statements and so form a simple compound
statement. A semicolon should not be placed after either of these words.

I.4.7 DECLARE VARIABLE

Please refer to local variables.

I.4.8 IF THEN ELSE

InterBase/Firebird supports simple assignment statements in the form:

variable = expression;

The variable can be an input or output parameter, or a local variable defined in a DE-
CLARE VARIABLE statement. The expression needs to be concluded with a semicolon.
The syntax for the IF statement is as follows:

IF <conditional_test>
THEN
<statements>;
ELSE
<statements>;

Any of the standard comparison operators available in SQL an be used (please refer to
comparison operators for a full list).

The value can be a constant or one of the input parameters, output parameters or local
variables used in the procedure.

If a single statement is placed after the THEN or ELSE clauses, it should be terminated
with a semicolon. If multiple statements need to be placed after one of these clauses,
use the BEGIN and END keywords as follows:

I

SQL Language Reference - Comparison Operators

625

IF <conditional_test> THEN
BEGIN
<statement1>;
<statement2>;
...
<statementN>;
END
ELSE
etc.;

I.4.9 WHILE and DO

The WHILE … DO statement provides a looping capability. The syntax for this statement
is as follows:

WHILE
<conditional_test>
DO
<statements>;

InterBase/Firebird evaluates the conditional test. If it is TRUE, the statements following
the WHILE are executed. If it is FALSE, the statements are ignored. If only one state-
ment is placed after the DO clause, it should be terminated with a semicolon. If multiple
statements are used after one of these clauses, use the BEGIN and END keywords.
Brackets need to be put around the conditional test.

I.5 Comparison Operators
Comparison operators for use in conditional clauses:

Conditional Test Description

value = value Equal to

value < value Less than

value > value Greater than

value <= value Less than or equal to

value >= value Greater than or equal to

value !< value Not less than

value !> value Not greater than

value <> value Not equal to

value != value Not equal to

value LIKE value Wildcard search, use '%' for 0 or more characters and
'_' for one character only

value BETWEEN value
AND value

Within an inclusive range

value IN (value, ... One of the elements in a list

I

SQL Language Reference - JOIN

626

value)

value IS NULL One of the elements in a list

value IS NOT NULL One of the elements in a list

value CONTAINING value Includes

value STARTING WITH
value

Begins with

I.6 JOIN
In practice it seldom occurs that all relevant information can be found in a single data-
base table. It is much more often the case that the data required is distributed across
several tables and linked by relations. Indeed, information in a normalized database
should be spread across multiple tables!

In a fully normalized database, the vast majority of tables have a primary key consist-
ing of one or two columns only. If a referential integrity relationship exists, these pri-
mary key columns are replicated in other tables to ensure consistency in the data.
These are the columns that allow you to establish logical links between these tables.
When queries are performed, tables are commonly joined on these columns.

There is actually no restriction by design to the number of tables that may be joined.
However the task of joining tables is exponential in relation to the number of tables in
the join. The largest practical number of tables in a join is about 16, but experiment
with your application and a realistic volume of data to find the most complex join that
has an acceptable performance.

When you establish a join, InterBase/Firebird looks for matching values in the desig-
nated columns of each table. It does not care if a value appears once on one side of
the join and multiple times on the other side, as is often the case.

In this instance, InterBase/Firebird joins each matching row in TableB to the single
matching row in TableA, thereby creating what is known as a virtual row. Each TableB
row can logically be linked to a single unambiguous row in TableA.

InterBase/Firebird also provides options for establishing a relationship where a value
can appear on one side of the join instead of both. This is known as an OUTER JOIN,
(please refer to OUTER JOIN for further information and examples).

The following statement selects from both TableA and TableB tables:

SELECT column_list
FROM TableA, TableB;

When you select from two or more tables, these tables are normally joined on a com-
mon column. For example, you might join TableA and TableB tables on the column
that is common to each of them, the TableA_ID.

Theoretically it is not necessary to specify a join column. If you do not specify one, In-
terBase/Firebird performs a Cartesian product between the two tables, joining each

I

SQL Language Reference - JOIN

627

row in one table to each row in the other. So, for example, if the first table had 100
rows, and the second had 20, the result set would have 2000 rows. Such a join nor-
mally makes no sense because the row information in one table is not logically related
to the row information in the other table, except where column and field values are
shared between the tables.

InterBase/Firebird does not prevent you from establishing a meaningless join. You can
issue an SQL statement that joins, for example, Orders.PaymentMethod with Cus-
tomer.Country, and InterBase/Firebird processes the statement! But the result set is
always empty because there are no matching values in either column.

JOIN syntax:

InterBase/Firebird currently supports two methods to link two or more tables via a
common column:

• the traditional SQL syntax, and
• the SQL '92 syntax.

The traditional SQL syntax integrates the link in the WHERE clause:

SELECT <ColumnList>

 FROM Table1 Synonym1 , Table2 Synonym2

 WHERE Synonym1.JoinColumn = Synonym2.JoinColumn

 AND <Other_WHERE_Conditions> ;

The following example illustrates this syntax:

SELECT C.Name, C.Country, O.OrderID, O.SaleDate, O.TotalInvoice
 FROM Customer C, Orders O

 WHERE C.CustomerID = O.CustomerID
 AND C.Country != 'U.S.A.'

 ORDER BY C.Name, O.OrderID;

As opposed to traditional SQL syntax, the SQL 92 syntax detaches the link from the
WHERE clause and relocates it in the FROM clause, i.e. that area, in which the tables to
be used are defined:

SELECT <ColumnList>

 FROM Table1 Alias1 JOIN Table2 Alias2

 ON Alias1.Column = Alias2.Column

 WHERE <Where_Conditions> ;

Example:

I

SQL Language Reference - JOIN

628

SELECT C.Name, C.Country, O.OrderID, O.SaleDate, O.TotalInvoice

 FROM Customer C JOIN Orders O

 ON C.CustomerID = O.CustomerID)

 WHERE C.Country != 'U.S.A.'

 ORDERBY C.Name, O.OrderID;

Either syntax can be used at any time; they are virtually interchangeable. The differ-
ence is that the SQL 92 syntax permits OUTER JOINs, whereas the traditional syntax
does not.

Specifying columns and rows:

When two or more tables are joined, rows can be included from either table in the re-
sult. It is also possible to specify WHERE conditions to limit the rows in either table that
are considered for the join. For example, the following statement asks for customers in
Florida who placed orders in 1994 with a total invoice of more than $5,000 for the or-
der:

SELECT C.Name, C.City, O.SaleDate, O.TotalInvoice
FROM Customer C JOIN Orders O
ON C.CustomerID = O.CustomerID
WHERE C.State_Province = ’FL’
AND O.SaleDate BETWEEN ’1/1/94’ AND ’12/31/94’
AND O.TotalInvoice > 5000;

Please refer to Joining more that two tables for further information.

I.6.1 INNER JOIN

When you join two tables, the result set includes only those rows where the joining
value appears in both tables.

Syntax:

TableA JOIN TableB

The join applies to the table written to the left of the command.

For example, the following query joins Stock to LineItem to find out many orders in-
cluded each stock item:

SELECT S.StockID, COUNT(L.OrderID)
FROM Stock S JOIN Lineitem L
ON S.StockID = L.StockID
GROUP BY S.StockID

I

SQL Language Reference - JOIN

629

From a theoretical standpoint, this is known as an INNER JOIN, but the INNER keyword
is optional. What if you also want to include those stock items that have not yet been
ordered, so that the result set shows all stock items. These items do not appear in the
LineItem table at all. The solution lies in performing an OUTER JOIN. An outer join in-
cludes every column in one table and a subset of columns in the other table.

When your tables are linked in a referential relationship on a foreign key column, only
the LEFT OUTER JOIN usually makes sense. For example, every order includes a cus-
tomer from the Customer table. If you join Customer to Orders with a RIGHT OUTER
JOIN, the result is the same as if you had performed an INNER JOIN.

I.6.2 OUTER JOIN

When you join two tables, the result set includes only those rows where the joining
value appears in both tables.

There are three types of outer joins:

SQL92 syntax permits outer joins, whereas the traditional syntax does not.

Types of outer joins

• LEFT OUTER JOIN, which includes all rows from the table on the left side of the join
expression

• RIGHT OUTER JOIN, which includes all rows from the table on the right side of the
join expression.

• FULL OUTER JOIN, which includes all rows from both tables.

Syntax:

TableA LEFT OUTER JOIN TableB

The join applies to the table written to the left of the command.

TableA RIGHT OUTER JOIN TableB

The join applies to the table written to the right of the command.

When your tables are linked in a referential relationship on a foreign key column, only
the LEFT OUTER JOIN usually makes sense. For example, every order includes a cus-
tomer from the Customer table. If you join Customer to Orders with a RIGHT OUTER
JOIN, the result is the same as if you had performed an INNER JOIN.

The following query modifies the preceding example to include all stock items, even the
one that have not yet been ordered:

SELECT S.StockID, COUNT(L.OrderID)
FROM Stock S LEFT OUTER JOIN Lineitem L
ON S.StockID = L.StockID
GROUP BY S.StockID

Adding selection criteria:

I

SQL Language Reference - JOIN

630

If two tables are joined using an outer join, and there are also selection criteria in the
table where the inclusion operator is placed, it would appear as first glance that you
are asking two conflicting questions.

Consider the following query, which asks for the value of all orders placed by custom-
ers located in California, including those customers who might not have placed an or-
der.

SELECT C.Name, SUM(O.TotalInvoice)
FROM Customer C LEFT OUTER JOIN Orders O
ON C.CustomerID = O.CustomerID
WHERE C.State_Province = ’CA’
GROUP BY C.Name;

On the one hand, the LEFT OUTER JOIN is asking InterBase/Firebird to include all cus-
tomers in the result set, whether or not that customer has also placed any orders. On
the other hand, the query is also asking InterBase/Firebird to limit the query to only
those customers located in California.

InterBase/Firebird resolves this apparent conflict by always processing the WHERE
clause before processing any outer joins. The Customer table is first limited to those
customers in California, and this intermediate result is then joined to the Orders table
to which of the California customers have placed orders.

I.6.3 Joining more than two tables

The SQL92 join syntax provides for joins that reference more than two tables. The trick
is to establish the join with the first pair of tables, then join this product with the third
table, and so on.

For example, the following query finds customers and the order details, where the or-
der included a specific stock item:

SELECT C.Name, O.SaleDate, L.Quantity
FROM Customer C JOIN Orders O
ON (C.CustomerID = O.CustomerID)
JOIN LineItem L
ON (O.OrderID = L.OrderID)
WHERE L.StockID = ’5313’;

This syntax can be extended to any number of tables. You can even create a circular
join. For example, the following statement asks for customers who have ordered prod-
ucts that were made by vendors in the same state as the customer. This query re-
quires a series of joins from Customer to Orders to LineItem to Stock to Vendors, and
another join from the Customer state to the Vendor's state.

SELECT DISTINCT C.Name, V.VendorName, C.State_Province
FROM Customer C JOIN Orders O
ON (C.CustomerID = O.CustomerID)
JOIN LineItem L
ON (O.OrderID = L.OrderID)
JOIN Stock S

I

SQL Language Reference - JOIN

631

ON (L.StockID = S.StockID)
JOIN Vendors V
ON (S.VendorID = V.VendorID)
AND (C.State_Province = V.State_Province);

Note an important limitation in this SELECT statement: tables are added to the JOIN
expression one at a time. You cannot reference columns from a table until the table
has been joined to the expression. For example, the condition linking the Customer and
Vendor tables on their State columns cannot be specified until the Vendor table has
been added to the expression and correctly joined.

I.6.4 Self joins / reflexive joins

A self-join, also known as a reflexive join, is a join in which a table is joined to itself. It
compares rows of data within a single table. For example, we could add another col-
umn to the employee table in the sample employee database that would contain the
employee’s manager number. Since managers are also stored in the employee table,
we could create a self-join on the employee table to determine the name of each em-
ployee’s manager.

SELECT e1.full_name AS Employee, e2.full_name AS Manager
FROM employee e1 JOIN employee e2
ON e1.mng_id = e2.emp_no;

II

GLOSSARY - */Wildcard

633

II GLOSSARY
The majority of definitions can be found in the relevant IBExpert subject areas. This
glossary includes a number of miscellaneous definitions that could not be allotted to in-
dividual IBExpert subjects.

If you are looking for a specific definition in the online documentation, please use the
search function. Should you not be able to find the definition you are looking for,
please contact documentation@ibexpert.com.

II.1 */Wildcard
The asterisk (*) or so-called wildcard is used, for example, when selecting all or any
data (or data sets) meeting a certain condition.

Example:

SELECT * FROM EMPLOYEE
WHERE EMPLOYEE.PHONE_EXT='250';

All data sets containing the value 250 in the PHONE_EXT column in the EMPLOYEE table
are fetched.

II.2 Alias
An alias is a pseudonym. A database alias is a name chosen by the developer for day-
to-day use, as a logical and preferable alternative to the often formally named gdb or
fdb file, which is often named in accordance to internal company norms.

The alias indicates the location of the database tables. If the database is stored on a
server, the alias also specifies the necessary connection parameters.

It is also used in SQL language to simplify input (saves repeatedly typing the same
long database object and field names).

II

GLOSSARY - API (Application Program Interface)

634

II.3 API (Application Program Interface)
API is the abbreviation for Application Program Interface, which is a set of routines,
protocols, and tools for building software applications. A good API makes it easier to
develop a program by providing all the building blocks. A programmer puts the blocks
together.

Most operating environments, such as MS Windows, provide an API so that program-
mers can write applications consistent with the operating environment. Although APIs
are designed for programmers, they are ultimately of advantage to users because they
guarantee that all programs using a common API will have similar interfaces. This
makes it easier for users to learn new programs.

Source: http://www.webopedia.com/

II.4 Application
An application is a program or group of programs designed for end users. Software can
be divided into two general classes: systems software and applications software. Sys-
tems software consists of low-level programs that interact with the computer at a very
basic level. This includes operating systems, compilers, and utilities for managing com-
puter resources.

In contrast, applications software (also called end-user programs) includes database
programs, word processors, and spreadsheets. Figuratively speaking, applications
software sits on top of systems software because it is unable to run without the operat-
ing system and system utilities.

An application comprises the executing file, along with any other files, that a program
needs to function fully. The word application is often used synonymously with the word
program.

II

GLOSSARY - ASCII

635

Source: http://www.webopedia.com/

II.5 ASCII
ASCII is an acronym for the American Standard Code for Information Interchange.
Pronounced ask-ee, ASCII is a code for representing English characters as numbers,
with each letter assigned a number from 0 to 127. For example, the ASCII code for up-
percase M is 77. Most computers use ASCII codes to represent text, which makes it
possible to transfer data from one computer to another.

Text files stored in ASCII format are sometimes called ASCII files. Text editors and
word processors are usually capable of storing data in ASCII format, although ASCII
format is not always the default storage format. Most data files, particularly if they
contain numeric data, are not stored in ASCII format. Executable programs are never
stored in ASCII format.

The standard ASCII character set uses just 7 bits for each character. There are several
larger character sets that use 8 bits, which gives them 128 additional characters. The
extra characters are used to represent non-English characters, graphics symbols, and
mathematical symbols. Several companies and organizations have proposed extensions
for these 128 characters. The DOS operating system uses a superset of ASCII called
extended ASCII or high ASCII. A more universal standard is the ISO Latin 1 set of
characters, which is used by many operating systems, as well as Web browsers.

Source: http://www.webopedia.com/

II.6 BDE (Borland Database Engine)
BDE is the abbreviation for the Borland Database Engine, the heart of Fire-
bird/InterBase. IBExpert uses this database engine to access and retrieve data. It al-
lows multiple sessions, each one being treated as a "virtual" user.

II.7 Client/Server
The main part of the database intelligence is contained in a server program (e.g. In-
terBase/Firebird). The operation is sent from the client to the server and is processed
there, and the resulting data transferred back to the client.

Client-server architecture is a network architecture in which each computer or process
on the network is either a client or a server. Servers are powerful computers or proc-
esses dedicated to managing disk drives (file servers), printers (print servers), or net-
work traffic (network servers).

Clients are PCs or workstations on which users run applications. Clients rely on servers
for resources, such as files, devices, and even processing power.

Another type of network architecture is known as a peer-to-peer architecture because
each node has equivalent responsibilities. Both client/server and peer-to-peer architec-
tures are widely used, and each has unique advantages and disadvantages.

Client-server architectures are also sometimes called two-tier architectures.

II

GLOSSARY - Comdiag

636

II.8 Comdiag
Comdiag is an InterBase/Firebird windows-based program to aid diagnosis of problems
that may arise when connecting to InterBase/Firebird servers and the databases man-
aged by those servers.

It validates all InterBase DLLs when connecting the server to the database and checks
that the various protocol stacks are correctly installed and loaded.

II.9 Comments
Comments can be incorporated anywhere in an InterBase/Firebird ISQL script, as well
as in the procedure body of a stored procedure. The following character sequences are
used to determine a comment.

/* Comment */

Comments can span multiple lines, but a comment cannot be embedded in another
comment.

II

GLOSSARY - Compile and Commit / Rollback

637

They can also be incorporated in a Firebird script, determined by the following charac-
ter sequence:

-- Comment

Comments introduced in this way in Firebird can only cover a single line, i.e. each new
line must begin with --. Firebird however also understands the InterBase syntax.

II.10 Compile and Commit / Rollback
A transaction is committed, if all statements in the transactions were performed suc-
cessfully and the whole transaction was completed without error. By committing a
transaction, the instructions entered are interpreted and saved permanently to disk or
cancelled. In IBExpert the

icon or [Ctrl + F9] can be used to perform this task. The Compile dialog shows whether
the modifications, insertions or deletions are correct; the Commit button finally writes
the alterations permanently to the database.

A transaction is rolled back, if the alterations are cancelled or revoked by the operator,
or if an active transaction is perceived by another transaction to be "dead" and so set
in a rolled-back condition. Rollback also aborts the compile actions, should errors have
been reported or modifications be necessary.

II.11 Conditional Test
Conditional test is an expression that evaluates to logical TRUE or FALSE. If the state-
ment TRUE, the statements in the THEN clause are executed; if FALSE, the statements
in the optional ELSE clause are executed. Parentheses around the conditional test are
required.

II.12 Constant
In programming, a constant is a value that never changes. The other type of values
that programs use is variables, symbols that can represent different values throughout
the course of a program.

A constant can be

• a number, such as 25 or 3.6
• a character, such as a or $
• a character string, such as "this is a string"

Source: http://www.webopedia.com/

II.13 DBMS (Database Management System)
A collection of programs that enables you to store, modify, and extract information
from a database. There are many different types of DBMSs, ranging from small sys-

II

GLOSSARY - DDE (Dynamic Data Exchange)

638

tems that run on personal computers to huge systems that run on mainframes. The
following are examples of database applications:

• computerized library systems
• automated teller machines
• flight reservation systems
• computerized parts inventory systems

From a technical standpoint, DBMSs can differ widely. The terms relational, network,
flat, and hierarchical all refer to the way a DBMS organizes information internally. The
internal organization can affect how quickly and flexibly you can extract information.

Requests for information from a database are made in the form of a query, which is a
stylized question. For example, the query

SELECT ALL WHERE NAME = "SMITH" AND AGE > 35

requests all records in which the NAME field is SMITH and the AGE field is greater than
35. The set of rules for constructing queries is known as a query language. Different
DBMSs support different query languages, although there is a semi-standardized query
language called SQL (structured query language). Sophisticated languages for manag-
ing database systems are called fourth-generation languages, or 4GLs for short.

The information from a database can be presented in a variety of formats. Most DBMSs
include a report writer program that enables you to output data in the form of a report.
Many DBMSs also include a graphics component that enables you to output information
in the form of graphs and charts.

Source: http://www.webopedia.com/

II.14 DDE (Dynamic Data Exchange)
DDE is an acronym for Dynamic Data Exchange, an interprocess communication (IPC)
system built into the Macintosh, Windows, and OS/2 operating systems. DDE enables
two running applications to share the same data.

Although the DDE mechanism is still used by many applications, it is being supplanted
by OLE, which provides greater control over shared data.

Source: http://www.webopedia.com/

II.15 Default
The DEFAULT parameter allows a standard value to be defined, should the user not en-
ter a specific value. A DEFAULT value can be defined for a domain or a field. The default
value predefined in the domain, can be overridden by the default value entry in the
column/field definition following this domain.

In IBExpert it can be specified when creating a new table and fields or when creating a
domain.

II

GLOSSARY - DLL (Dynamic Link Library)

639

II.16 DLL (Dynamic Link Library)
DLL is the abbreviation for Dynamic Link Library. DLLs are library files with the suffix
DLL. These are executable modules, containing source code or resources, which can
access other DLLs or applications. DLLs enable multiple applications, source code and
resource to be used collectively in a Windows environment.

II.17 Event
An action or occurrence detected by a program. Events can be user actions, such as
clicking a mouse button or pressing a key, or system occurrences, such as running out
of memory. Most modern applications, particularly those that run in Macintosh and
Windows environments, are said to be event-driven, because they are designed to re-
spond to events.

A database event can be anything relative to the rows in a table or values in fields. Co-
ordinated and monitored by the Firebird/InterBase Event Manager.

II.18 Expression
An expression is a group of symbols that represent a value.

In programming, an expression is any legal combination of symbols that represents a
value. Each programming language and application has its own rules for what is legal
and illegal. For example, in the C language x+5 is an expression, as is the character
string "MONKEYS".

Every expression consists of at least one operand and can have one or more operators.
Operands are values, whereas operators are symbols that represent particular actions.
In the expression

x + 5

x and 5 are operands, and + is an operator.

II

GLOSSARY - FBK Files

640

Expressions are used in programming languages, database systems, and spreadsheet
applications. For example, in database systems, you use expressions to specify which
information you want to see. These types of expressions are called queries.

Expressions are often classified by the type of value that they represent. For example:

• Boolean expressions : Evaluate to either TRUE or FALSE
• Integer expressions: Evaluate to whole numbers, like 3 or 100
• Floating-point expressions: Evaluate to real numbers, like 3.141 or -0.005
• String expressions: Evaluate to character strings

Source: http://www.webopedia.com/

II.19 FBK Files
FBK is the standard suffix used for Firebird backup database file names.

This is not compulsory, in fact a Firebird or InterBase backup database may be named
with any suffix. This standardization does however provide a certain conformity, of par-
ticular importance if a database is to be administrated long term by numerous people.

II.20 FDB Files
FDB is the standard suffix used for Firebird database file names. It is derived from the
InterBase standard, .GDB.

This is not compulsory, in fact an Firebird or InterBase database may be named with
any suffix. This standardization does however provide a certain conformity, of particu-
lar importance if a database is to be administrated long term by numerous people.

II.21 FTP (File Transfer Protocol)
FTP is an abbreviation of File Transfer Protocol, the protocol for exchanging files over
the Internet. FTP works in the same way as HTTP for transferring web pages from a
server to a user's browser and SMTP for transferring electronic mail across the internet
in that, like these technologies, FTP uses the internet's TCP/IP protocols to enable data
transfer.

FTP is most commonly used to download a file from a server using the internet or to
upload a file to a server (e.g., uploading a web page file to a server).

Source: www.webopedia.com

II.22 GBK Files
GBK is the standard suffix used for Borland InterBase backup database file names.

This is not compulsory, in fact an InterBase or Firebird backup database may be named
with any suffix. This standardization does however provide a certain conformity, of par-
ticular importance if a database is to be administrated long term by numerous people.

II

GLOSSARY - GDB Files

641

II.23 GDB Files
GDB is the standard suffix used for Borland InterBase database file names. It originates
back to the days when the Interbase Corporation was still called Groton Database Sys-
tems.

This is not compulsory, in fact an InterBase or Firebird database may be named with
any suffix. This standardization does however provide a certain conformity, of particu-
lar importance if a database is to be administrated long term by numerous people.

II.24 GRC Files
.GRC files are IBExpert Database Designer files.

II.25 HTML (HyperText Markup Language)
Short for HyperText Markup Language, the authoring language used to create docu-
ments on the World Wide Web. HTML is similar to SGML (Standard Generalized Markup
Language), although it is not a strict subset.

HTML defines the structure and layout of a web document by using a variety of tags
and attributes. The correct structure for an HTML document starts with
<HTML><HEAD>(enter here what document is about), <BODY> and ends with
</BODY></HTML>. All the information you'd like to include in your web page fits in be-
tween the <BODY> and </BODY> tags.

There are hundreds of other tags used to format and layout the information in a web
page. Tags are also used to specify hypertext links. These allow web developers to di-
rect users to other web pages with only a click of the mouse on either an image or
word(s).

Source: http://www.webopedia.com/

II.26 HTTP (HyperText Transfer Protocol)
Short for HyperText Transfer Protocol, the underlying protocol used by the World Wide
Web. HTTP defines how messages are formatted and transmitted, and what actions
web servers and browsers should take in response to various commands. For example,
when you enter a URL in your browser, this actually sends an HTTP command to the
web server directing it to fetch and transmit the requested web page.

The other main standard that controls how the World Wide Web works is HTML, which
covers how web pages are formatted and displayed.

HTTP is called a stateless protocol because each command is executed independently,
without any knowledge of the commands that came before it. This is the main reason
that it is difficult to implement web sites that react intelligently to user input. This
shortcoming of HTTP is being addressed in a number of new technologies, including
ActiveX, Java, JavaScript and cookies.

Source: http://www.webopedia.com/

II

GLOSSARY - IDE (Integrated Development Environment)

642

II.27 IDE (Integrated Development Environ-
ment)

Abbreviated as IDE, a programming environment integrated into a software application
that provides a GUI builder, a text or code editor, a compiler and/or interpreter and a
debugger. Visual Studio, Delphi, JBuilder, FrontPage and DreamWeaver are all exam-
ples of IDEs.

II.28 OAT (Oldest Active Transaction)
The Oldest Active Transaction (OAT) is the earliest transaction in the database, re-
corded by the versioning engine in the TIP (Transaction Inventory Page) that is cur-
rently active or open.

II.29 ODBC (Open DataBase Connectivity)
ODBC (pronounced as separate letters) is short for Open DataBase Connectivity, a
standard database access method developed by the SQL Access group in 1992. The
goal of ODBC is to make it possible to access any data from any application, regardless
of which database management system (DBMS) is handling the data. ODBC manages
this by inserting a middle layer, called a database driver, between an application and
the DBMS. The purpose of this layer is to translate the application's data queries into
commands that the DBMS understands. For this to work, both the application and the
DBMS must be ODBC-compliant -- that is, the application must be capable of issuing
ODBC commands and the DBMS must be capable of responding to them. Since version
2.0, the standard supports SAG SQL.

Source: http://www.webopedia.com/

II.30 ODS Version
ODS = On-Disk Structure.

The ODS version shows with which database version the database was created, e.g.
InterBase 5 = 9, InterBase 6 = 10.0, InterBase 6.5 = 10.1, InterBase 7 = 11.

For more information about the InterBase On-Disk Structure, please refer to Ann Harri-
son's article, Space Management in InterBase.

II

GLOSSARY - OIT (Oldest Interesting Transaction)

643

II.31 OIT (Oldest Interesting Transaction)
The Oldest Interesting Transaction (OIT) is the earliest transaction in the database, re-
corded by the versioning engine in the TIP (Transaction Inventory Page) with a status
other than committed. Every transaction prior to that one represents an unbroken
chain of insertions and updates into the database.

II.32 OLAP (Online Analytical Processing)
Short for Online Analytical Processing, a category of software tools that provides analy-
sis of data stored in a database. OLAP tools enable users to analyze different dimen-
sions of multidimensional data. For example, it provides time series and trend analysis
views. OLAP often is used in data mining.

The chief component of OLAP is the OLAP server, which sits between a client and a da-
tabase management system (DBMS). The OLAP server understands how data is organ-
ized in the database and has special functions for analyzing the data. There are OLAP
servers available for nearly all the major database systems.

Source: http://www.webopedia.com/

II.33 OLE (Object Linking and Embedding)
OLE is an abbreviation of Object Linking and Embedding, pronounced as separate let-
ters or as oh-leh. OLE is a compound document standard developed by the Microsoft
Corporation. It enables you to create objects with one application and then link or em-
bed them in a second application. Embedded objects retain their original format and
links to the application that created them.

Support for OLE is built into the Windows and Macintosh operating systems. A compet-
ing compound document standard developed jointly by IBM, Apple Computer, and
other computer firms is called OpenDoc.

Source: http://www.webopedia.com/

II.34 Operand
In all computer languages, expressions consist of two types of components: operands
and operators. Operands are the objects that are manipulated and operators are the
symbols that represent specific actions. For example, in the expression

5 + x

x and 5 are operands and + is an operator. All expressions have at least one operand.

Source: http://www.webopedia.com/

II.35 Operator
An operator is a symbol that represents a specific action. For example, a plus sign (+)
is an operator that represents addition. The basic mathematic operators are + addition,
- subtraction, * multiplication, / division.

II

GLOSSARY - PIP (Page Inventory Page)

644

In addition to these operators, many programs and programming languages recognize
other operators that allow you to manipulate numbers and text in more sophisticated
ways. For example, Boolean operators enable you to test the truth or falsity of condi-
tions, and relational operators let you compare one value to another. For example, the
expression

x < 5

means x is less than 5. This expression will have a value of TRUE if the variable x is
less than 5; otherwise the value of the expression will be FALSE.

Relational operators are sometimes called comparison operators. Expressions that con-
tain relational operators are called relational expressions.

Source: http://www.webopedia.com/

II.36 PIP (Page Inventory Page)
The Page Inventory Page (PIP) is one of the ten page types defined in Inter-
Base/Firebird. The PIP is used along with the pointer page for space management.

Every page in the database is represented by one bit in the PIP, this bit indicating
whether the page is currently in use. PIPs occur at fixed intervals in the database, the
interval being determined by the database page size. PIPs are never released.

For those interested in more detailed information, Ann Harrison's article, Space Man-
agement in InterBase, provides an in-depth insight into page types and their roles.

II.37 RDBMS (Relational Database Management
System)

RDBMS is the abbreviation for Relational Database Management System and is pro-
nounced as separate letters, a type of database management system (DBMS) that
stores data in the form of related tables. Relational databases are powerful because
they require few assumptions about how data is related or how it will be extracted
from the database. As a result, the same database can be viewed in many different
ways.

An important feature of relational systems is that a single database can be spread
across several tables. This differs from flat-file databases, in which each database is
self-contained in a single table. Almost all full-scale database systems are RDBMS's.
Small database systems however, use other designs that provide less flexibility in pos-
ing queries.

From a technical standpoint, DBMSs can differ widely. In addition to the relational
DBMS, there are also network, flat, and hierarchical DBMS's. These all refer to the way
a DBMS organizes information internally. The internal organization can affect how
quickly and flexibly you can extract information.

Source: http://www.webopedia.com/

II

GLOSSARY - Statement

645

II.38 Statement
A statement is the smallest unit of a program. Statements are separated in Inter-
Base/Firebird by a semicolon.

A statement is an instruction written in a high-level language. A statement directs the
computer to perform a specified action. A single statement in a high-level language can
represent several machine-language instructions. Programs consist of statements and
expressions.

Source: http://www.webopedia.com/

II.39 String
A string is a series of characters manipulated as a group. A character string differs
from a name in that it does not represent anything -- a name stands for some other
object.

A character string is often specified by enclosing the characters in single or double
quotes. For example, WASHINGTON would be a name, but 'WASHINGTON' and "WASHING-
TON" would be character strings.

Source: http://www.webopedia.com/

II.40 TID (Transaction ID)
Each user performs transactions, and each transaction is given its own ID. The TIDs
(Transaction IDs) are numbered sequentially, i.e. transaction ID 10 was started before
the transaction with the ID 11.

The TIPs contain all transactional information in an array of bits, two per transaction,
which indicate the state of the transaction. The transaction ID is an index into this ar-
ray.

When the transaction number is allocated to a transaction, the user also receives a
copy of the TIP (Transaction Inventory Page), which comprises the status of all trans-
actions. If a data set is inserted or modified, the TID is entered next to the alteration.
These simple rules are all that is needed to implement the InterBase/Firebird version-
ing.

A transaction can only see those transactions with a lower TID than its own. Further-
more, all other transactions that were still active at that point in time when the trans-
action was started, are invisible to the transaction.

The TIP copy, provided when the TID number is allocated, can be used to monitor the
status of all other transactions at the point in time when the transaction was started.
The only way to obtain a newer, more up-to-date TIP is to request a new TID.

For example: User A has a TID 10, user B has a TID 11 or higher. He could also have a
TID 9 or lower, when his transaction was still active at the point in time when user A
began his transaction with the TID 10. Otherwise he would not be able to alter the data
set X. User B modifies the data set with his active transaction.

II

GLOSSARY - TIP (Transaction Inventory Page)

646

Now user A modifies data set X. When the transaction is posted, User A receives a
deadlock error or an update conflict, providing the Transaction Isolation Level is set at
repeatable read. this message informs user A that his modification cannot be carried
out, as another user - in this case user B - has modified the data set. The programmer
can decide at this point, how the program reacts to this situation.

II.41 TIP (Transaction Inventory Page)
The Transaction Inventory Page (TIP) is one of the ten page types defined in Inter-
Base/Firebird.

Each and every user transaction is consecutively numbered, using the Inter-
Base/Firebird Transactions Inventory Page (TIP) (also known as the Transaction Infor-
mation Page). These transaction numbers are used by the InterBase/Firebird version-
ing engine to ensure that users always receive a consistent view of the database. It
shows the status of each and every transaction in the database, and adheres to two
main rules:

• Only those transactions are visible, whose ID <= own ID.
• Only those transactions are visible, which were already committed at the time the

own transaction was started.

Transactions are shown with one of the following four status values:

Table: Values in the Transaction Information Pages

Status
Code

Description

 A Transaction is active, or in process

 C Transaction was committed. The changes made by this transaction can
be applied if necessary to show a consistent view of the database.

 R Transaction was rolled back. The changes made by this transaction
should be ignored.

 L Limbo transaction. This transaction was part of an operation involving
more than one database within an embedded SQL application.

For example, 1C = first transaction committed, 2A = second transaction is active, 3C =
third transaction is rolled back, 4L = Transaction is in limbo (i.e. when a transaction is
dependent upon another transaction in another database = two-phase commit). This
information is important for the garbage collection.

The TIPs contain this information in an array of bits, two per transaction, that indicate
the state of the transaction. The transaction ID (TID) is an index into this array.

Special transactions IDs

InterBase/Firebird tracks three special positions within the transaction history:

II

GLOSSARY - TIP (Transaction Inventory Page)

647

• The Oldest Interesting Transaction (OIT) is the earliest transaction in the database
with a status other than committed. Every transaction prior to that one represents
an unbroken chain of insertions and updates into the database.

• The Oldest Active Transaction (OAT) is the earliest transaction in the database that
is currently active or open.

• The Next Transaction Number is the ID that is used for the next transaction that
starts.
You can find these numbers in the IBExpert Database Statistics display within
Server Manager, or using the gstat -h command in isql.

When you start a transaction, InterBase/Firebird makes a copy of the TIP into the
server memory cache assigned to your process, starting from the page holding the OIT
and finishing with the page holding the OAT.

Whenever the database is backed up and restored, the transaction inventory is wiped
out and the next transaction number is set to 1.

There is also a mechanism in the InterBase/Firebird server TIP page, to allow a local
TIP page for each user. The local TIP page is generated the minute a new user presses
the Execute [F9] key. Please refer to TID (Transaction ID) for further information.

The advantage of such a system is that older records are held ready. The disadvantage
for users, who execute, but need a considerable time before finally committing is that
the local TIP becomes very large, as it always begins at the oldest active transaction;
so that it is possible using this technique, for one transaction to hold everything up and
slow the transaction processing for everyone. If a system becomes increasingly slow
with time, it is almost always due to the fact that TIP pages are being filled further and
further with transaction information, because the first transaction has not been com-
mitted. 99% of local TIPs are held in the RAM, until there are no further pages free.

• Note: If you are only doing a SELECT in your transaction, you should always COMMIT
to avoid creating an “interesting” transaction (transaction with a status code other
than committed in the TIP).

All TIPs are of the page size defined when creating the database. 16,000 transactions
fit, for example, onto a 4K page.

TIPs and Server Crashes:

If a server crashes or hangs during user transactions, the InterBase/Firebird server
simply looks at the TIP, and rolls back all operations that were still active. This means
that an InterBase/Firebird server can be rapidly restarted. As soon as the operating
system is up and running, InterBase/Firebird is also up and running. Forced writes
however influence the sequence in which is written:

• IBExpert Database Properties / Forced Writes - when committing InterBase/Firebird
saves all data sets to the hard drive and then to the TIP.

• Without forced writes the process is minimally quicker, but on a Windows platform,
Windows decides what should be saved to file, where and when; and the data
pages are saved to file last i.e. the TIP changes are written first and then the data
sets, which could possibly lead to inconsistencies.

II

GLOSSARY - Transaction

648

Therefore forced writes are extremely important when working on a Windows platform.
Without forced writes, the computer needs to be extremely secure.

II.42 Transaction
A transaction is a single task with a number of specific characteristics. An application
can perform one or more operations, within the context of a transaction, each of which
must be completed in sequence.

One of the main tools used by relational databases to maintain data integrity is the
transaction. A transaction is a task with a number of specific characteristics:

• An application can perform one or more operations within the context of a transac-
tion, each of which must be completed in sequence. An operation consists of, as a
rule, one SQL statement, such as SELECT, INSERT, UPDATE, or DELETE.

• The changes performed by the transaction can be committed if all of the operations
in the transaction are completed. Until the results of the transaction are committed,
the changes made to the database are invisible to other users.

• A transaction can also be rolled back. In this case, as far as other database users
are concerned, the data never changed.

Because of these characteristics, transactions ensure that complex operations on the
database are performed completely. Transactions provide complete protection against
operations not being completely processed, therefore ensuring data integrity.

A transaction can be in one of the following four states:

• in limbo
• Committed (please refer to Commit / Rollback)
• Rolled back (please refer to Commit / Rollback)
• Active

II.42.1 Transaction Number Column

For every table you create, including system tables, InterBase/Firebird maintains an
extra column for the transaction number. When you insert or update a column as part
of a transaction, the transaction number is written to this column, so that Inter-
Base/Firebird knows which transaction is controlling that row of the table. Even when
you delete a row as part of the transaction, the number is written to the row until the
transaction is committed or rolled back, in case there is a problem, or in case the
transaction is a lengthy one.

The InterBase/Firebird versioning engine uses this transaction number to ensure that
each user receives a consistent view of the database at a moment in time. This is
known as a
repeatable read. Please refer to versioning engine for further information.

II.42.2 Active Transactions

A transaction is active, if one of the following conditions is true:

• The transaction has not yet started.

II

GLOSSARY - Two–Phase Commit

649

• The transaction has started but not yet completed.
• The transaction has started, could not however complete successfully, due to for

example, a system crash or communication problems etc.

The actual status of each transaction is recorded in the TIP (Transaction Inventory
Page). In fact, the only alteration that occurs when a transaction is committed is the
alteration to the status in the TIP from active to committed.

II.42.3 Transactions in Limbo

InterBase/Firebird's transaction mechanism, like most databases, can only handle
transactions within a single database. However within an embedded SQL application,
InterBase/Firebird can perform operations on more than one database at a time.

With a logical transaction that spans databases, InterBase/Firebird handles the opera-
tions within each database as separate transactions, and sequences them using a two-
phase commit model, to ensure that both transactions complete or that neither com-
pletes. When InterBase/Firebird is ready to commit or rollback such a multidatabase
transaction, it first changes the transaction status from active to limbo. It then per-
forms the commit or rollback operation. Finally the transaction status is changed from
limbo to committed.

Transactions in limbo are transactions that have been started by the PREPARE com-
mand within the framework of a two-phase commit. The transaction may or may not
still be running. This transaction may become relevant at any point in time and all
changes made so far may be committed or rolled back. Such alterations made by such
transactions can neither be examined or ignored; they can neither be defined as exe-
cuted or aborted. They can therefore not simply be removed from the database.

However for a database backup to be fully performed without aborting, such transac-
tions in limbo need to be ignored in the backup. Only those most recent, committed
transactions are backed up. It allows a database to be backed up, before recovering
corrupted transactions. Generally in limbo transactions should be recovered before a
backup is performed.

• Note: BDE clients use only single-database transactions, even if the client applica-
tion accesses two or more databases. Embedded SQL and InterBase/Firebird API
provide methods for programming distributed transactions.

II.43 Two–Phase Commit
A transaction spanning multiple InterBase/Firebird databases is automatically commit-
ted in two phases. A two-phase commit guarantees that the transaction updates either
all of the databases involved or none of them - data is never partially updated.

In the first phase of a two-phase commit, InterBase/Firebird prepares each database
for the commit by writing the changes from each subtransaction to the database. This
subtransaction is the part of a multi-database transaction that involves only one data-
base. In the second phase, InterBase marks each subtransaction as committed in the
order that it was prepared.

II

GLOSSARY - Variable

650

If a two-phase commit fails during the second phase, some subtransactions are com-
mitted and others are not. A two-phase commit can fail if a network interruption or
disk crash makes one or more databases unavailable. Failure of a
two-phase commit causes in limbo transactions, i.e. transactions that the server does
not know whether to commit or roll back.

It is possible that some records in a database are inaccessible due to their association
with a transaction that is in a limbo state.

Note: The Borland Database Engine (BDE), as of version 4.5, does not exercise the
two-phase commit or distributed transactions capabilities of InterBase/Firebird, there-
fore applications using the BDE never create limbo transactions.

II.44 Variable
A symbol or name that stands for a value. For example, in the expression

x+y

x and y are variables. Variables can represent numeric values, characters, character
strings, or memory addresses.

Variables play an important role in computer programming because they enable pro-
grammers to write flexible programs. Rather than entering data directly into a pro-
gram, a programmer can use variables to represent the data. Then, when the program
is executed, the variables are replaced with real data. This makes it possible for the
same program to process different sets of data.

Every variable has a name, called the variable name, and a data type. A variable's data
type indicates what sort of value the variable represents, such as whether it is an inte-
ger, a floating-point number, or a character.

The opposite of a variable is a constant. Constants are values that never change. Be-
cause of their inflexibility, constants are used less often than variables in program-
ming.

Source: http://www.webopedia.com/

III

FAQs - How do I connect to a database?

651

III FAQs
Here we have attempted to list some of the more frequently asked questions regarding
IBExpert. Should you not be able to find a solution to your problem under the links
provided here or elsewhere within the IBExpert documentation, please contact one of
our newsgroups:

Username ibexpert
Password ibexpert

news://ibexpert.info/interbase.ibexpert.de German language
news://ibexpert.info/interbase.ibexpert.en English language
news://ibexpert.info/interbase.ibexpert.ru Russian language
news://ibexpert.info/interbase.ibexpert.fr French language

or send an email to documentation@ibexpert.com or support@ibexpert.com
or use our bug track system in IBExpert

III.1 How do I connect to a database?
See Connect to Existing Database and Register Database.

If you are experiencing problems with a remote connection, please refer to Communi-
cations Diagnostics.

III.2 Why do I need to register a database?
See Register Database.

III.3 How do I create a new database?
See Create Database.

III.4 How do I use the SQL Editor?
See SQL Editor.

III.5 What is the Performance Analysis for?
See Performance Analysis.

III.6 What is the Query Plan?
See Plan Analyzer.

III.7 How can I optimize an SQL Statement?
See Optimizing an SQL Statement.

III.8 How do I debug a stored procedure?
See Debug Procedure.

III

FAQs - Are there typical windows for all Object Editors?

652

III.9 Are there typical windows for all Object
Editors?

See Database Objects.

III.10 How can I use the view and procedure
version control?

See New View / Version History.

III.11 What is the Project View in the DB Ex-
plorer for?

See Project View.

III.12 What is the Recent list in the DB Explorer
for?

See Recent List.

III.13 How do I use the integrated Report Man-
ager?

See Report Manager.

III.14 Why can I not see the index statistics in
the Table Editor?

Use the right-click menu directly on the Indices page in the Table Editor and select the
menu item Show Statistics.

III.15 Why does the index selectivity/statistics
not change?

See Recompute Selectivity of all Indices.

III.16 Indices do not seem to work on my newly
installed application

See Recompute Selectivity of all Indices.

III.17 How can I integrate the online Help files
into IBExpert?

Please refer to IBExpert Help menu.

III.18 Import CSV Files
Here are a few questions that have arisen with regard to importing CSV files.

III

FAQs - Import CSV Files

653

1. In the examples a DB field gets the correct value if the imported data is numeric.
Does truncation occur if it is not an integer?

INSERTEX itself doesn't truncate numeric values. Of course, if you're inserting numeric
value into Integer fields the server will truncate it.

2. Can I import dates and if so what ASCII format does it accept for DATE or TIME-
STAMP columns or do I need to perform my own external conversion of dates & times to
a 32 bit integer?

You can import dates and INSERTEX accepts any date format known by the server. For
example, 1.08.2004 or 1-AUG-2004.

3. If the imported string is longer than I specify for VARCHAR or CHAR does truncation
occur?

Yes, it does.

IV

Database technology–related articles - Enterprise–wide data model

655

IV Database technology–related articles

IV.1 Enterprise–wide data model
New technologies are not a universal remedy:
ways to achieve an enterprise-wide data model
Today almost all enterprises are fighting against a profusion of data, simultaneously
suffering from a lack of useful information.

Applications have grown isolated and exist in their own more or less well-documented
data and file world.

An important task of information management is to convert the multitude of data into
a manageable amount of significant information.

“Information as a resource” has integrated itself in the series of terms that have be-
come common knowledge for data users. This keyword is commonly used and every-
one now considers information to be of equal importance to the classical production
factors capital, human resources and plant.

Information management is an old hat which has finally been recognized and allocated
its own organizational unit.

The persons appointed the responsibility for this information management are those
who have so far been responsible for information systems: the DP or Organizational
Manager.

As an additional admonition, these managers are then required by general manage-
ment to also consider old data as a new resource, and treat it with the corresponding
diligence.

This viewpoint may be exaggerated, however the impression is given in many enter-
prises that by appointing an Information Manager, enough has been done to keep up
with the new trend, and it is now possible to return to day-to-day business with re-
sponsibilities for:

• Hardware and software selection and implementation,
• Design of a hardware and software architecture for centralized and decentralized

applications,
• Provision of the infrastructure for information users in the various enterprise sec-

tors,
• Maintenance of standards and procedures.

But is that really all that information management needs to do? It is indisputable that
the strategic direction of Information Technology is a considerable complex task of in-
formation management, the tasks mentioned above having become considerably more
complex than they ever were.

Information management has lost its way in the data-processing jungle. The technical
range, with its overabundance of possibilities, has not just become more extensive and
complex, but has also brought with it compatibility and integration problems due to the

IV

Database technology–related articles - Enterprise–wide data model

656

lack of standardization; just consider the range of different network types, communica-
tion technologies, CIM products.

It’s no wonder that information management can these days easily err in the data-
processing jungle. But let’s assume that the IT-technical world was different: strategi-
cally concise, tidier, clearly structured and without any technical problems.

What would then stop the enterprise from finally being able to fully utilize the longed-
for possibilities to exchange all information as desired?

Everyone could then:

• within the realms of his authentication, independently
• use and alter others’ information, create new information and make it available to

others?

What is stopping them? This picture might be enticing, but unfortunately extremely de-
ceptive.

Because even the most perfect technology cannot hide the fact that, although bits and
bytes can be distributed as wished, their information content could still continue to be
unknown, or at least be misinterpretable.

By now it should be clear, that today’s information management insufficiently fulfils the
fundamental tasks of tomorrow:

• Information planning and information strategy
• Design of an application architecture
• Planning software applications

These three fields of responsibility are closely linked together, as an expedient planning
strategy of individual software applications needs to be based on a previously compiled
applications architecture, designed for the future.

The application architecture itself will need to be based on the results of the informa-
tion plan and strategy, so that this task can be regarded as, in the long-term, the cen-
tral logical basis.

The following remarks will therefore be confined to this basic function. There are two
aspects to information planning. It demands firstly that you deal with the information
itself - specifically and in detail. And it needs the managerial functions that create and
process the information. However the lynchpin remains the information itself.

We are still confused – but on a global level

So, initially the information is in the foreground. Information cannot be classified as
such, until the data has been complemented by its semantic content, i.e. its meaning,
thus becoming interpretable.

However the current situation in most enterprises still predominantly mirrors the con-
ventional picture of data processing and not that of targeted information processing.

IV

Database technology–related articles - Enterprise–wide data model

657

Applications systems that have grown isolated exist in their own world, where no one
system is aware of the other, and which, at best, are only able to communicate via
elaborate interfaces.

Data communication demands a common data appreciation though. However homo-
nyms (terms with the same name but a different meaning) and synonyms (terms with
different names but the same meaning) have become the order of the day in both ap-
plication systems as well as in individual departments.

Applications, whose job it is to compile summaries and analyses, composed from base
data from different operative systems, for planning purposes, or even as a tool to sup-
port enterprise decision making, find it extremely difficult to deliver reliable results.

Reliability can only be achieved, when it can be assured that the base data do not just
have the same name, but also the same meaning.

As clear definitions and descriptions for the data meaning are still missing in many en-
terprises, it is right to doubt the informational value of many an analysis or report. This
situation cannot however be improved by implementation of new technology, which
serves no other purpose than to distribute the dubious data more quickly.

New technologies alone may even make this problem worse, by ingeniously helping to
expand localized chaotic situations into global ones, based on the principle, “We are
still confused, but on a global level”.

Structuring data comprehensively and usefully

One of the most important tasks of information management is therefore to transform
the multitude of existing data into a manageable quantity of meaningful information, in
a structure that is both comprehensible and therefore usable for all information users.

This structure is the well-known data model. A data model is an illustration of the en-
terprise’s information (or parts thereof) and their interrelations from a purely manage-
rial point of view, independent of how they might be realized in the data-processing
world.

These days the importance of such an enterprise-wide data model is almost indisput-
able and its design and maintenance should be a task for data management, which is
an integral constituent of information management.

Unfortunately in reality, surprisingly few enterprises dare to venture the construction of
such a model. One the reasons for this appears to be fear of the word “enterprise-
wide”, as it gives the impression of an impossibly huge and insurmountable task.

But there are in fact realistic and viable ways by which “enterprise-wide” can be ap-
proached step by step, without having the rug pulled out from under your feet. One of
these methods leads to what should here be called “enterprise-wide data model”, the
other leads to the resulting “enterprise data model”.

The construction of both models is based on the same theoretically established and
empirically tested method, that of the data model, which however will not be gone into
detail here.

IV

Database technology–related articles - Enterprise–wide data model

658

Both models differ in their aim and, more than anything else, in their level of detail.
Both models should enable information planning and information utilization globally
across all projects, nevertheless each with a somewhat different specificity.

The enterprise-wide data model

The enterprise-wide data model corresponds to today’s current established data model,
and has the certainly extremely ambitious aim to achieve the following:

• A complete base of all information that the enterprise has to offer (including a pro-
fessional data catalog), which is able to serve both as a detailed fundament of in-
formation and communication between departments, and aid with data processing.

• To provide a specification from which database structures can then be derived.
• To keep project interfaces small.

How is it possible to meet these high demands? Such a detailed data model cannot re-
alistically be achieved in one simple step, but needs to be constructed from many small
sub- data models.

Each single partial model results from a project, which applies methodical data analy-
sis. Each project creates a project-related data model, confined to its own informa-
tional area. The terms and concepts used in this data model however need to be clearly
defined and be valid for the total enterprise.

The enterprise-wide data model evolves from the bottom up, arising from the union of
the single project results into one consolidated structure.

Practice shows that this method has the following advantages:

• Each project recognizes the benefits of data analysis itself as an aid.
• The resulting “project data model” can be utilized immediately.
• The project result has been achieved to the great level of detail required, yet with a

manageable amount of effort.

Problems arise however with this method when consolidating the partial models. It of-
ten becomes apparent at the interface of two projects, that the supposed enterprise-
wide denomination and definition of the data is only actually fully valid from the limited
project viewpoint, and now needs to be synchronized with the other projects. Informa-
tion streaming increases project effectiveness.

This fine-tuning can be an elaborate process, which also in addition needs to take into
account the human factor, namely the danger of those involved mistaking their own
contributions and efforts as their property.

The process is also elaborate, because alteration to names and structures could have
an effect on the results of other projects (e.g. functional flow descriptions), and other
projects may need to adapt their results accordingly.

It is only possible to minimize this project-related annoyance if:

• Each sub-project is adequately informed of the enterprise’s strategy with regard to
mutual information, and feels sufficiently obliged to comply.

IV

Database technology–related articles - Enterprise–wide data model

659

• Each project is kept informed right from the beginning of the results of previous or
progress of current projects, and is able to use these actively, thereby saving ex-
penditure, and even more importantly, effort.

This method produces immediate results, as even the initial results of the first project
are a step towards information organization, without which information management is
powerless in the long-term.

However the enterprise-wide data model cannot be used as a basis for information
planning until at least two years later, as it takes this long for the results of the indi-
vidual projects to be delivered, quality-controlled and synchronized with each other.

The enterprise data model however demonstrates its benefits rapidly, because it is
constructed as an independent assignment, detached from other projects and with a
different target: that of the enterprise data model.

The enterprise data model primarily follows a different target direction to the enter-
prise-wide data model. It does not aim to achieve a detailed data catalog and will
never represent a complete base of all data in the enterprise.

In contrast it should:

• Provide an summary of the enterprise’s information at top level,
• Recognize information supply areas (“theme” databases), according to which this

information can grouped and summarized,
• Be a decision aid, enabling projects to be defined more precisely at their initiation,

and last but not least,
• Produce a result with which enterprise management can demonstrate to all infor-

mation users that they take the term “information” seriously.

These goals of a collective consolidated structural summary of the enterprise cannot be
attained by joining the individual project results, bottom-up, and then integrating them
upwards. An enterprise data model can only be developed as an independent and self-
contained project, with participation of all management levels, as summary and not
detail information is required here.

By management we mean the specialist departments and sectors, as it is only here
that data can be defined from a managerial point-of-view.

Data collation is achieved through interviews relevant for the level concerned and re-
lated professionally and technically.

Its goes without saying that the definition and description of this data will have a dif-
ferent quality to that of the enterprise-wide data model. In the enterprise data model
relationships are identified clearly and precisely, always with the aim of simplification
and rough abstraction. (Keep in mind that the objective here should not be a constant
information refinement down to the last detail (i.e. an endless top-down process), but
the construction of an approximate summary model that can continue to be maintained
at this crude level.)

Project model with clear task definition

IV

Database technology–related articles - Enterprise–wide data model

660

As the enterprise model is a self-contained investment, without direct implementation
into a data application, its initial construction should be completed within a maximum 6
month time frame. The model can then be used immediately at project initiation.

The enterprise data model can be made immediately available and passed on to pro-
jects, along with a clear definition of which of the subject areas described belong to the
project objectives.

Project boundaries can be defined and established in relationship to each other right
from the start, and subproject intersections can at least be fixed at a rough level.

This anticipatory description of intersections considerably reduces later investment for
project adjustments, as each project knows its own “data limits”, and is also aware
from the start which other information management project partners he will need to
confer with for the fine-tuning phase.

The results of this project refinement are not included in the enterprise data model, but
grow together to form their own independent enterprise-wide data model.

The enterprise-wide data model and enterprise data model are therefore not “either-
or” models, but are, in the true sense of the word, “as-well-as” complements. But what
do both these models have to do with future-oriented information planning and infor-
mation strategy, are they not managed by data administration?

The problem today lies in the term administration, which has little to do with manage-
ment and consequently with strategy and planning. Many enterprises have started con-
structing an enterprise-wide data model, but its use is still mainly limited to the unifi-
cation of terms and information correlations. Compared to the alternative of prevailing
data chaos this limitation is however still a huge step forward, which itself is worth a
certain amount of effort.

However data and information planning require more, and open up in the long-term
other perspectives. Information planning should achieve the goal of comparing the en-
terprise’s current information supply situation with future visions and to assess them,
in order to recognize supply deficits and to be able to simulate and optimize future
supply situations. This however assumes that not only the enterprise’s information is
known, but also the functions that are connected to the use of this information. Princi-
pally only the comparison of a data model with the functions or functional areas that
are necessary for the improvement or extensions of strategically important business
areas, allows informational gaps and superfluous informational ballast to be detected.
But what does this mean, in view of both the above-mentioned types of data model?

The enterprise-wide data model is only suitable for detail planning aspects, because of
its level of detail; that is, when dealing with the concrete definition for contained single
subject areas.

In contrast, this model is unsuitable for planning or strategic aspects. And yet it is the
only model, in many cases, that is (at least in part) used by information management.

Foundation for theme databases

IV

Database technology–related articles - Enterprise–wide data model

661

But who begins with strategic management tasks in other enterprise areas at the op-
erative level, such as the Internal Revenue? Information management is often de-
graded to the level of dealing with nothing other than the daily business (enterprise-
wide data model), instead of setting the basis for management tasks: the enterprise
data model.

The enterprise data model offers management (and not just information management),
for the first time and within a short period of time, a defined basis for their own infor-
mation and informational areas (theme databases) which is comprehensible to all.

This model allows a meaningful and clear classification of information for the enter-
prise’s functional areas and organizational units. It supports the construction of a more
comprehensive model, with which a conscious design and simulation of future informa-
tion management is made possible.

And there is one more advantage: the enterprise data model includes business man-
agement, in its target-oriented way of thinking, in information and informational corre-
lations right from the beginning. Data model and information management become ac-
cessible to all concerned, becoming today’s obligation to go on the “search for tomor-
row’s information”.

Index

662

$

$ELSE · 370
$ENDIF · 371
$IFEXISTS · 369
$IFNEXISTS · 370
$IFNOTEXISTS · 370

A

About IBExpert · 578
activating a shadow · 530
activation certificates · 533
ACTIVE or INACTIVE · 247
active transaction · 648
adding files to a shadow · 532
Adding primary keys to existing

tables · 145
Additional · 348
Additional / DB Explorer · 94
Additional / Memory · 350
Additional / Operations · 351
Additional / SQL Editor · 95
Additional Connect Parameters · 90
Additional Help Files · 577
Additional Help options · 305
Additional Tools options · 305
alias · 633
alias key · 149
Allowing users to log in during a

restore · 122
Alter Domain · 140
Alter Exception · 266
Alter Field · 209
Alter Generator · 261
Alter Index · 161
Alter Procedure · 244
Alter Role · 275
ALTER statement · 584
Alter Table · 184
Alter Trigger · 254
Alter View · 222
Always Capitalize Database Objects

Names · 90
API · 634
apostrophes in strings · 582
application · 634

Application Program Interface · 634
Apply Best Fit · 285
Arrange · 547
array · 205
array dimensions · 205
artificial key · 149
ascending · 160
ASCII · 635
Associations · 306
auto mode · 529
autogrant privileges · 217
Autohide DB Explorer · 287
autoinc · 207
autoincrement · 207
Average Fetch Time · 349
Avg Fetch Time · 349

B

backup and restore · 519, 523
Backup Database · 519
BDE · 635
BEFORE or AFTER · 247
BEGIN and END · 624
BEGIN and END statement · 624
BEGIN...END · 624
Binary Large OBject · 194
blob · 194
blob filter · 273
Blob Viewer/Editor · 433
Blob Viewer/Editor toolbar · 65
bookmark · 327
boolean · 206
Borland Database Engine · 635
buffer · 539
Bug Track options · 307
Bug Track System · 578
Bug Tracking System · 578
Building an OLAP cube · 496

C

Calculated Measures Manager · 364
call a blob filter · 273
call procedure from select · 236
candidate key · 148
Cascade · 547
cascaded style sheets · 419

Index

663

cascading referential integrity · 150
causes of database corruption · 122
change a field · 209
change a generator · 261
change a procedure · 244
change a role · 275
change a table · 184
change a trigger · 254
change a view · 222
change an exception · 266
change user password per batch ·

423
changes of table left · 79
char · 199
character set · 189
character set summary · 190
charset · 189
check constraint · 155
classic mode · 229
Classic Server · 30
client/server · 635
client-only installation · 28
Close All · 547
CLOSE CONNECTION · 451
CLOSE DATASET · 455
close program · 79
closure · 326
code completion · 312
Code Completion · 332
Code Insight · 332
Code Insight options · 312
collate · 200
collation · 200
Color options · 311
column · 151
Comdiag · 542, 636
command-line tool · 447, 506
command-line utility · 506
comment procedure body · 229
Comment Selected · 328
Comment Selected/Uncomment

Selected · 328
comment trigger body · 254
Comment/Uncomment Procedure

Body · 229
Comment/Uncomment Trigger Body

· 254
comments · 636
commit · 637
COMMIT · 458
commit / rollback · 637
COMMIT statement · 585

Communication Diagnostics · 542
comparing Classic and SuperServer

· 33
comparison operator · 625
compile · 637
composite key · 148
Computed Source · 162
concatenation of strings · 582
conditional directives · 369
conditional directives - an example ·

371
conditional shadow · 530
conditional test · 637
Confirmations · 293
CONNECT statement · 587
connect to a database · 104
Connect to Database · 104
constant · 637
constraint · 153
Constraints page · 168
Convert charcase · 329
Convert Identifiers · 283
Convert Identifiers/Keywords · 283
Convert Keywords · 283
Convert to lower case · 329
Convert to name case · 329
Convert to upper case · 329
Copy · 279
Copy Alias Info · 90
Copy All to Clipboard · 285
Copy Analysis to Clipboard · 352
Copy Current Record to Clipboard ·

285
Copy data from one database to

another · 334
Copy Text as RTF · 328
corrupt database · 121
Corruption of the hard disk · 125
create a database · 109
create a domain · 137
create a generator · 257
create a role · 274
create a shadow · 527
create a stored procedure · 225
create a trigger · 248
create a trigger for a generator ·

251
create a trigger for a view · 251
create a view · 212
create an exception · 263
CREATE CONNECTION · 449
Create Database · 109

Index

664

CREATE DATABASE · 452
Create Domain · 137
Create multiple csv files from a

script · 368
Create procedure from SELECT ·

334
Create Procedure from Table · 182
Create SIUD procedures · 185
CREATE statement · 589
Create Table · 162
Create temp tables · 334
Create view from SELECT · 334
Create View from Table · 180
creating a table from query results ·

353
Creating an UPDATE script with

domain descriptions · 500
Creating script from Database

Designer model file · 499
Criteria · 355
CSS · 419
CSV file · 379
CSV files · 652
Cube Manager · 363
current generator values · 412
Cut · 279

D

Data Analysis · 359
Data Analysis toolbar · 61
Data Definition Language · 583
Data Export · 339
Data Manipulation Language · 614
Data page · 171
data page structure · 114
data record · 150
data set · 150
data type · 193
database · 81
Database Alias · 90
database backup · 519
Database Comparer · 394
Database Connect · 104
database connection · 104
database corruption · 120
database design · 82
Database design mistakes · 125
Database Designer · 434
Database Designer / Export · 440
Database Designer / Print · 440

Database Designer Comment Box ·
446

Database Designer right-click
menus · 436

Database Designer toolbar · 66
Database Explorer · 68
Database Folder · 71
database login · 106
Database Management System ·

637
Database menu · 81
database normalization · 82
database object · 135
Database Online · 542
Database Properties · 538
Database Properties / Active Users ·

540
Database Properties / General · 538
database recovery · 122
Database Registration · 89
Database Registration Info · 88
Database Registration Info /

Additional · 92
Database Registration Info /

Backup/Restore · 98
Database Registration Info / Default

Paths · 101
Database Registration Info /

General · 90
Database Registration Info / Log

Files · 95
Database Registration Info / Scripts

· 103
database repair and sweep using

GFIX · 512
database restore · 523
database security · 120
Database Security · 120
Database Shadow Files · 525
Database Shutdown · 541
database shutdown using GFIX ·

511
Database Statistics · 536
Database Statistics toolbar · 67
database sweep · 540
database technology · 655
Database toolbar · 55
Database Validation · 534
Dataset functions · 471
datatype · 193
date · 203
date time formats · 303

Index

665

DB Explorer · 68
DB Explorer Filters · 102
DB Explorer options · 296
DB object · 135
DBMS · 637
DDE · 638
DDL · 583
DDL page · 177
Debug Procedure · 240
Debug Procedure toolbar · 58
Debug Trigger · 240
Debugger · 240
decimal · 202
declare a blob filter · 273
DECLARE EXTERNAL FUNCTION

statement · 590
DECLARE FILTER · 273
DECLARE VARIABLE · 228
DECLARE VARIABLE statement ·

624
declaring character sets in HTML ·

192
declaring character sets in XML ·

192
default · 638
default character set · 111
Default Paths · 101
Default Source · 162
Default values and comments · 459
DELETE · 619
delete a database · 118
delete a domain · 140
delete a field · 210
delete a generator · 262
delete a procedure · 245
delete a role · 275
delete a table · 185
delete a trigger · 256
delete a UDF · 268
delete a view · 222
delete an exception · 266
delete an index · 161
Delete Database · 118
Deletes · 347
deleting a shadow · 531
Dependencies page · 169
Dependencies Viewer · 389
Dependencies Viewer toolbar · 62
descending · 160
DESCRIBE DOMAIN · 373
DESCRIBE EXCEPTION · 373
DESCRIBE FIELD · 374

DESCRIBE FUNCTION · 375
DESCRIBE PARAMETER · 375
DESCRIBE PROCEDURE · 376
DESCRIBE statement · 593
DESCRIBE TABLE · 377
DESCRIBE TRIGGER · 377
DESCRIBE VIEW · 378
Description page · 177
Diagrams page · 73
Disabled Names · 306
Disabling forced writes · 121
Disconnect Database · 108
disconnect from a database · 108
DISCONNECT statement · 594
Display options · 311
division of an integer by an integer ·

582
DLL · 639
DML · 614
domain · 136
Domain Editor · 137
Domain Editor Options · 321
Domain Editor toolbar · 57
domain integrity · 137
double precision · 201
double-quoted identifiers · 581
download and install Firebird · 15
download and install IBExpert · 39
download and install InterBase · 36
download Firebird · 579
download InterBase · 579
download online help files · 549
drop a database · 118
Drop Database · 118
DROP DATABASE · 453
Drop Domain · 140
Drop Exception · 266
Drop Field · 210
Drop Generator · 262
Drop Index · 161
Drop Procedure · 245
Drop Role · 275
DROP statement · 595
Drop Table · 185
Drop Trigger · 256
Drop UDF · 268
Drop View · 222
Duplicate Domain · 141
duplicate domains across databases

· 142
Duplicating domains from one

database to another · 142

Index

666

Dynamic Data Exchange · 638
Dynamic Help · 77
Dynamic Link Library · 639

E

Edit Controls options · 316
Edit menu · 279
Edit page · 330
Edit toolbar · 55
Editor Options · 309
Editor Options / Code Insight · 312
Editor Options / Color · 311
Editor Options / Display · 311
Editor Options / General · 309
Editor Properties · 309
END DECLARE SECTION statement ·

596
end IBExpert · 79
Enhanced Info · 348
enterprise data model · 655
enterprise-wide data model · 655
entry point · 592
Environment Options · 289
Environment Options / Additional

Help · 305
Environment Options / Additional

Tools · 305
Environment Options / Associations

· 306
Environment Options /

Confirmations · 293
Environment Options / Disabled

Names · 306
Environment Options / Font · 298
Environment Options / Grid · 300
Environment Options / IBExpert Bug

Track · 307
Environment Options / IBExpert

Direct · 306
Environment Options / IBExpert

User Database · 308
Environment Options / Preferences ·

289
Environment Options / Tools · 294
Environment Options / Transactions

· 299
event · 639
EVENT INIT statement · 596
EVENT statement · 596
EVENT WAIT statement · 597

Examples of usage of IBEBlock ·
490

exception · 262
Exception Editor · 263
Exception Editor / DDL · 264
Exception Editor / Dependencies ·

264
Exception Editor / Exceptions · 264
Exception Editor toolbar · 59
Exceptions page · 264
EXECUTE IBEBLOCK · 456
EXECUTE IMMEDIATE statement ·

599
EXECUTE PROCEDURE statement ·

600
EXECUTE statement · 597
EXECUTE STATEMENT · 457
Execute Stored Procedure · 234
executing a stored procedure · 234
executing multiple scripts from a

single script · 368
Explorer Filters · 102
Export ... · 440
export data · 339
Export Data · 174
Export Data into Script · 176
expression · 639
expressions involving NULL · 583
extract blobs · 411
Extract data from a corrupt

database · 130
Extract Metadata · 402
Extract Metadata toolbar · 63
extract object descriptions · 411

F

FAQ · 651
FAQs · 651
FBK files · 640
FDB files · 640
fetches · 351
field · 186
Field Editor · 186
field type · 193
Fields page · 166
file functions · 464
File Transfer Protocol · 640
Filter Panel · 338
Filter Panel toolbar · 61
Find · 279

Index

667

Find Again · 279
Find IBExpert Message · 432
Firebird 2 Features · 622
Firebird backup and restore · 507
Firebird embedded database · 105
Firebird Information file · 24
Firebird License Agreement · 18
Firebird SQL · 581
first normal form · 83
float · 201
Font · 298
Font / Colors toolbar · 66
Font Character Set · 90
FOR ... DO · 453
FOR EXECUTE STATEMENT ... DO ·

458
forced writes · 540
Forced writes - cuts both ways · 125
foreign key · 146
Form View · 334
fourth normal form · 84
FreeAdhocUDF · 271
FreeAdhocUDF installation · 272
FreeUDFLib · 270
FreeUDFLib installation · 270
Frequently Asked Question · 651
FTP · 640
Functions to work with files · 464

G

garbage collection · 522
GBAK · 507
GBK files · 640
GDB files · 641
GDS_LOCK_PRINT · 516
General options · 309
General Templates · 319
Generate Diagram Script · 439
Generate HTML Documentation ·

414
Generate Script · 439
generator · 256
Generator Editor · 260
Generator Editor / DDL · 260
Generator Editor / Dependencies ·

260
Generator Editor / Generators · 260
Generator Editor / Scripts · 261
Generator Editor toolbar · 59
Generator page · 260

Get Record Count · 165
GFIX · 510
GFIX - miscellaneous parameters ·

513
glossary · 633
Go to Bookmarks · 327
Goto Bookmarks · 327
GRANT AUTHORITY · 426
Grant Manager · 423
Grant Manager toolbar · 64
GRANT statement · 601
granting access to stored

procedures · 426
Grants page · 178
Grants toolbar · 64
Graphical Summary · 344
GRC files · 641
Grid / Colors · 301
Grid / Display Formats · 302
Grid menu · 285
Grid options · 300
Grid View · 334
Grouping Criteria · 355
GSEC · 514
GSPLIT · 507
GSTAT · 516

H

Help Contents · 577
Help menu · 549
how to corrupt a database · 121
HTML · 641
HTTP · 641
Hyperlinks · 333
HyperText Markup Language · 641
HyperText Transfer Protocol · 641

I

IANA · 192
IBEBlock · 448
IBEBLOCK and Test Data Generator

· 490
IBEBLOCK Examples · 490
IBEBlock functions · 459
ibec_BuildCube · 480
ibec_Chr · 481
ibec_CmpRecords · 481

Index

668

ibec_CmpVals · 482
ibec_Copy · 460
ibec_CreateModelScript · 483
ibec_DeleteFile · 464
ibec_Div · 462
ibec_ds_Append · 472
ibec_ds_Bof · 474
ibec_ds_Cancel · 473
ibec_ds_Delete · 473
ibec_ds_Edit · 473
ibec_ds_Eof · 474
ibec_ds_FieldCount · 475
ibec_ds_FieldName · 475
ibec_ds_FieldTypeN · 476
ibec_ds_First · 476
ibec_ds_GetField · 477
ibec_ds_Last · 477
ibec_ds_Next · 478
ibec_ds_Prior · 478
ibec_FileExists · 465
ibec_FileSize · 465
ibec_fs_CloseFile · 467
ibec_fs_Eof · 467
ibec_fs_OpenFile · 468
ibec_fs_Position · 469
ibec_fs_Readln · 470
ibec_fs_Seek · 470
ibec_fs_Size · 471
ibec_GetTickCount · 483
ibec_High · 484
ibec_IIF · 484
ibec_IntToHex · 485
ibec_Length · 460
ibec_LoadFromFile · 466
ibec_Mod · 463
ibec_Ord · 486
ibec_ParseCSVLine · 486
ibec_Pos · 461
ibec_Progress · 486
ibec_Random · 487
ibec_Random2 · 487
ibec_RandomChar · 488
ibec_RandomString · 489
ibec_SaveToFile · 466
ibec_SetLength · 489
ibec_ShiftRecord · 490
ibec_Trim · 462
IBECompare · 500
IBEExtract · 502
IBEScript · 503
IBEScriptDll · 505
IBEScriptDll Readme.txt · 505

IBExpert Customer Area · 550
IBExpert Direct · 579
IBExpert Direct options · 306
IBExpert Help / About · 578
IBExpert license · 48
IBExpert Personal Edition · 49
IBExpert screen · 50
IBLOCKPR · 516
IBMGR · 517
icon · 55
IDE · 642
IF THEN ELSE · 624
IF...THEN...ELSE · 624
Import CSV · 652
Importing data from a CSV-file ·

498
Incremental Search · 281
index · 156
indexed read · 345
indexes · 156
indices · 156
Indices page · 168
inner join · 628
input parameters · 228
INSERT · 615
Insert Field · 186
INSERT INTO connection.table · 458
INSERT or UPDATE or DELETE · 247
INSERTEX · 379
Inserting data from a file into a

database · 497
Inserting file data into a database ·

497
Inserting files into a database · 497
Inserts · 347
Inspector Page Mode · 75
install Firebird · 15
install FreeAdhocUDF · 272
install FreeUDFLib · 270
install IBExpert · 39
install InterBase · 36
install RFunc · 269
installing a Firebird client · 28
installing Firebird on Posix platforms

· 28
installing Firebird on Windows

platforms · 28
integer · 201
Integrated Development

Environment · 642
InterBase 7.5 minimum system

requirements · 39

Index

669

InterBase 7.5 trial version · 38
InterBase Classic architecture · 31
InterBase SuperServer architecture

· 31
internal primary key ID · 149
Invert case · 329
invoking the Classic Server · 31
invoking the SuperServer · 33
ISC4.GDB · 422
ISQL · 517

J

join · 626
JOIN statement · 626
joining more than two tables · 630
Joining tables from different

databases · 492

K

key combination · 52
key violation · 149
keyboard shortcut · 52
Keyboard Templates · 318

L

Layout toolbar · 66
Lazy Mode · 229
limbo · 649
Lists and Trees options · 315
Load from File · 279
local access method · 32
local variable · 228
Localize IB Messages · 430
Localize IB Messages toolbar · 64
Localize IBExpert · 431
Localize IBExpert toolbar · 65
Localizing Form · 52
lock management · 32, 34
Log Manager · 398
Logging page · 179
Logs page · 352
looping using WHILE and DO · 625

M

Manage Layers · 442
Manage Subject Areas · 441
Manage Subject Layers · 442
manual mode · 529
Mathematical functions · 462
maximize IBExpert window · 52
MDI · 291
Menu and Palette toolbar · 66
menu bar · 52
Meta Objects toolbar · 63
metadata · 408
Minimize · 547
minimize IBExpert window · 52
Miscellaneous functions · 479
Model Navigator · 78
Model Options · 443
Model Options / Domains · 444
Model Options / Exceptions · 444
Model Options / Generators · 444
Model Options / Procedures · 444
Model Options / Selected Table ·

444
Model Options / Selected View · 444
modifying a shadow · 532
Modifying metadata tables · 121
module name · 592
monitoring database connections ·

32
moving data between databases ·

354
Multiple Document Interface · 291

N

national character · 200
national character varying · 200
Navigation toolbar · 60
nchar · 200
NEW and OLD context variables ·

248
new database · 109
New Database Folder · 71
New Database Object toolbar · 56
New Domain · 137
New Exception · 263
new field · 186
New Generator · 257
New Procedure · 225

Index

670

New Role · 274
New SQL Editor · 355
new table · 162
New Table · 162
New Trigger · 248
New View · 212
New View / Data · 215
New View / DDL · 217
New View / Dependencies · 214
New View / Description · 216
New View / Fields · 214
New View / Grants · 216
New View / Plan Analyzer · 220
New View / Recreate Script · 220
New View / SQL · 212
New View / Triggers · 215
New View / Version History · 218
non-indexed read · 346
non-select procedure · 236
normalization · 82
normalize a database · 82
not null · 207
null · 207
numeric · 202
nvarchar · 200

O

OAT · 642
Object Editor Options · 321
Object Linking and Embedding · 643
ODBC · 642
ODS version · 642
OIT · 643
OLAP · 643
Oldest Active Transaction · 642
Oldest Interesting Transaction · 643
OLE · 643
Online Analytical Processing · 643
online help files · 549
Open Database Connectivity · 642
operand · 643
Operations/Index Using · 232
operator · 643
optimizing an SQL statement · 353
Options menu · 289
outer join · 629
OUTPUT · 381
output parameters · 228
Overview of the main character sets

· 190

P

Page Controls options · 316
Page Inventory Page · 644
Page Setup · 283
page size · 112
Paste · 279
Path to ISC4.GDB · 90
Performance Analysis · 342
Performance Analysis / Additional ·

348
Performance Analysis / Deletes ·

347
Performance Analysis / Graphical

Summary · 344
Performance Analysis / Inserts · 347
Performance Analysis / Reads · 344
Performance Analysis / Updates ·

346
PIP · 644
PivotCube Form · 359
Plan Analyzer · 342
Plugins menu · 545
Posix platforms · 28
Posix signals · 32
Power supply failure · 124
Precautions and methods of repair ·

127
precision · 202
Preferences · 289
PREPARE statement · 604
primary file · 429
primary key · 143
Print · 283
Print Design · 183
Print Metadata · 412
Print Metadata toolbar · 63
Print Preview · 183, 281
Print Table · 183
Print View · 334
Printing Options · 183
Procedural extensions of IBEBlock ·

449
procedure · 222
procedure body · 229
Procedure Editor · 229
Procedure Editor / DDL · 234
Procedure Editor / Dependencies ·

232
Procedure Editor / Description · 232
Procedure Editor / Edit · 230

Index

671

Procedure Editor / Grants · 234
Procedure Editor / Operations/Index

Using · 232
Procedure Editor / Plan Analyzer ·

233
Procedure Editor / Version History ·

234
Procedure Editor Options · 323
Procedure Editor toolbar · 58
Product Home Page · 577
Project View · 71
Protocol · 90
purchase InterBase · 579

Q

query · 326
Query Builder · 355
Query Builder toolbar · 61
Query Time · 349

R

raising an exception · 265
raw datatype · 186
RDBMS · 644
read-only view · 221
Reads · 344
Recent List · 74
Recent tab · 74
Recompile all stored procedures ·

120
recompile all stored procedures and

triggers · 120
Recompile all triggers · 120
Recompute Selectivity of All Indices

· 119
RECONNECT · 384
Reconnect Database · 108
reconnect to a database · 108
Reconnect to Database · 108
Recovering corrupt databases · 122
Recreate Database · 119
Recreate Script page · 220
recreating database indices · 493
recreating database indices using

AS DATASET · 495
Recreating indices #1 · 493
Recreating indices #2 · 495

referential integrity · 149
reflexive join · 631
register a database · 41
Register Database · 89
Register Database / Additional · 92
Register Database / Backup/Restore

· 98
Register Database / Default Paths ·

101
Register Database / General · 90
Register Database / Log Files · 95
Register Database / Scripts · 103
Register Database After Creating ·

109
register IBExpert · 50
Regular backups · 127
Reinitialize Database · 119
REINSERT · 385
relational database · 81
Relational Database Management

System · 644
relational operator · 643
Remote database connect using an

alias · 106
Repairing a corrupt database · 129
Replace · 279
Report Manager · 433
Report Manager toolbar · 65
Reregister Database · 119
resource use · 32, 34
Restore Database · 523
Restoring a backup to a running

database · 122
Restoring hopeless databases · 131
Results page · 334
returns · 593
Reverse Engineer · 438
REVOKE statement · 605
RFunc · 269
RFunc installation · 269
role · 273
rollback · 637
ROLLBACK · 458
ROLLBACK statement · 607
row · 152
rule zero · 83

S

Save Grid Data as · 285
Save to File · 279

Index

672

scale · 202
Script Executive · 365
Script Executive toolbar · 62
script language extensions · 368
SDI · 292
Search · 279
Search Again · 279
Search in Metadata · 401
second normal form · 83
secondary file · 429
Secondary Files Manager · 427
security · 33, 35
SECURITY.GDB · 422
segment size · 196
SELECT · 615
SELECT ... AS DATASET · 454
Select All · 279
SELECT AS ... EXPORT AS ... · 455
Select Objects Tree · 410
Selection · 355
self join · 631
Send bug reports to · 578
Server Activation Certificates · 533
Server Name · 90
Server Properties/Log · 532
Server Properties/Log toolbar · 67
Server security · 422
Server Versions · 90
Services menu · 519
SET BLOBFILE · 385
SET CLIENTLIB · 386
SET DATABASE statement · 608
SET GENERATOR statement · 609
SET NAMES statement · 610
SET PARAMFILE · 386
SET SQL DIALECT statement · 611
SET statement · 608
SET STATISTICS statement · 611
SET TERM terminator · 623
SET TRANSACTION statement · 612
shadow · 525
SHELL · 386
simple key · 148
Single Document Interface · 292
single-file or multifile shadows · 528
SIUD · 614
small integer · 201
solving undefined Firebird crashes ·

35
Sorting · 355
SP · 222
SP/Triggers/Views Analyzer · 391

space management in InterBase ·
84

specifying a view with the CHECK
option · 221

splash screen · 51
splitter · 317
Splitters options · 317
SQL Assistant · 76
SQL Builder toolbar · 61
SQL Code Editor · 276
SQL dialect · 118
SQL Editor · 325
SQL Editor / Edit · 330
SQL Editor / History · 340
SQL Editor / Logs · 352
SQL Editor / Performance Analysis ·

342
SQL Editor / Plan Analyzer · 342
SQL Editor / Results · 334
SQL Editor menu · 327
SQL Editor options · 297
SQL Editor special features · 353
SQL Editor toolbar · 60
SQL Language Reference · 581
SQL Monitor · 388
SQL Monitor Options · 389
SQL Script Options · 298
statement · 645
Statements History page · 340
status bar · 79
stored procedure · 222
Stored Procedure and Trigger

Debugger · 240
stored procedure and trigger

language · 621
Stored Procedure Editor · 229
stored procedure language · 621
stored procedure parameters · 228
string · 645
string delimiter symbol · 581
String-handling functions · 459
structure of a data page · 114
Structured Query Language · 327
substring() procedure · 236
subtype · 197
SuperServer · 30
surrogate key · 149
SUSPEND statement · 624
sweep interval · 540
system object · 275
system table · 275

Index

673

T

table · 142
Table Data Comparer · 396
Table Editor · 165
Table Editor / Constraints · 168
Table Editor / Data · 171
Table Editor / DDL · 177
Table Editor / Dependencies · 169
Table Editor / Description · 177
Table Editor / Fields · 166
Table Editor / Grants · 178
Table Editor / Indices · 168
Table Editor / Logging · 179
Table Editor / Triggers · 170
Table Editor Options · 322
Table Editor toolbar · 57
terminating character · 623
Test Connect · 90
Test Data Generator · 446
Text Editor · 276
The First Steps · 15
third normal form · 84
threaded server · 34
TID · 645
Tile · 547
time · 204
timestamp · 204
TIP · 646
title bar · 52
Toggle Bookmarks · 327
Toggle case · 329
toolbar · 53
toolbar Blob Viewer/Editor · 65
toolbar Data Analysis · 61
toolbar Database · 55
toolbar Database Designer · 66
toolbar Database Statistics · 67
toolbar Debug Procedure · 58
toolbar Dependencies Viewer · 62
toolbar Domain Editor · 57
toolbar Edit · 55
toolbar Exception Editor · 59
toolbar Extract Metadata · 63
toolbar Filter Panel · 61
toolbar Generator Editor · 59
toolbar Grant Manager · 64
toolbar Grants · 64
toolbar Localize IB Messages · 64
toolbar Localize IBExpert · 65
toolbar Meta Objects · 63

toolbar Navigation · 60
toolbar New Database Object · 56
toolbar Print Metadata · 63
toolbar Procedure Editor · 58
toolbar Query Builder · 61
toolbar Report Manager · 65
toolbar Script Executive · 62
toolbar Server Properties/Log · 67
toolbar SQL Builder · 61
toolbar SQL Editor · 60
toolbar Table Editor · 57
toolbar Tools · 56
toolbar Trigger Editor · 59
toolbar View Editor · 57
toolbar Visual Query Builder · 61
toolbars · 287
Tools / DB Explorer · 296
Tools / SQL Editor · 297
Tools / SQL Script Options · 298
Tools menu · 325
Tools options · 294
Tools toolbar · 56
transaction · 648
Transaction ID · 645
transaction in limbo · 649
Transaction Inventory Page · 646
transaction number · 648
transaction number column · 648
transactions in limbo · 649
Transactions options · 299
trigger · 245
Trigger Editor · 251
Trigger Editor / DDL · 253
Trigger Editor / Dependencies · 253
Trigger Editor / Description · 253
Trigger Editor / Operations/Index

Using · 253
Trigger Editor / Triggers · 252
Trigger Editor / Version History ·

254
Trigger Editor Options · 324
Trigger Editor toolbar · 59
trigger language · 621
trigger type · 247
Triggers page · 170, 252
tuple · 152
two-phase commit · 649

U

UDF · 267

Index

674

UDFs · 34
uncomment procedure body · 229
Uncomment Selected · 328
uncomment trigger body · 254
unique · 148
Unregister Database · 104
updatable view · 221
UPDATE · 617
updateable view · 180
Updates · 346
USE connection · 450
User Database options · 308
User Interface · 291
User Manager · 419
user-defined function · 267
using DML statements · 622
Using GFIX · 128
using SELECT statements · 622

V

validate a database · 534
varchar · 199
variable · 650
Version History page · 218
view · 210
View Editor · 212
View Editor / Data · 215
View Editor / DDL · 217
View Editor / Dependencies · 214
View Editor / Description · 216
View Editor / Fields · 214
View Editor / Grants · 216
View Editor / Plan Analyzer · 220
View Editor / Recreate Script · 220
View Editor / SQL · 212

View Editor / Triggers · 215
View Editor / Version History · 218
View Editor Options · 323
View Editor toolbar · 57
View menu · 287
virtual row · 146
Visual Options · 314
Visual Options / Bars and Popup

Menus · 314
Visual Options / Bars and Pop-up

Menus · 314
Visual Options / Edit Controls · 316
Visual Options / Lists and Trees ·

315
Visual Options / Page Controls · 316
Visual Options / Splitters · 317
Visual Query Builder · 355
Visual Query Builder toolbar · 61

W

what is IBExpert? · 45
What is new · 550
What's New · 550
WHENEVER statement · 613
WHILE...DO · 625
why is a database backup and

restore important? · 521
why two implementations? · 35
wildcard · 633
windows bar · 78
Windows Manager · 73, 547
Windows menu · 547
Windows platforms · 28
working with a database · 44

675

How this book was produced

Foreword
This book has been created fully automatically using the Content Management System, PHPtree,
developed by M² IT Design & Consulting. The editorial system for the input and editing of texts and
illustrations, as well as all necessary data required technically for the creation of the book, are
stored and processed by PHPtree in a Firebird database. The resulting PDF file can be processed
and printed by any print shop.

PHPtree is an ideal Content Management System and editorial system for the creation and admini-
stration of web sites, documentation and other digital media. It can publish data from a wide range
of databases (all SQL databases, AS/400, iSeries, ODBC, XML interfaces) or process such data in
digital workflows. Individual design, customized functionalities and the ultimate medium to be used
can all be specified and realized using templates.

The integrated parsing engine generates html, xml, wml and pdf documents, to name just a few,
enabling PHPtree to be used as a genuine cross-media tool. For example, both a web site and a
product catalog can be created from a single data source.

PHPtree
PHPtree is a database explorer, which can be accessed and operated from all popular web brows-
ers. It organizes and displays data content clearly in a visual tree structure, and is simple to navi-
gate and use. All the usual functions, such as copy, paste, duplicate, import, export etc., can be
used on all objects.

PHPtree displays the content and the objects of the database dynamically. The hierarchical data
structure can be simply and quickly altered, with the appropriate rights.

• Creation of media-independent documents, brochures, manuals, etc. with an easy-to-use edito-
rial system

• Generation of any media (pdf, xml, html, wml, wordml, fop, …) by an extremely flexible parsing
engine

• User-friendly and intuitive environment (customizable)
• Data can be easily moved per drag and drop
• Digital workflows
• Direct database access from a browser
• Platform independent
• Complete role administration
• Detailed rights administration for user groups and users, hereditary rights, additive and subtrac-

tive rights
• automatisms for rapid structuring of documents
• Plugins can be easily integrated (net structures, editorial and advertisement production, CMS

and cross-media modules, document generation)
• and much more...

The editorial system
The editorial system is the part of PHPtree, which enables authors to edit and link texts, illustrations
and other data formats as wished on a simple user interface, and format these using a range of

676

functions familiar from word processing (Word), such as, for example, cut and paste, font style etc.
A WYSIWYG Editor has been implemented for this. The system can be accessed and operated
from all popular web browsers, and can therefore be used on the internet or intranets.

Depending upon their user authorization, authors can administrate documents and pictures, classi-
fied in groups and objects, which are displayed in a clearly laid out tree structure (similar to the
Windows file system). Objects (documents, pictures) can also be subsequently edited and altered.
The entire tree structure can be viewed in the online documentation; in this book it can be viewed in
a summarized form in the table of contents.

The above illustration depicts the editorial system. The documentation structure is dis-
played on the left-hand side. On the right-hand side the corresponding object for each
element in the tree structure can be opened and edited. The illustration shows an open
object for editing text.

Technical implementation
Both the online documentation and this book are constructed from the same data. All data is auto-
matically stored media-independently, enabling publication in digital or print form. The format or lay-
out is determined by templates, into which the data is inserted and which gives the texts and pic-
tures their specific format or layout, and enables them to be processed for a specific medium.
PHPtree provides a range of tools and plugins for the administration and management of templates.
The structure hierarchy enables simple definition of how the data should be composed and with
which structure this should then be combined with the templates to produce a finished document.
The parsing kernel which undertakes the configuration of the data with the templates is extremely

677

flexible, as it can be constructed and configured individually using modules. It is also possible at this
point to draw on data from any other desired data sources.

Demo
A selection of demo applications for digital and print media, along with further exam-
ples for catalogs can be found at www.phptree.de.

Contact:
M² IT Design & Consulting
Gerhard Stalling Strasse 47a
D-26135 Oldenburg
Germany

Tel +49 (0) 441 9507823
Fax +49 (0) 441 9507865
E-mail: info@m2-it.de

678

679

