Contents

Chapter 1

Namespace
FirebirdSql.Data.Firebird

Namespace Contents Page
Interfaces
Classes
FbCommand. 77

Represents an SQL statement or stored procedure to execute against a data

source. This class cannot be inherited.
FbCommandBuilder ?7?
Automatically generates single-table commands used to reconcile changes

made to a DataSet with the associated data source. This class cannot be

inherited.

FbConnection i e 77
Represents an open connection to a Firebird database. This class cannot be
inherited.

FbDataAdapteroo i 7?7

Represents a set of data commands and a connection to a data source that
are used to fill the DataSet and update the data source. This class cannot be

inherited.
FbDataReader........ e 77
Provides a means of reading a forward-only stream of rows from a Firebird

database. This class cannot be inherited.
FDError . .o 77
Collects information relevant to a warning or error returned by Firebird.

This class cannot be inherited.
FbErrorCollection. 77

Collects all errors generated by the Firebird .NET Data Provider. This class

cannot be inherited.
FbExXception 77

The exception that is thrown when Firebird Server returns a warning or
error. This class cannot be inherited.

FirebirdSql.Data.Firebird—

FbInfoMessageEvent Args ...t
Provides data for the InfoMessage event. This class cannot be inherited.

FbParameter
Represents a parameter to a FbCommand, and optionally, its mapping to

DataSet columns. This class cannot be inherited.
FbParameterCollection............ i,
Collects all parameters relevant to a FbCommand as well as their respective

mappings to DataSet columns. This class cannot be inherited.

FbPermission
Enables the Firebird .NET Data Provider to ensure that a user has a secu-

rity level adequate to access an Firebird data source. This class cannot be

inherited.
FbPermissionAttribute

Associates a security action with a custom security attribute.
FbRowUpdatedEventArgs ...,
Provides data for the RowUpdated event. This class cannot be inherited.
FbRowUpdatingEventArgs.............
Provides data for the RowUpdating event. This class cannot be inherited.

FbTransaction i
Represents a Firebird transaction to be made in a Firebird database. This

class cannot be inherited.

29

77

27

77

77

77

27

?7

FirebirdSql.Data.Firebird— FbCommand 4

1.1 Interfaces

1.2 Classes

1.2.1 Crass FbCommand

Represents an SQL statement or stored procedure to execute against a data source. This
class cannot be inherited. The FbCommand class provides the following methods for
executing commands against a Firebird database:
MethodDescriptionExecuteReaderExecutes commands that return
rows.ExecuteNonQueryExecutes commands such as SQL INSERT, DELETE, UPDATE,
and SET statements.ExecuteScalarRetrieves a single value (for example, an aggregate
value) from a database.

DECLARATION

public class FbCommand
Component

PROPERTIES

o CommandText

public string CommandText { get; set; }

Gets or sets the SQL statement or stored procedure to execute against the
data source.

— Usage
* When the CommandType property is set to StoredProcedure, the

CommandText property should be set to the name of the stored
procedure. The user may be required to use escape character
syntax if the stored procedure name contains any special
characters. The command executes this stored procedure when you
call one of the Execute methods.
The FirebirdSql.NET Data Provider support the question mark (?)
placeholder and named parameters for passing parameters to a SQL
Statement or a stored procedure called by a Command of
CommandType.Text.
For example:
SELECT * FROM Customers WHERE CustomerID =
@CustomerlID
or
SELECT * FROM Customers WHERE CustomerID = ?

FirebirdSql.Data.Firebird— FbCommand 5

o CommandTimeout

public int CommandTimeout { get; set; }

Gets or sets the wait time before terminating an attempt to execute a
command and generating an error.

— Usage
x A value of 0 indicates no limit, and should be avoided in a
CommandTimeout because an attempt to execute a command will
wait indefinitely. Not currently supported.

e CommandType

public System.Data.CommandType CommandType { get; set;

}

Gets or sets a value indicating how the CommandText property is
interpreted.

— Usage
* When you set the CommandType property to StoredProcedure,
you should set the CommandText property to the name of the
stored procedure. The command executes this stored procedure
when you call one of the Execute methods.

o Connection

public FirebirdSql.Data.Firebird.FbConnection Connection {
get; set; }

Gets or sets the FbConnection used by this instance of the FbCommand.

— Usage
* You cannot set the Connection, CommandType, and

CommandText properties if the current connection is performing an
execute or fetch operation.
If you set Connection while a transaction is in progress and the
property is not null, an InvalidOperationException is generated. If
you set Connection after the transaction has been committed or
rolled back, and the Transaction property is not null, the
Transaction property is then set to a null value.

FirebirdSql.Data.Firebird— FbCommand

o Container

public System.ComponentModel.IContainer Container { get; }
Gets the that contains the .

o DesignMode

protected bool DesignMode { get; }

Gets a value that indicates whether the is currently in design mode.
e DesignTime Visible

public bool DesignTimeVisible { get; set; }

Gets or sets a value indicating whether the command object should be
visible in a Windows Forms Designer control.

e Fvents

protected System.ComponentModel.EventHandlerList Events {
get; }
Gets the list of event handlers that are attached to this .

o Parameters

public FirebirdSql.Data.Firebird.FbParameterCollection
Parameters { get; }

Gets the FbParameterCollection.

o Site

public System.ComponentModel.ISite Site { get; set; }
Gets or sets the of the .

e System.Data.IDbCommand. Connection

private System.Data.IDbConnection
System.Data.IDbCommand.Connection { get; set; }

o System.Data.IDbCommand. Parameters

private System.Data.IDataParameterCollection
System.Data.IDbCommand.Parameters { get; }

FirebirdSql.Data.Firebird— FbCommand 7

o System.Data.IDbCommand. Transaction

private System.Data.IDbTransaction
System.Data.IDbCommand.Transaction { get; set; }

o Transaction

public FirebirdSql.Data.Firebird.FbTransaction Transaction {
get; set; }

Gets or sets the FbTransaction within which the FbCommand executes.

— Usage
* You cannot set the Transaction property if it is already set to a
specific value, and the command is in the process of executing. If
you set the transaction property to an FbTransaction object that is
not connected to the same FbConnection as the FbCommand
object, an exception will be thrown the next time you attempt to
execute a statement.

o UpdatedRowSource

public System.Data.UpdateRowSource UpdatedRowSource {
get; set; }

Gets or sets a value that specifies how the Update method should apply
command results to the DataRow.

— Usage
x The default UpdateRowSource value is Both unless the command is
automatically generated (as in the case of the
FbCommandBuilder), in which case the default is None.

CONSTRUCTORS

e .ctor

public FbCommand()

Initializes a new instance of the FbCommand class.

e .ctor

FirebirdSql.Data.Firebird— FbCommand 8

public FbCommand()

Initializes a new instance of the FbCommand class with the text of the query.

— Parameters

*x cmdText -

e .ctor

public FbCommand()

Initializes a new instance of the FbCommand class with the text of the query
and an FbConnection object.

— Parameters

*x cmdText -
% connection -

e .ctor

public FbCommand()

Initializes a new instance of the FbCommand class with the text of the
query, an FbConnection object and the Transaction.

— Parameters

*x cmdText -
* connection -
* transaction -

METHODS

o Cancel

public void Cancel()

Attempts to cancel the execution of an FbCommand.

— Usage
* Not currently supported.

FirebirdSql.Data.Firebird— FbCommand 9

o (reateObjRef

public System.Runtime.Remoting.ObjRef CreateObjRef()

Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object.

— Parameters

* requestedType -

o CreateParameter

public FirebirdSql.Data.Firebird.FbParameter CreateParameter (
)

Creates a new instance of an FbParameter object.

e Dispose

public void Dispose()

Releases all resources used by the .

e Dispose

protected void Dispose()

Releases the unmanaged and, optionally, the managed resources used by the
FbCommand object.

— Usage
* This method is called by the public Dispose method and the

Finalize method. Dispose() invokes the protected Dispose(Boolean)
method with the disposing parameter set to true. Finalize invokes
Dispose with disposing set to false. When the disposing parameter
is true, the method releases all resources held by any managed
objects that this FbCommand references.
It does this by invoking the Dispose() method of each referenced
object. Notes: Dispose can be called multiple times by other
objects. When overriding Dispose(Boolean), be careful not to
reference objects that have been previously disposed of in an earlier
call to Dispose. For more information about how to implement
Dispose(Boolean), see ”"Implementing a Dispose Method” in the
Microsoft .NET Framework SDK documentation.
Calling Dispose on a FbConnection object is different from calling
Close. For example, Dispose clears the connection string while

FirebirdSql.Data.Firebird— FbCommand 10

Close does not. For more information about Dispose and Finalize,

see ”Cleaning Up Unmanaged Resources,” and ”Overriding the

Finalize Method,” in the .NET Framework SDK documentation.
— Parameters

* disposing -
o Fquals

public bool Equals()

Determines whether the specified is equal to the current .

— Parameters
* obj -

o FEzxecuteNonQuery

public int ExecuteNonQuery()

Executes an SQL statement against the Connection and returns the number
of rows affected.

— Usage

% You can use ExecuteNonQuery to perform catalog operations (for
example, querying the structure of a database or creating database
objects such as tables); or to change the data in a database,
without using a DataSet, by executing UPDATE, INSERT, or
DELETE statements.
Although ExecuteNonQuery does not return any rows, any output
parameters or return values mapped to parameters are populated
with data.

o FExecuteReader

public FirebirdSql.Data.Firebird.FbDataReader ExecuteReader (
)

Sends the CommandText to the Connection and builds an FbDataReader.

o FExecuteReader

public FirebirdSql.Data.Firebird.FbDataReader ExecuteReader (
)

Sends the CommandText to the Connection, and builds an FbDataReader
using one of the CommandBehavior values.

FirebirdSql.Data.Firebird— FbCommand 11

— Parameters

*x behavior -

o FExecuteScalar

public object ExecuteScalar()

Executes the query, and returns the first column of the first row in the
resultset returned by the query. Extra columns or rows are ignored.

o Finalize

protected void Finalize()

Releases unmanaged resources and performs other cleanup operations before
the is reclaimed by garbage collection.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

o GetLifetimeService

public object GetLifetimeService()

Retrieves the current lifetime service object that controls the lifetime policy
for this instance.

o (GetService

protected object GetService()

Returns an object that represents a service provided by the or by its .

— Parameters

* service -

o GetType

public System.Type GetType()

Gets the of the current instance.

FirebirdSql.Data.Firebird— FbCommand 12

e ICloneable.Clone

private object ICloneable.Clone()

o IDbCommand. CreateParameter

private System.Data.IDbDataParameter
IDbCommand.CreateParameter()

o IDbCommand. ExecuteReader

private System.Data.IDataReader IDbCommand.ExecuteReader (
)

— Parameters

* behavior -

o IDbCommand. ExecuteReader

private System.Data.IDataReader IDbCommand.ExecuteReader (
)

o InitializeLifetimeService

public object InitializeLifetimeService()

Obtains a lifetime service object to control the lifetime policy for this
instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

e Prepare

public void Prepare()

Creates a prepared (or compiled) version of the command at the data source.

— Usage
*

FirebirdSql.Data.Firebird— FbCommand

e ToString

public string ToString()

EXTENDED INFORMATION

13

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbCommandBuilder 14

1.2.2 (CrAsS FbCommandBuilder

Automatically generates single-table commands used to reconcile changes made to a
DataSet with the associated data source. This class cannot be inherited. The
FbDataAdapter does not automatically generate the SQL statements required to reconcile
changes made to a DataSet associated with the data source. However, you can create an
FbCommandBuilder object that generates SQL statements for single-table updates by
setting the SelectCommand property of the FbDataAdapter. Then, the
FbCommandBuilder generates any additional SQL statements that you do not set.

To generate INSERT, UPDATE, or DELETE statements, the FbCommandBuilder uses
the SelectCommand property to retrieve a required set of metadata. If you change the
value of SelectCommand after the metadata has been retrieved (for example, after the first
update), you then should call the RefreshSchema method to update the metadata.

DECLARATION

public class FbCommandBuilder
Component

PROPERTIES

o Container

public System.ComponentModel.IContainer Container { get; }
Gets the that contains the .

e DataAdapter

public FirebirdSql.Data.Firebird.FbDataAdapter DataAdapter {
get; set; }

Gets or sets an FbDataAdapter object for which this FbCommandBuilder
object will generate SQL statements.

— Usage
* The FbCommandBuilder registers itself as a listener for
RowUpdating events that are generated by the FbDataAdapter
specified in this property.

e DesignMode

protected bool DesignMode { get; }

Gets a value that indicates whether the is currently in design mode.

FirebirdSql.Data.Firebird— FbCommandBuilder 15

e Fvents

protected System.ComponentModel.EventHandlerList Events {
get; }
Gets the list of event handlers that are attached to this .

e QuotePrefix

public string QuotePrefix { get; set; }

Gets or sets the beginning character or characters to use when working with
database objects (for example, tables or columns) whose names contain
characters such as spaces or reserved tokens.

— Usage

* Some data sources may contain objects whose names include
characters such as spaces, commas, and semicolons. To
accommodate this, use the QuotePrefix and QuoteSuffix properties
to specify delimiters, such as a left and right bracket, that will
encapsulate the object name. Note: Although you cannot change
the QuotePrefix or QuoteSuffix properties after an insert, update,
or delete command has been generated, you can change their
settings after calling the Update method of an FbDataAdapter.

o QuoteSuffix

public string QuoteSuffix { get; set; }

Gets or sets the ending character or characters to use when working with
database objects, (for example, tables or columns), whose names contain
characters such as spaces or reserved tokens.

— Usage

* Some data sources may contain objects whose names include
characters such as spaces, commas, and semicolons. To
accommodate this, use the QuotePrefix and QuoteSuffix properties
to specify delimiters, such as a left and right bracket, that will
encapsulate the object name. Note: Although you cannot change
the QuotePrefix or QuoteSuffix properties after an insert, update,
or delete command has been generated, you can change their
settings after calling the Update method of an FbDataAdapter.

o Site

FirebirdSql.Data.Firebird— FbCommandBuilder 16

public System.ComponentModel.ISite Site { get; set; }
Gets or sets the of the .

CONSTRUCTORS

e .ctor

public FbCommandBuilder()

Initializes a new instance of the FbCommandBuilder class.

e .ctor

public FbCommandBuilder()

— Parameters

* adapter -

METHODS

o BuildDeleteCommand

public FirebirdSql.Data.Firebird.FbCommand
BuildDeleteCommand()

Builds delete command.

— Parameters

* TOW -
* tableMapping -

e BuildUpdateCommand

public FirebirdSql.Data.Firebird.FbCommand
BuildUpdateCommand()

Builds update command.

— Parameters

* TOW -
* tableMapping -

FirebirdSql.Data.Firebird— FbCommandBuilder 17

o (reateObjRef

public System.Runtime.Remoting.ObjRef CreateObjRef()

Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object.

— Parameters

* requestedType -

o DeriveParameters

public void DeriveParameters()

Populates the specified FbCommand object’s Parameters collection with
parameter information for a stored procedure specified in the FbCommand.

— Usage

x DeriveParameters overwrites any existing parameter information
for the FbCommand. DeriveParameters requires an extra call to
the data server to obtain the information. If the parameter
information is known in advance, it is more efficient to populate the
parameters collection by setting the information explicitly.
You can only use DeriveParameters with stored procedures. You
cannot use DeriveParameters to populate the
FbParameterCollection with arbitrary DSQL statements, such as a
parameterized SELECT statement.

— Parameters

* command -

e Dispose

public void Dispose()
Releases all resources used by the .
e Dispose

protected void Dispose()

Releases the unmanaged and, optionally, the managed resources used by the
FbCommand object.

— Usage

FirebirdSql.Data.Firebird— FbCommandBuilder 18

* This method is called by the public Dispose method and the
Finalize method. Dispose() invokes the protected Dispose(Boolean)
method with the disposing parameter set to true. Finalize invokes
Dispose with disposing set to false. When the disposing parameter
is true, the method releases all resources held by any managed
objects that this FbCommand references.

It does this by invoking the Dispose() method of each referenced
object. Notes: Dispose can be called multiple times by other
objects. When overriding Dispose(Boolean), be careful not to
reference objects that have been previously disposed of in an earlier
call to Dispose. For more information about how to implement
Dispose(Boolean), see ”Implementing a Dispose Method” in the
Microsoft .NET Framework SDK documentation.
Calling Dispose on a FbConnection object is different from calling
Close. For example, Dispose clears the connection string while
Close does not. For more information about Dispose and Finalize,
see ”Cleaning Up Unmanaged Resources,” and ” Overriding the
Finalize Method,” in the .NET Framework SDK documentation.
— Parameters

* disposing -
e Fquals

public bool Equals()

Determines whether the specified is equal to the current .

— Parameters

* obj -
o Finalize

protected void Finalize()

o GetDeleteCommand

public FirebirdSql.Data.Firebird.FbCommand
GetDeleteCommand ()

Gets the automatically generated FbCommand object required to perform
deletions at the data source.

— Usage

FirebirdSql.Data.Firebird— FbCommandBuilder 19

* You can use the GetDeleteCommand method for informational or
troubleshooting purposes because it returns the FbCommand
object to be executed.

You can also use GetDeleteCommand as the basis of a modified
command. For example, you might call GetDeleteCommand and
modify the CommandTimeout value, and then explicitly set that on
the FbDataAdapter.

After the SQL statement is first generated, you must explicitly call
RefreshSchema if it changes the statement in any way. Otherwise,
the GetDeleteCommand still will be using information from the
previous statement, which might not be correct. The SQL
statements are first generated when the application calls either
Update or GetDeleteCommand.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

o GetInsertCommand

public FirebirdSql.Data.Firebird.FbCommand
GetInsertCommand()

Gets the automatically generated FbCommand object required to perform
insertions at the data source.

— Usage

x You can use the GetInsertCommand method for informational or
troubleshooting purposes because it returns the FbCommand
object to be executed. You can also use GetlnsertCommand as the
basis of a modified command.
For example, you might call GetInsertCommand and modify the
CommandTimeout value, and then explicitly set that on the
FbDataAdapter.
After the SQL statement is first generated, you must explicitly call
RefreshSchema if it changes the statement in any way. Otherwise,
the GetlnsertCommand still will be using information from the
previous statement, which might not be correct. The SQL
statements are first generated when the application calls either
Update or GetInsertCommand.

FirebirdSql.Data.Firebird— FbCommandBuilder 20

o GetLifetimeService

public object GetLifetimeService()

Retrieves the current lifetime service object that controls the lifetime policy
for this instance.

o (GetService

protected object GetService()

Returns an object that represents a service provided by the or by its .

— Parameters

*x service -

o GetType

public System.Type GetType()

Gets the of the current instance.

o GetUpdateCommand

public FirebirdSql.Data.Firebird.FbCommand
GetUpdateCommand()

Gets the automatically generated FbCommand object required to perform
updates at the data source.

— Usage

* You can use the GetUpdateCommand method for informational or
troubleshooting purposes because it returns the FbCommand
object to be executed. You can also use GetUpdateCommand as
the basis of a modified command.
For example, you might call GetUpdateCommand and modify the
CommandTimeout value, and then explicitly set that on the
FbDataAdapter.
After the SQL statement is first generated, you must explicitly call
RefreshSchema if it changes the statement in any way. Otherwise,
the GetUpdateCommand still will be using information from the
previous statement, which might not be correct. The SQL
statements are first generated when the application calls either
Update or GetUpdateCommand.

FirebirdSql.Data.Firebird— FbCommandBuilder 21

o [nitialize LifetimeService

public object InitializeLifetimeService()

Obtains a lifetime service object to control the lifetime policy for this
instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

e RefreshSchema

public void RefreshSchemad()

Refreshes the database schema information used to generate INSERT,
UPDATE, or DELETE statements.

— Usage
%+ You should call RefreshSchema whenever the SelectCommand value
of the FbDataAdapter changes.

o ToString

public string ToString()

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbConnection 22

1.2.3 CrASsS FbConnection

Represents an open connection to a Firebird database. This class cannot be inherited. A
FbConnection object represents a unique connection to Firebird server. FbConnection is
used in conjunction with FbDataAdapter and FbCommand to increase performance when
connecting to Firebird database.

If the FbConnection goes out of scope, it is not closed. Therefore, you must explicitly close
the the connection by calling Close or Dispose.

DECLARATION

public class FbConnection
Component

PROPERTIES

o ConnectionString

public string ConnectionString { get; set; }
Gets or sets the string used to open a FirebirdSQL database.

— Usage

*x The following table lists the valid names for keyword values within
the ConnectionString:NameDescriptionDefaultDatabaseDatabase
path to establish the connectionUserFirebird User account for
loginPasswordPassword for the Firebird user
accountDialectDatabase dialect3HostServer name for establish the
connectionLocalhostPortPort number in the server for establish the
connection3050CharsetDatabase Character SetNONERoleUser
RolePacket SizeSize (in bytes) of network packets used to
communicate with an instance of Firebird SQL
Server.8192Connection LifetimeWhen a connection is returned to
the pool, its creation time is compared with the current time, and
the connection is destroyed if that time span (in seconds) exceeds
the value specified by connection lifetime. 0Pooling When true, the
FbConnection object is drawn from the appropriate pool, or if
necessary, is created and added to the appropriate pool. Recognized
values are true, false, yes, and no. true The following table lists the
valid names for keyword Charset of the ConnectionString: Firebird
CharsetDescriptionASCITAmerican Standard Code for Information
Interchange.BIG_5Bigh, Traditional Chinese.DOS437MS-DOS
United States, Australia, New Zealand, South
Africa.DOS850MS-DOS Latin-1.DOS860MS-DOS

FirebirdSql.Data.Firebird— FbConnection 23

Portugues.DOS861MS-DOS Icelandic. DOS863MS-DOS Canadian
French.DOS865MS-DOS Nordic. EUCJ_0208JIS X 0201, 0208, 0212,
EUC encoding, Japanese.GB_2312GB2312, EUC encoding,
Simplified Chinese.ISO8859_1ISO 8859-1, Latin alphabet No.
1.ISO8859_2ISO 8859-2, Latin alphabet No. 2.KSC_5601Windows
Korean.ISO2022-JPWindows Japanese.SJIS_0208Japanese
(Shift-JIS)UNICODE_FSSEight-bit Unicode Transformation
Format.WIN1250Windows Eastern European.WIN1251Windows
Cyrillic. WIN1252Windows Latin-1.WIN1253Windows

Greek. WIN1254Windows Turkish. WIN1254Windows
Hebrew.ArabicWindows Turkish.WIN1257Windows Baltic.

o ConnectionTimeout

public int ConnectionTimeout { get; }

Gets the time to wait while trying to establish a connection before
terminating the attempt and generating an error.

— Usage
x A value of 0 indicates no limit, and should be avoided in a
ConnectionString because an attempt to connect will wait
indefinitely. Not currently supported.

o Container

public System.ComponentModel.IContainer Container { get; }
Gets the that contains the .
e Database

public string Database { get; }

Gets the name of the current database or the database to be used once a
connection is open.

e DataSource

public string DataSource { get; }

Gets the name of the instance of FirebirdSQL to which to connect.

e DesignMode

FirebirdSql.Data.Firebird— FbConnection 24

protected bool DesignMode { get; }

Gets a value that indicates whether the is currently in design mode.

FEvents

protected System.ComponentModel.EventHandlerList Events {
get; }
Gets the list of event handlers that are attached to this .

PacketSize

public int PacketSize { get; }

Gets the size (in bytes) of network packets used to communicate with an
instance of FirebirdSQL.

— Usage
x If an application performs bulk copy operations, or sends or

receives large amounts of text or image data, a packet size larger
than the default may improve efficiency because it results in fewer
network read and write operations. If an application sends and
receives small amounts of information, you can set the packet size
to 512 bytes (using the Packet Size value in the ConnectionString),
which is sufficient for most data transfer operations. For most
applications, the default packet size is best. PacketSize may be a
value in the range of 512 and 32767 bytes. An exception is
generated if the value is outside of this range.

ServerVersion

public string ServerVersion { get; }

Gets a string containing the version of the instance of Firebird Server to
which the client is connected.

Site
public System.ComponentModel.ISite Site { get; set; }
Gets or sets the of the .

State

public System.Data.ConnectionState State { get; }

Gets the current state of the connection.

FirebirdSql.Data.Firebird— FbConnection 25

— Usage
* The allowed state changes are: From Closed to Open, using the
Open method of the connection object.
From Open to Closed, using either the Close method or the Dispose
method of the connection object.

CONSTRUCTORS

e .ctor

public FbConnection()

Initializes a new instance of the FbConnection class.

— Usage
* When a new instance of FbConnection is created, the read/write
properties are set to the following initial values unless they are
specifically set using their associated keywords in the
ConnectionString property.

e .ctor

public FbConnection()

Initializes a new instance of the FbConnection class when given a string
containing the connection string.

— Usage
* When a new instance of FbConnection is created, the read/write
properties are set to the following initial values unless they are
specifically set using their associated keywords in the
ConnectionString property.

— Parameters

* connString -

METHODS

e BeginTransaction

public FirebirdSql.Data.Firebird.FbTransaction
BeginTransaction()

Begins a database transaction.

FirebirdSql.Data.Firebird— FbConnection 26

— Usage
* To commit or rollback the transaction, you must explicitly use the
Commit or Rollback methods.

— Example
The following example creates an FbConnection and an
FbTransaction. It also demonstrates how to use the
BeginTransaction, Commit, and Rollback methods.
public void RunFirebirdTransaction(string myConnString) {
FbConnection myConnection = new FbConnection(myConnString) ;
myConnection.Open();
FbCommand myCommand = new FbCommand(); FbTransaction
myTrans;
// Start a local transaction myTrans =
myConnection.BeginTransaction(); // Assign transaction
object for a pending local transaction myCommand.Connection
= myConnection; myCommand.Transaction = myTrans;

try { myCommand.CommandText = "Insert into Region (RegionID,
RegionDescription) VALUES (100, ’Description’)";
myCommand . ExecuteNonQuery () ; myCommand.CommandText = "Insert

into Region (RegionID, RegionDescription) VALUES (101,
’Description’)"; myCommand.ExecuteNonQuery() ;
myTrans.Commit () ; Console.WriteLine("Both records are
written to database."); } catch(Exception e) {
myTrans.Rollback(); Console.WriteLine(e.ToString());
Console.WriteLine("Neither record was written to
database."); } finally { myConnection.Close(); } }

e BeginTransaction

public FirebirdSql.Data.Firebird.FbTransaction
BeginTransaction()

Begins a database transaction with the specified transaction name.

— Usage
* You must explicitly commit or roll back the transaction using the
Commit or Rollback method.
— Parameters
* transactionName -
— Example
The following example creates an FbConnection and an
FbTransaction. It also demonstrates how to use the
BeginTransaction, Commit, and Rollback methods.

FirebirdSql.Data.Firebird— FbConnection 27

FbConnection myConnection = new
FbConnection(connectionString); myConnection.Open();
FbCommand myCommand = new FbCommand(); FbTransaction
myTrans;

// Start a local transaction myTrans =
myConnection.BeginTransaction(); // Assign transaction
object for a pending local transaction myCommand.Connection
= myConnection; myCommand.Transaction = myTrans;

try { myCommand.CommandText = "INSERT INTO PROJECT(proj_id,
proj-name, product) Values(’FBNP’, ’.Net Provider’, ’N/A’)";
myCommand . ExecuteNonQuery () ;

myTrans.Save ("SampleTransaction"); myCommand.CommandText =
"INSERT INTO PROJECT(proj-id, proj_name, product)
Values(’FBN1’, ’.Net Providerl.’, ’N/A’)";
myCommand . ExecuteNonQuery () ; myTrans.Commit () ;
Console.WriteLine("Both records are written to database.");
} catch(Exception e) { try {
myTrans.Rollback("SampleTransaction"); } catch (FbException
ex) { if (myTrans.Connection != null) {
Console.WriteLine("An exception of type " + ex.GetType() + "
was encountered while attempting to roll back the
transaction."); } }

Console.WriteLine("An exception of type " + e.GetType() + "
was encountered while inserting the data.");
Console.WriteLine("Neither record was written to
database."); } finally { myConnection.Close(); }

e BeginTransaction

public FirebirdSql.Data.Firebird.FbTransaction
BeginTransaction()

Begins a transaction at the database with the specified IsolationLevel value.

— Usage

* You must explicitly commit or roll back the transaction using the
Commit or Rollback method.
public void RunFirebird Transaction(string myConnString) {
FbConnection myConnection = new
FbConnection(myConnString); myConnection.Open();
FbCommand myCommand = new FbCommand(); FbTransaction
myTrans;
// Start a local transaction myTrans =
myConnection.BeginTransaction(IsolationLevel. Read Committed);
// Assign transaction object for a pending local transaction

FirebirdSql.Data.Firebird— FbConnection 28

myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;

try { myCommand.CommandText = ”Insert into Region
(RegionID, RegionDescription) VALUES (100, 'Description’)”;
myCommand.ExecuteNonQuery(); myCommand.CommandText =
"Insert into Region (RegionID, RegionDescription) VALUES (101,
'Description’)”; myCommand.ExecuteNonQuery();
myTrans.Commit(); Console.WriteLine(” Both records are written
to database.”); } catch(Exception e) { myTrans.Rollback();
Console.WriteLine(e.ToString()); Console.WriteLine(” Neither
record was written to database.”); } finally {
myConnection.Close(); } }

— Parameters

*x level -

e BeginTransaction

public FirebirdSql.Data.Firebird.FbTransaction
BeginTransaction()

Begins a database transaction with the specified isolation level and
transaction name.

— Usage
* You must explicitly commit or roll back the transaction using the

Commit or Rollback method.
FbConnection myConnection = new
FbConnection(connectionString); myConnection.Open();
FbCommand myCommand = new FbCommand(); FbTransaction
myTrans;
// Start a local transaction myTrans =
myConnection.BeginTransaction(); // Assign transaction object for
a pending local transaction myCommand.Connection =
myConnection; myCommand.Transaction = myTrans;
try { myCommand.CommandText = "INSERT INTO
PROJECT (proj-id, proj-name, product) Values("FBNP’, *.Net
Provider’, 'N/A”)”; myCommand.ExecuteNonQuery/();
myTrans.Save(” SampleTransaction”); myCommand.CommandText
= 7"INSERT INTO PROJECT (proj-id, proj-name, product)
Values("FBN1’, ".Net Providerl.’;, 'N/A’)”;
myCommand.ExecuteNonQuery(); myTrans.Commit();
Console.WriteLine(” Both records are written to database.”); }
catch(Exception e) { try {
myTrans.Rollback(” SampleTransaction”); } catch (FbException ex)

FirebirdSql.Data.Firebird— FbConnection 29

{ if (myTrans.Connection != null) { Console.WriteLine(” An
exception of type 7 + ex.GetType() + 7 was encountered while
attempting to roll back the transaction.”); } }
Console.WriteLine(” An exception of type ” + e.GetType() + 7 was
encountered while inserting the data.”);
Console.WriteLine(” Neither record was written to database.”); }
finally { myConnection.Close(); }

— Parameters

*x level -
* transactionName -

e ChangeDatabase

public void ChangeDatabase()

Changes the current database for an open FbConnection.

— Usage

* Not currently supported.
— Parameters

* db -

e (Close

public void Close()

Closes the connection to the database. This is the preferred method of
closing any open connection.

— Usage
* The Close method rolls back any pending transactions. It then

releases the connection to the connection pool, or closes the
connection if connection pooling is disabled. If Close is called while
handling a StateChange event, no additional StateChange events
are fired.
An application can call Close more than one time without
generating an exception.

o (CreateCommand

public FirebirdSql.Data.Firebird.FbCommand CreateCommand (
)

Creates and returns a FbCommand object associated with the FbConnection.

FirebirdSql.Data.Firebird— FbConnection 30

o CreateDatabase

public void CreateDatabase()

Creates a new database.

— Parameters

dataSource -
port -
database -
user -
password -
dialect -
forceWrite -
pageSize -
charset -

* K K K K X K X X

o (CreateObjRef

public System.Runtime.Remoting.ObjRef CreateObjRef()
Creates an object that contains all the relevant information required to

generate a proxy used to communicate with a remote object.

— Parameters

* requestedType -
e Dispose

public void Dispose()

Releases all resources used by the .

e Dispose

protected void Dispose()

Releases the unmanaged and, optionally, the managed resources used by the
FbConnection object.

— Usage
« This method is called by the public Dispose() method and the
Finalize method. Dispose() invokes the protected Dispose(Boolean)
method with the disposing parameter set to true. Finalize invokes
Dispose with disposing set to false.
When the disposing parameter is true, the method releases all
resources held by any managed objects that this FbConnection

FirebirdSql.Data.Firebird— FbConnection 31

references. It does this by invoking the Dispose() method of each
referenced object.

— Parameters

* disposing -

e Fquals

public bool Equals()

Determines whether the specified is equal to the current .
— Parameters
* obj -

o Finalize

protected void Finalize()

Releases unmanaged resources and performs other cleanup operations before
the is reclaimed by garbage collection.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

e GetLifetimeService

public object GetLifetimeService()

Retrieves the current lifetime service object that controls the lifetime policy
for this instance.

o (GetService

protected object GetService()

Returns an object that represents a service provided by the or by its .

— Parameters

* service -

FirebirdSql.Data.Firebird— FbConnection 32

o GetType

public System.Type GetType()

Gets the of the current instance.

e ICloneable.Clone

private

object ICloneable.Clone()

— Usage

*

Not currently supported.

e IDbConnection. BeginTransaction

private

System.Data.IDbTransaction

IDbConnection.BeginTransaction()

Begins a transaction at the database with the specified IsolationLevel value.

— Usage

*

You must explicitly commit or roll back the transaction using the
Commit or Rollback method.

public void RunFirebirdTransaction(string myConnString) {
FbConnection myConnection = new
FbConnection(myConnString); myConnection.Open();
FbCommand myCommand = new FbCommand(); FbTransaction
myTrans;

// Start a local transaction myTrans =
myConnection.BeginTransaction(IsolationLevel. ReadCommitted);
// Assign transaction object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;

try { myCommand.CommandText = ”Insert into Region
(RegionID, RegionDescription) VALUES (100, 'Description’)”;
myCommand.ExecuteNonQuery(); myCommand.CommandText =
"Insert into Region (RegionID, RegionDescription) VALUES (101,
'Description’)”; myCommand.ExecuteNonQuery();
myTrans.Commit(); Console.WriteLine(” Both records are written
to database.”); } catch(Exception e) { myTrans.Rollback();
Console.WriteLine(e.ToString()); Console.WriteLine(” Neither
record was written to database.”); } finally {
myConnection.Close(); } }

— Parameters

FirebirdSql.Data.Firebird— FbConnection 33

* level -
e [DbConnection. BeginTransaction

private System.Data.IDbTransaction
IDbConnection.BeginTransaction()

Begins a database transaction.

— Usage
x To commit or rollback the transaction, you must explicitly use the
Commit or Rollback methods.

— Example
The following example creates an FbConnection and an
FbTransaction. It also demonstrates how to use the
BeginTransaction, Commit, and Rollback methods.
public void RunFirebirdTransaction(string myConnString) {
FbConnection myConnection = new FbConnection(myConnString) ;
myConnection.0Open();
FbCommand myCommand = new FbCommand(); FbTransaction
myTrans;
// Start a local transaction myTrans =
myConnection.BeginTransaction(); // Assign transaction
object for a pending local transaction myCommand.Connection
= myConnection; myCommand.Transaction = myTrans;

try { myCommand.CommandText = "Insert into Region (RegionID,
RegionDescription) VALUES (100, ’Description’)";
myCommand . ExecuteNonQuery () ; myCommand.CommandText = "Insert

into Region (RegionID, RegionDescription) VALUES (101,
’Description’)"; myCommand.ExecuteNonQuery() ;
myTrans.Commit () ; Console.WriteLine("Both records are
written to database."); } catch(Exception e) {
myTrans.Rollback(); Console.WriteLine(e.ToString());
Console.WriteLine("Neither record was written to
database."); } finally { myConnection.Close(); } }

o IDbConnection. CreateCommand

private System.Data.IDbCommand
IDbConnection.CreateCommand ()

Creates and returns a FbCommand object associated with the FbConnection.

o [nitialize LifetimeService

FirebirdSql.Data.Firebird— FbConnection 34

public object InitializeLifetimeService()

Obtains a lifetime service object to control the lifetime policy for this
instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

e Open

public void Open()

Opens a database connection with the property settings specified by the
ConnectionString.

— Usage
x The FbConnection draws an open connection from the connection
pool if one is available. Otherwise, it establishes a new connection
to the database. Connection pooling is not currently supported.
Note: If the FbConnection goes out of scope, the connection it
represents does not close automatically. Therefore, you must
explicitly close the connection by calling Close or Dispose.

e ToString

public string ToString()

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbDataAdapter 35

1.2.4 C(CrAss FbDataAdapter

Represents a set of data commands and a connection to a data source that are used to fill
the DataSet and update the data source. This class cannot be inherited. The
FbDataAdapter, serves as a bridge between a DataSet and FirebirdSQL for retrieving and
saving data. The FbDataAdapter provides this bridge by mapping Fill, which changes the
data in the DataSet to match the data in the data source, and Update, which changes the
data in the data source to match the data in the DataSet, using the appropriate DSQL
statements against the data source. FbDataAdapter is used in conjunction with
FbConnection and FbCommand to increase performance when connecting to a
FirebirdSQL Server database.

The FbDataAdapter also includes the SelectCommand, Insert Command, DeleteCommand,
UpdateCommand, and TableMappings properties to facilitate the loading and updating of
data.

When an instance of FbDataAdapter is created, the read/write properties are set to initial
values.

DECLARATION

public class FbDataAdapter
DbDataAdapter

PROPERTIES

o AcceptChangesDuringFill

public bool AcceptChangesDuringFill { get; set; }

Gets or sets a value indicating whether is called on a after it is added to the
during any of the operations.

o Container

public System.ComponentModel.IContainer Container { get; }
Gets the that contains the .

e ContinueUpdateOnError

public bool ContinueUpdateOnError { get; set; }

Gets or sets a value that specifies whether to generate an exception when an
error is encountered during a row update.

FirebirdSql.Data.Firebird— FbDataAdapter 36

o DeleteCommand

public FirebirdSql.Data.Firebird.FbCommand DeleteCommand {
get; set; }

Gets or sets an SQL statement or stored procedure used to delete records in
the data source.

— Usage

x During Update, if this property is not set and primary key
information is present in the DataSet, the DeleteCommand can be
generated automatically if you set the SelectCommand property
and use the FbCommandBuilder. Then, any additional commands
that you do not set are generated by the FbCommandBuilder. This
generation logic requires key column information to be present in
the DataSet.
When DeleteCommand is assigned to a previously created
FbCommand, the FbCommand is not cloned. The DeleteCommand
maintains a reference to the previously created FbCommand object.

o DesignMode

protected bool DesignMode { get; }

Gets a value that indicates whether the is currently in design mode.

e Fuvents

protected System.ComponentModel.EventHandlerList Events {
get; }
Gets the list of event handlers that are attached to this .

o InsertCommand

public FirebirdSql.Data.Firebird.FbCommand InsertCommand {
get; set; }

Gets or sets an SQL statement or stored procedure used to insert new
records into the data source.

— Usage
* During Update, if this property is not set and primary key
information is present in the DataSet, the InsertCommand can be
generated automatically if you set the SelectCommand property
and use the FbCommandBuilder. Then, any additional commands

FirebirdSql.Data.Firebird— FbDataAdapter 37

that you do not set are generated by the FbCommandBuilder. This
generation logic requires key column information to be present in
the DataSet.

When InsertCommand is assigned to a previously created
FbCommand, the FbCommand is not cloned. The InsertCommand
maintains a reference to the previously created FbCommand object.

o MissingMappingAction

public System.Data.MissingMappingAction
MissingMappingAction { get; set; }

Determines the action to take when incoming data does not have a matching
table or column.

o MissingSchemaAction

public System.Data.MissingSchemaAction MissingSchemaAction
{ get; set; }

Determines the action to take when existing schema does not match
incoming data.

o SelectCommand

public FirebirdSql.Data.Firebird.FbCommand SelectCommand {
get; set; }

Gets or sets an SQL statement or stored procedure used to select records in
the data source.

— Usage
x When SelectCommand is assigned to a previously created
FbCommand, the FbCommand is not cloned. The SelectCommand
maintains a reference to the previously created FbCommand object.
If the SelectCommand does not return any rows, no tables are
added to the DataSet, and no exception is raised.

o Site

public System.ComponentModel.ISite Site { get; set; }
Gets or sets the of the .

e System.Data.IDataAdapter. Table Mappings

FirebirdSql.Data.Firebird— FbDataAdapter 38

private System.Data.ITableMappingCollection
System.Data.IDataAdapter.TableMappings { get; }

e System.Data.IDbDataAdapter. DeleteCommand

private System.Data.IDbCommand
System.Data.IDbDataAdapter.DeleteCommand { get; set; }

o System.Data.IDbDataAdapter. Insert Command

private System.Data.IDbCommand
System.Data.IDbDataAdapter.InsertCommand { get; set; }

e System.Data.IDbDataAdapter.SelectCommand

private System.Data.IDbCommand
System.Data.IDbDataAdapter.SelectCommand { get; set; }

e System.Data.IDbDataAdapter. Update Command

private System.Data.IDbCommand
System.Data.IDbDataAdapter.UpdateCommand { get; set; }

o TableMappings

public System.Data.Common.DataTableMappingCollection
TableMappings { get; }

Gets a collection that provides the master mapping between a source table
and a .

e UpdateCommand

public FirebirdSql.Data.Firebird.FbCommand UpdateCommand

{ get; set; }

Gets or sets an SQL statement or stored procedure used to update records in
the data source.

— Usage
x During Update, if this property is not set and primary key
information is present in the DataSet, the UpdateCommand can be
generated automatically if you set the SelectCommand property
and use the FbCommandBuilder. Then, any additional commands
that you do not set are generated by the FbCommandBuilder. This

FirebirdSql.Data.Firebird— FbDataAdapter 39

generation logic requires key column information to be present in
the DataSet.

When UpdateCommand is assigned to a previously created
FbCommand, the FbCommand is not cloned. The
UpdateCommand maintains a reference to the previously created
FbCommand object.

CONSTRUCTORS

e .ctor

public FbDataAdapter()

Initializes a new instance of the FbDataAdapter class.

— Usage
* When you create an instance of FbDataAdapter, the following
read/write properties are set to their default values, as shown in the
table. PropertiesDefault
ValueMissingMappingActionMissingMappingAc-
tion.PassthroughMissingSchemaActionMissingSchemaAction. Add

e .ctor

public FbDataAdapter()

Initializes a new instance of the FbDataAdapter class with the specified SQL
SELECT statement.

— Usage
* When you create an instance of FbDataAdapter, the following
read/write properties are set to their default values, as shown in the
table. PropertiesDefault
ValueMissingMappingActionMissingMappingAc-
tion.PassthroughMissingSchemaActionMissingSchemaAction. Add
— Parameters

* selectCommand -
e .ctor
public FbDataAdapter()

Initializes a new instance of the FbDataAdapter class with an SQL SELECT
statement and an FbConnection.

FirebirdSql.Data.Firebird— FbDataAdapter 40

— Usage
x When you create an instance of FbDataAdapter, the following
read/write properties are set to their default values, as shown in the
table. PropertiesDefault
ValueMissingMappingActionMissingMappingAc-
tion.PassthroughMissingSchemaA ctionMissingSchemaAction.Add
— Parameters

*x selectCommandText -
* selectConnection -

e .ctor

public FbDataAdapter()

Initializes a new instance of the FbDataAdapter class with an SQL SELECT
statement and a connection string.

— Usage
* When you create an instance of FbDataAdapter, the following
read/write properties are set to their default values, as shown in the
table. PropertiesDefault
ValueMissingMappingActionMissingMappingAc-
tion.PassthroughMissingSchemaActionMissingSchemaAction. Add
— Parameters

* selectCommandText -
* selectConnectionString -

METHODS

o (Clonelnternals

protected System.Data.Common.DataAdapter Clonelnternals()

Creates a copy of this instance of .

o (CreateObjRef

public System.Runtime.Remoting.ObjRef CreateObjRef()

Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object.

— Parameters

FirebirdSql.Data.Firebird— FbDataAdapter 41

* requestedType -

e (CreateRowUpdatedEvent

protected System.Data.Common.RowUpdatedEventArgs
CreateRowUpdatedEvent ()

Initializes a new instance of the RowUpdatedEventArgs class, regardless of
whether the update is successful.

— Parameters

* dataRow -
command -
statementType -
tableMapping -

* X X

o (CreateRowUpdatingEvent

protected System.Data.Common.RowUpdatingEventArgs
CreateRowUpdatingEvent ()

Initializes a new instance of the RowUpdatingEventArgs class.

— Parameters

* dataRow -

* command -

* statementType -
* tableMapping -

o (reateTableMappings

protected System.Data.Common.DataTableMappingCollection
CreateTableMappings()

Creates a new .
e Dispose
public void Dispose()
Releases all resources used by the .
e Dispose

protected void Dispose()

Releases the unmanaged and, optionally, the managed resources used by the
FbCommand object.

FirebirdSql.Data.Firebird— FbDataAdapter 42

— Usage
* This method is called by the public Dispose method and the

Finalize method. Dispose() invokes the protected Dispose(Boolean)
method with the disposing parameter set to true. Finalize invokes
Dispose with disposing set to false. When the disposing parameter
is true, the method releases all resources held by any managed
objects that this FbCommand references.
It does this by invoking the Dispose() method of each referenced
object. Notes: Dispose can be called multiple times by other
objects. When overriding Dispose(Boolean), be careful not to
reference objects that have been previously disposed of in an earlier
call to Dispose. For more information about how to implement
Dispose(Boolean), see ”Implementing a Dispose Method” in the
Microsoft .NET Framework SDK documentation.
Calling Dispose on a FbConnection object is different from calling
Close. For example, Dispose clears the connection string while
Close does not. For more information about Dispose and Finalize,
see ”Cleaning Up Unmanaged Resources,” and ”Overriding the
Finalize Method,” in the .NET Framework SDK documentation.

— Parameters

* disposing -
e Fquals

public bool Equals()

Determines whether the specified is equal to the current .
— Parameters
* obj -

o [l

protected int Fill()

Adds or refreshes rows in a to match those in the data source using the
specified and names.

— Parameters

% dataTable -
*x dataReader -

o Fill

FirebirdSql.Data.Firebird— FbDataAdapter 43

protected int Fill()

Adds or refreshes rows in a specified range in the to match those in the data
source using the , , and names.

— Parameters

dataSet -
srcTable -
dataReader -
startRecord -
maxRecords -

* K K X K

o [l

protected int Fill()

Adds or refreshes rows in a to match those in the data source using the
name, the specified SQL SELECT statement, and .

— Parameters

% dataTable -
* command -
* behavior -

o [l

protected int Fill()

Adds or refreshes rows in a specified range in the to match those in the data
source using the and source table names, command string, and command
behavior.

— Parameters

dataSet -
startRecord -
maxRecords -
srcTable -
command -
behavior -

* K X X ¥ ¥

o Fill

public int Fill()

Adds or refreshes rows in the to match those in the data source using the
name, and creates a named ”Table”.

— Parameters

FirebirdSql.Data.Firebird— FbDataAdapter 44

* dataSet -
o [1]]

public int Fill()

Adds or refreshes rows in a to match those in the data source using the name.

— Parameters
*x dataTable -

o Fill

public int Fill()

Adds or refreshes rows in the to match those in the data source using the
and names.

— Parameters

* dataSet -
* srcTable -

o [l

public int Fill()

Adds or refreshes rows in a specified range in the to match those in the data
source using the and names.

— Parameters

dataSet -
startRecord -
maxRecords -
srcTable -

* X X X

o FillSchema

protected System.Data.DataTable FillSchema()

Configures the schema of the specified based on the specified , command
string, and values.

— Parameters

dataTable -
schemaType -
command -
behavior -

R

FirebirdSql.Data.Firebird— FbDataAdapter 45

o [llSchema

protected System.Data.DataTable[] FillSchema()

Adds a to the specified and configures the schema to match that in the data
source based on the specified .

— Parameters

dataSet -
schemaType -
command -
srcTable -
behavior -

EE S

o [llSchema

public System.Data.DataTable[] FillSchema()
Adds a named ”Table” to the specified and configures the schema to match

that in the data source based on the specified .

— Parameters

* dataSet -
* schemaType -

o FillSchema

public System.Data.DataTable FillSchema()
Configures the schema of the specified based on the specified .

— Parameters

* dataTable -
* schemaType -

o FillSchema

public System.Data.DataTable[|] FillSchema()

Adds a to the specified and configures the schema to match that in the data
source based upon the specified and .

— Parameters

*x dataSet -
* schemaType -
* srcTable -

FirebirdSql.Data.Firebird— FbDataAdapter 46

Finalize

protected void Finalize()

Releases unmanaged resources and performs other cleanup operations before
the is reclaimed by garbage collection.

GetFillParameters

public System.Data.IDataParameter[| GetFillParameters()

Gets the parameters set by the user when executing an SQL SELECT
statement.

GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

GetLifetimeSeruvice

public object GetLifetimeService()

Retrieves the current lifetime service object that controls the lifetime policy
for this instance.

GetService

protected object GetService()

Returns an object that represents a service provided by the or by its .

— Parameters

*x service -

GetType

public System.Type GetType()

Gets the of the current instance.

ICloneable. Clone

private object ICloneable.Clone()

FirebirdSql.Data.Firebird— FbDataAdapter 47

o [nitialize LifetimeService

public object InitializeLifetimeService()

Obtains a lifetime service object to control the lifetime policy for this
instance.

o MemberwiseClone
protected object MemberwiseClone()
Creates a shallow copy of the current .

o OnFillError

protected void OnFillError()

Raises the event.

— Parameters

* value -
e OnRowUpdated
protected void OnRowUpdated()
Raises the RowUpdated event using a RowUpdatedEventArgs object.
— Parameters

*x value -

e OnRowUpdating

protected void OnRowUpdating()

Raises the RowUpdating event using a RowUpdatingEventArgs object,
whether or not the update operation is successful.

— Parameters

*x value -

o ShouldSerialize TableMappings

protected bool ShouldSerializeTableMappings()

Determines whether one or more objects exist and they should be persisted.

FirebirdSql.Data.Firebird— FbDataAdapter 48

e ToString

public string ToString()

e Update

protected int Update()
Calls the respective INSERT, UPDATE, or DELETE statements for each
inserted, updated, or deleted row in the specified array of objects.

— Parameters

* dataRows -
* tableMapping -

e Update

public int Update()
Calls the respective INSERT, UPDATE, or DELETE statements for each
inserted, updated, or deleted row in the specified .
— Parameters
* dataSet -

e Update

public int Update()
Calls the respective INSERT, UPDATE, or DELETE statements for each
inserted, updated, or deleted row in the specified array of objects.

— Parameters

* dataRows -
e Update

public int Update()

Calls the respective INSERT, UPDATE, or DELETE statements for each
inserted, updated, or deleted row in the specified .

— Parameters
* dataTable -

FirebirdSql.Data.Firebird— FbDataAdapter

e Update

public int Update()
Calls the respective INSERT, UPDATE, or DELETE statements for each
inserted, updated, or deleted row in the with the specified name.

— Parameters

* dataSet -
% srcTable -

EXTENDED INFORMATION

49

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbDataReader 50

1.2.5 CrAss FbDataReader

Provides a means of reading a forward-only stream of rows from a Firebird database. This
class cannot be inherited. To create an FbDataReader, you must call the ExecuteReader
method of the FbCommand object, rather than directly using a constructor.

While the FbDataReader is in use, the associated FbConnection is busy serving the
FbDataReader, and no other operations can be performed on the FbConnection other
than closing it. This is the case until the Close method of the FbDataReader is called. For
example, you cannot retrieve output parameters until after you call Close. IsClosed and
RecordsAffected are the only properties that you can call after the FbDataReader is
closed. In some cases, you must call Close before you can call RecordsAffected.

DECLARATION

public class FbDataReader
MarshalByRefObject

PROPERTIES

e Depth
public int Depth { get; }
Gets a value indicating the depth of nesting for the current row.

— Usage
* The outermost table has a depth of zero. The Firebird .NET Data
Provider does not support nesting and always returns zero.

o FieldCount

public int FieldCount { get; }

Gets the number of columns in the current row.

— Usage
x After executing a query that does not return rows, FieldCount
returns 0.

o [sClosed

public bool IsClosed { get; }

Gets a value indicating whether the data reader is closed.

FirebirdSql.Data.Firebird— FbDataReader 51

— Usage
* IsClosed and RecordsAffected are the only properties that you can
call after the FbDataReader is closed.

o [tem

public object Item { get; }

Gets the value of the specified column in its native format given the column
ordinal.

— Parameters

* 1 -
o Jtem

public object Item { get; }

Gets the value of the specified column in its native format given the column
name.

— Parameters

* name -

o RecordsAffected

public int RecordsAffected { get; }

Gets the number of rows changed, inserted, or deleted by execution of the
DSQL statement.

— Usage
x The RecordsAffected property is not set until all rows are read and
you close the FbDataReader.
The value of this property is cumulative. For example, if two
records are inserted in batch mode, the value of RecordsAffected
will be two. IsClosed and RecordsAffected are the only properties
that you can call after the FbDataReader is closed.

METHODS

FirebirdSql.Data.Firebird— FbDataReader 52

o (Close

public void Close()
Closes the FbDataReader object.

— Usage

* You must explicitly call the Close method when you are through
using the the FbDataReader to use the associated FbConnection
for any other purpose.
The Close method fills in the values for output parameters, return
values and RecordsAffected, increasing the amount of time it takes
to close a FbDataReader that was used to process a large or
complicated query. In cases where the return values and the
number of records affected by a query are not significant, the
amount of time it takes to close the FbDataReader can be reduced
by calling the Cancel method of the associated FbCommand object
before calling the Close method.

o (CreateObjRef

public System.Runtime.Remoting.ObjRef CreateObjRef()

Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object.

— Parameters

* requestedType -
e Dispose

public void Dispose()

Releases the unmanaged resources used by the FbDataReader and optionally
releases the managed resources.

e Fquals

public bool Equals()

Determines whether the specified is equal to the current .

— Parameters

* obj -

FirebirdSql.Data.Firebird— FbDataReader 53

o Finalize

protected void Finalize()

e (GetBoolean

public bool GetBoolean()

Gets the value of the specified column as a Boolean.

— Usage
* Call IsDBNull to check for null values before calling this method.
— Parameters

* i -

e (GetByte

public byte GetByte()

Gets the value of the specified column as a byte.

— Parameters

* i -

o (GetBytes

public long GetBytes()

Reads a stream of bytes from the specified column offset into the buffer as an
array, starting at the given buffer offset.

— Usage
x GetBytes returns the number of available bytes in the field. In most

cases this is the exact length of the field. However, the number
returned may be less than the true length of the field if GetBytes
has already been used to obtain bytes from the field. This may be
the case, for example, if the FbDataReader is reading a large data
structure into a buffer. For more information, see the
Sequential Access setting for CommandBehavior.
If you pass a buffer that is a null reference, GetBytes returns the
length of the field in bytes.
No conversions are performed, therefore the data retrieved must
already be a byte array.

— Parameters

FirebirdSql.Data.Firebird— FbDataReader 54

i-
datalndex -
buffer -
bufferIndex -
length -

* K K X X

o GetChar

public char GetChar()

Gets the value of the specified column as a character.

— Parameters

*x 1 -
o GetChars

public long GetChars()

Reads a stream of characters from the specified column offset into the buffer
as an array, starting at the given buffer offset.

— Usage
x GetChars returns the number of available characters in the field. In
most cases this is the exact length of the field. However, the
number returned may be less than the true length of the field if
GetChars has already been used to obtain characters from the field.
This may be the case, for example, if the FbDataReader is reading
a large data structure into a buffer. For more information, see the
Sequential Access setting for CommandBehavior.
If you pass a buffer that is a null reference, GetBytes returns the
length of the field in characters.
No conversions are performed, therefore the data retrieved must
already be a character array.
— Parameters
* 1 -
datalndex -
buffer -

bufferIndex -
length -

* K X %

o GetData

public System.Data.IDataReader GetData()
Not currently supported.

FirebirdSql.Data.Firebird— FbDataReader 95

— Parameters

* 1 -
o GetDataTypeName
public string GetDataTypeName()
Gets the name of the source data type.
— Parameters
* 1 -
e GetDateTime
public System.DateTime GetDateTime()
Gets the value of the specified column as a DateTime object.
— Parameters
* 1 -
o GetDecimal
public decimal GetDecimal()
Gets the value of the specified column as a Decimal object.
— Parameters
* 1 -

o GetDouble

public double GetDouble()

Gets the value of the specified column as a double-precision floating point
number.

— Parameters

* i -

o GetFieldType

public System.Type GetFieldType()
Gets the Type that is the data type of the object.

FirebirdSql.Data.Firebird— FbDataReader 56

— Parameters

*x 1 -
o GetFloat

public float GetFloat()

Gets the value of the specified column as a single-precision floating-point
number.

— Parameters
* 1 -
o GetGuid
public System.Guid GetGuid()
Gets the value of the specified column as a globally-unique identifier (GUID).
— Parameters
* 1 -

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

o GetIntl6
public System.Int16 GetInt16()
Gets the value of the specified column as a 16-bit signed integer.
— Parameters
* 1 -
o GetInt32
public int GetInt32()
Gets the value of the specified column as a 32-bit signed integer.

— Parameters

FirebirdSql.Data.Firebird— FbDataReader o7

o GetInt6)
public long GetInt64()
Gets the value of the specified column as a 64-bit signed integer.
— Parameters
* 1 -

e GetLifetimeService

public object GetLifetimeService()

Retrieves the current lifetime service object that controls the lifetime policy
for this instance.

o GetName

public string GetName()

Gets the name of the specified column.
— Parameters
* 1 -

o GetOrdinal

public int GetOrdinal()

Gets the column ordinal, given the name of the column.

— Parameters

* name -

o GetSchemaTable

public System.Data.DataTable GetSchemaTable()

Returns a DataTable that describes the column metadata of the
FbDataReader.

— Usage

FirebirdSql.Data.Firebird— FbDataReader 58

* DataReader ColumnDescriptionColumnName The name of the
column; this might not be unique. If this cannot be determined, a
null value is returned. This name always reflects the most recent
renaming of the column in the current view or command text.
ColumnOrdinal The ordinal of the column. This is zero for the
bookmark column of the row, if any. Other columns are numbered
starting with one. This column cannot contain a null value.
ColumnSize The maximum possible length of a value in the
column. For columns that use a fixed-length data type, this is the
size of the data type. NumericPrecision If ProviderType is a
numeric data type, this is the maximum precision of the column.
The precision depends on the definition of the column. If
ProviderType is not a numeric data type, this is a null value.
NumericScale If ProviderType is is DECIMAL or NUMERIC, the
number of digits to the right of the decimal point. Otherwise, this
is a null value. DataTypeMaps to the .Net Framework type of the
column.ProviderType The indicator of the column’s data type. If
the data type of the column varies from row to row, this must be
Object. This column cannot contain a null value. IsLong Set if the
column contains a Binary Long Object (BLOB) that contains very
long data. The definition of very long data is provider-specific.
AllowDbNull Set if the consumer can set the column to a null value
or if the provider cannot determine whether or not the consumer
can set the column to a null value. Otherwise, not set. A column
may contain null values, even if it cannot be set to a null value.
IsReadOnlytrue if the column can be modified; otherwise
false.IsRowVersion Set if the column contains a persistent row
identifier that cannot be written to, and has no meaningful value
except to identity the row. IsUniquetrue: No two rows in the base
table-the table returned in BaseTableName-can have the same
value in this column. IsUnique is guaranteed to be true if the
column constitutes a key by itself or if there is a constraint of type
UNIQUE that applies only to this column. false: The column can
contain duplicate values in the base table.The default of this
column is false. IsKeytrue: The column is one of a set of columns in
the rowset that, taken together, uniquely identify the row. The set
of columns with IsKey set to true must uniquely identify a row in
the rowset. There is no requirement that this set of columns is a
minimal set of columns. This set of columns may be generated from
a base table primary key, a unique constraint or a unique index.
false: The column is not required to uniquely identify the row.
IsAutoIncrementtrue: The column assigns values to new rows in
fixed increments. false: The column does not assign values to new
rows in fixed increments.The default of this column is false.

FirebirdSql.Data.Firebird— FbDataReader 59

IsAliasedtrue if the column name is an alias; otherwise false.
IsExpressiontrue if the column is an expression; otherwise false.
BaseSchemaName The name of the schema in the data store that
contains the column. A null value if the base schema name cannot
be determined. The default of this column is a null value.
BaseCatalogName The name of the catalog in the data store that
contains the column. NULL if the base catalog name cannot be
determined. The default of this column is a null value.
BaseTableName The name of the table or view in the data store
that contains the column. A null value if the base table name
cannot be determined. The default of this column is a null value.
BaseColumnName The name of the column in the data store. This
might be different than the column name returned in the
ColumnName column if an alias was used. A null value if the base
column name cannot be determined or if the rowset column is
derived, but not identical to, a column in the data store. The
default of this column is a null value.

o GetString
public string GetString()
Gets the value of the specified column as a string.
— Parameters
* 1 -
o GetType
public System.Type GetType()
Gets the of the current instance.
o GetValue
public object GetValue()
Gets the value of the column at the specified ordinal in its native format.

— Usage
%+ This method returns DBNull for null database columns.
— Parameters

* i -

FirebirdSql.Data.Firebird— FbDataReader 60

o GetValues

public int GetValues()

Gets all the attribute columns in the current row.
— Parameters

*x values -

o [Enumerable. GetEnumerator

private System.Collections.IEnumerator
IEnumerable.GetEnumerator()

e [nitializeLifetimeService

public object InitializeLifetimeService()

Obtains a lifetime service object to control the lifetime policy for this
instance.

e IsDBNull

public bool IsDBNull()

Gets a value indicating whether the column contains non-existent or missing
values.

— Parameters
* 1 -
o MemberwiseClone
protected object MemberwiseClone()
Creates a shallow copy of the current .

o NextResult

public bool NextResult()

Advances the data reader to the next result, when reading the results of
batch DSQL statements.

— Usage

FirebirdSql.Data.Firebird— FbDataReader 61

* Used to process multiple results, which can be generated by
executing batch DSQL statements.
By default, the data reader is positioned on the first result.

e Read

public bool Read()
Advances the FbDataReader to the next record.

— Usage
* The default position of the FbDataReader is prior to the first
record. Therefore, you must call Read to begin accessing any data.
Only one FbDataReader per associated FbConnection may be open
at a time, and any attempt to open another will fail until the first
one is closed. Similarly, while the FbDataReader is in use, the
associated FbConnection is busy serving it until you call Close.

o ToString

public string ToString()

Returns a that represents the current .

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbError 62

1.2.6 CrLASsS FbError

Collects information relevant to a warning or error returned by Firebird. This class cannot
be inherited. This class is created by the Firebird .NET Data Provider when an error
occurs. An instance of FbError is created and managed by the FbException class.

DECLARATION

public class FbError
Object

PROPERTIES

e (Class

public byte Class { get; }

Gets the severity level of the error returned from Firebird.
e LineNumber

public int LineNumber { get; }

Bets the line number within the DSQL command batch or stored procedure
that contains the error.

— Usage
* Line numbering starts at 1. If the value is 0, the line number is not
applicable.

e Message

public string Message { get; }
Gets the text describing the error.
o Number

public int Number { get; }
Gets a number that identifies the type of error.

FirebirdSql.Data.Firebird— FbError 63

METHODS

o Fquals

public bool Equals()

Determines whether the specified is equal to the current .

— Parameters
* obj -

o Finalize

protected void Finalize()

Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

o GetType

public System.Type GetType()

Gets the of the current instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

e ToString

public string ToString()

Returns a that represents the current .

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbErrorCollection 64

1.2.7 CLASS FbErrorCollection

Collects all errors generated by the Firebird .NET Data Provider. This class cannot be
inherited. This class is created by FbException to collect instances of the FbError class.
FbErrorCollection always contains at least one instance of the FbError class.

DECLARATION

public class FbErrorCollection
Object

PROPERTIES

e Count

public int Count { get; }

Gets the number of FbError objects in the collection.

o [tem

public FirebirdSql.Data.Firebird.FbError Item { get; set; }
Gets or sets the FbError with the specified error Message.

— Parameters

* errorMessage -
o Jtem

public FirebirdSql.Data.Firebird.FbError Item { get; set; }

— Parameters

* errorlndex -
e System.Collections.ICollection.IsSynchronized

private bool System.Collections.ICollection.IsSynchronized { get;

}

o System.Collections.ICollection.SyncRoot

private object System.Collections.ICollection.SyncRoot { get; }

FirebirdSql.Data.Firebird— FbErrorCollection 65

CONSTRUCTORS

e .ctor

public FbErrorCollection()

Initializes a new instance of the FbErrorCollection class.

METHODS

e CopyTo

public void CopyTo()
Copies the elements of the FbErrorCollection collection into an Array,

starting at the given index within the Array.

— Parameters

* array -
* index -

o Fquals

public bool Equals()

Determines whether the specified is equal to the current .
— Parameters
* obj -

o Finalize

protected void Finalize()
Allows an to attempt to free resources and perform other cleanup operations

before the is reclaimed by garbage collection.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

FirebirdSql.Data.Firebird— FbErrorCollection

GetType

public System.Type GetType()

Gets the of the current instance.

o [Enumerable. GetEnumerator

private System.Collections.IEnumerator
IEnumerable.GetEnumerator ()

This member supports the .NET Framework infrastructure and is not
intended to be used directly from your code.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

o ToString

public string ToString()

Returns a that represents the current .

EXTENDED INFORMATION

66

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbException 67

1.2.8 CrLAss FbException

The exception that is thrown when Firebird Server returns a warning or error. This class
cannot be inherited. This class is created whenever the Firebird Server .NET Data

Provider encounters an error generated from the server. (Client side errors are thrown as
standard URT exceptions.) FbException always contains at least one instance of FbError.

DECLARATION

public class FbException
SystemException

PROPERTIES

e FErrorCode
public int ErrorCode { get; }
Gets a value representing the Firebird error code

e FErrors

public FirebirdSql.Data.Firebird.FbErrorCollection Errors { get;
}

Gets a collection of one or more FbError objects that give detailed
information about exceptions generated by the Firebird .NET Data Provider.

e HelpLink

public string HelpLink { get; set; }

Gets or sets a link to the help file associated with this exception.
o HResult

protected int HResult { get; set; }

Gets or sets HRESULT, a coded numerical value that is assigned to a
specific exception.

e InnerFException

public System.Exception InnerException { get; }

Gets the instance that caused the current exception.

FirebirdSql.Data.Firebird— FbException 68

e Message
public string Message { get; }
Gets a message that describes the current exception.

e Source

public string Source { get; set; }

Gets or sets the name of the application or the object that causes the error.
e StackTrace

public string StackTrace { get; }

Gets a string representation of the frames on the call stack at the time the
current exception was thrown.

e TargetSite

public System.Reflection.MethodBase TargetSite { get; }

Gets the method that throws the current exception.

METHODS

e Fquals

public bool Equals()

Determines whether the specified is equal to the current .

— Parameters

* obj -
o Finalize

protected void Finalize()

Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

e GetBaseException

public System.Exception GetBaseException()

FirebirdSql.Data.Firebird— FbException 69
When overridden in a derived class, returns the that is the root cause of one
or more subsequent exceptions.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

e GetObjectData

public void GetObjectData()

When overridden in a derived class, sets the with information about the
exception.

— Parameters

* info -
* context -

o GetType

public System.Type GetType()

Gets the of the current instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

e ToString

public string ToString()

Creates and returns a string representation of the current exception.

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbInfoMessageEvent Args 70

1.2.9 C(CrLAss FbInfoMessageEventArgs

Provides data for the InfoMessage event. This class cannot be inherited. The
InfoMessage event contains an FbErrorCollection collection with warnings sent from the
Firebird Server.

DECLARATION

public class FbInfoMessageEvent Args
EventArgs

PROPERTIES

o Lrrors

public FirebirdSql.Data.Firebird.FbErrorCollection Errors { get;

}

Gets the collection of warnings sent from the Firebird Server.
o Message
public string Message { get; }

Gets a value representing the complete error message sent from the Firebird
Server.

METHODS

o Fquals

public bool Equals()

Determines whether the specified is equal to the current .
— Parameters
* obj -

o Finalize

protected void Finalize()

Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

FirebirdSql.Data.Firebird— FbInfoMessageEvent Args 71

GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

o GetType

public System.Type GetType()

Gets the of the current instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

e ToString

public string ToString()

Returns a that represents the current .

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbParameter 72

1.2.10 CrAsS FbParameter

Represents a parameter to a FbCommand, and optionally, its mapping to DataSet
columns. This class cannot be inherited. Parameter names are not case sensitive.

DECLARATION

public class FbParameter
MarshalByRefObject

PROPERTIES

e DbType
public System.Data.DbType DbType { get; set; }
Gets or sets the DbType of the parameter.
e Direction
public System.Data.ParameterDirection Direction { get; set; }
Gets or sets the DbType of the parameter.
o IsNullable
public bool IsNullable { get; set; }
Gets or sets a value indicating whether the parameter accepts null values.
e ParameterName
public string ParameterName { get; set; }
Gets or sets the name of the FbParameter.
e Precision

public byte Precision { get; set; }

Gets or sets the maximum number of digits used to represent the Value
property.

o Scale

FirebirdSql.Data.Firebird— FbParameter 73

public byte Scale { get; set; }

Gets or sets the number of decimal places to which Value is resolved.
o Size
public int Size { get; set; }
Gets or sets the maximum size, in bytes, of the data within the column.

o SourceColumn

public string SourceColumn { get; set; }

Gets or sets the name of the source column that is mapped to the DataSet
and used for loading or returning the Value.

o SourceVersion

public System.Data.DataRowVersion SourceVersion { get; set;
}

Gets or sets the DataRowVersion to use when loading Value.

o Value

public object Value { get; set; }

Gets or sets the value of the parameter.

CONSTRUCTORS

e .ctor

public FbParameter()

Initializes a new instance of the FbParameter class.
e .ctor

public FbParameter()

Initializes a new instance of the FbParameter class.

— Parameters

* parameterName -
* fbType -

FirebirdSql.Data.Firebird— FbParameter 74

e .ctor

public FbParameter()

Initializes a new instance of the FbParameter class.

— Parameters

* parameterName -
* paramValue -

e .ctor

public FbParameter()

Initializes a new instance of the FbParameter class.

— Parameters

* parameterName -
* fbType -
* sourceColumn -

e .ctor

public FbParameter()

Initializes a new instance of the FbParameter class.

— Parameters

* parameterName -
* fbType -

* size -

* sourceColumn -

METHODS

o (CreateObjRef

public System.Runtime.Remoting.ObjRef CreateObjRef()

Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object.

— Parameters

* requestedType -

FirebirdSql.Data.Firebird— FbParameter 75

o Fquals

public bool Equals()

Determines whether the specified is equal to the current .
— Parameters
* obj -

o Finalize

protected void Finalize()

Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

e GetLifetimeService

public object GetLifetimeService()

Retrieves the current lifetime service object that controls the lifetime policy
for this instance.

o GetType

public System.Type GetType()

Gets the of the current instance.

e ICloneable.Clone

private object ICloneable.Clone()

o Initialize LifetimeService

public object InitializeLifetimeService()

Obtains a lifetime service object to control the lifetime policy for this
instance.

FirebirdSql.Data.Firebird— FbParameter

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

o ToString

public string ToString()

Returns a that represents the current .

EXTENDED INFORMATION

76

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbParameterCollection 7

1.2.11 CrAsSs FbParameterCollection

Collects all parameters relevant to a FbCommand as well as their respective mappings to
DataSet columns. This class cannot be inherited. The number of the parameters in the
collection must be equal to the number of parameter placeholders within the command
text, or Firebird raises an error.

DECLARATION

public class FbParameterCollection
MarshalByRefObject

PROPERTIES

o Count
public int Count { get; }
Gets the number of FbParameter objects in the collection.

o [item

public FirebirdSql.Data.Firebird.FbParameter Item { get; set;
}

Gets or sets the FbParameter with the specified name.
— Parameters
* parameterName -

o [Jtem

public FirebirdSql.Data.Firebird.FbParameter Item { get; set;
}

Gets or sets the FbParameter at the specified index.

— Parameters

* parameterIndex -
o System.Collections.ICollection.IsSynchronized

private bool System.Collections.ICollection.IsSynchronized { get;

}

FirebirdSql.Data.Firebird— FbParameterCollection 78

e System.Collections.ICollection.SyncRoot

private object System.Collections.ICollection.SyncRoot { get; }

o System.Collections.IList. IsFixedSize

private bool System.Collections.IList.IsFixedSize { get; }

e System.Collections.IList.IsReadOnly

private bool System.Collections.IList.IsReadOnly { get; }

e System.Collections.IList.Item

private object System.Collections.IList.Item { get; set; }

— Parameters

* parameterIndex -
e System.Data.IDataParameterCollection.Item

private object System.Data.IDataParameterCollection.Item {
get; set; }

— Parameters

* parameterName -

CONSTRUCTORS

e .ctor

public FbParameterCollection()

Initializes a new instance of the FbParameterCollection class.

METHODS

o Add

public int Add()
Adds the specified FbParameter object to the collection.

FirebirdSql.Data.Firebird— FbParameterCollection 79

— Parameters

*x value -

o Add

public FirebirdSql.Data.Firebird.FbParameter Add()
Adds the specified FbParameter object to the collection.

— Parameters

* param -

o Add

public FirebirdSql.Data.Firebird.FbParameter Add()
Adds the specified FbParameter object to the collection.

— Parameters

* parameterName -
* type -

o Add

public FirebirdSql.Data.Firebird.FbParameter Add()

Adds a FbParameter to the FbParameterCollection with the parameter
name and the data type.

— Parameters

* parameterName -
* value -

e Add

public FirebirdSql.Data.Firebird.FbParameter Add()

Adds a FbParameter to the FbParameterCollection with the parameter
name the data type and the source column.

— Parameters

* parameterName -
* fbType -
* sourceColumn -

FirebirdSql.Data.Firebird— FbParameterCollection

o Add

public FirebirdSql.Data.Firebird.FbParameter Add()

Adds a FbParameter to the FbParameterCollection with the parameter
name, the data type, the parameter size (column width), and the source
column name.

— Parameters

parameterName -
fbType -

size -
sourceColumn -

* K K X

o (Clear
public void Clear()
Removes all items from the collection.
e Contains
public bool Contains()
Indicates whether a FbParameter exists in the collection.
— Parameters

*x value -

o (Contains
public bool Contains()
Indicates whether a FbParameter exists in the collection.
— Parameters
* parameterName -
o CopyTo
public void CopyTo()
Copies FbParameterCollection to the specified array.

— Parameters

FirebirdSql.Data.Firebird— FbParameterCollection 81

* array -
*x index -

o (reateObjRef

public System.Runtime.Remoting.ObjRef CreateObjRef()

Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object.

— Parameters

* requestedType -

e Fquals

public bool Equals()

Determines whether the specified is equal to the current .

— Parameters

* obj -
o Finalize

protected void Finalize()

Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

o GetEnumerator

public System.Collections.IEnumerator GetEnumerator()

This member supports the .NET Framework infrastructure and is not
intended to be used directly from your code.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

e GetLifetimeService

public object GetLifetimeService()

FirebirdSql.Data.Firebird— FbParameterCollection 82

Retrieves the current lifetime service object that controls the lifetime policy
for this instance.

o GetType

public System.Type GetType()

Gets the of the current instance.

o IndexOf

public int IndexOf()
Gets the location of the FbParameter in the collection with a specific

parameter name.

— Parameters

*x value -

e IndexOf

public int IndexOf()

Gets the location of the FbParameter in the collection with a specific
parameter name.

— Parameters

* parameterName -

o InitializeLifetimeService

public object InitializeLifetimeService()

Obtains a lifetime service object to control the lifetime policy for this
instance.

o Insert

public void Insert()

Gets the location of the FbParameter in the collection with a specific
parameter name.

— Parameters

* index -
*x value -

FirebirdSql.Data.Firebird— FbParameterCollection 83

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

e Remove

public void Remove()

Removes the specified FbParameter from the collection.

— Parameters

*x value -

o RemoveAt

public void RemoveAt()

Removes the specified FbParameter from the collection using a specific index.

— Parameters

* index -

o RemoveAt

public void RemoveAt()

Removes the specified FbParameter from the collection.

— Parameters

* parameterName -

e ToString

public string ToString()

Returns a that represents the current .

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbPermission 84

1.2.12 C(CrLASS FbPermission

Enables the Firebird .NET Data Provider to ensure that a user has a security level
adequate to access an Firebird data source. This class cannot be inherited. The
IsUnrestricted property takes precedence over the AllowBlankPassword property.
Therefore, if you set AllowBlankPassword to false, you must also set IsUnrestricted to
false to prevent a user from making a connection using a blank password.

DECLARATION

public class FbPermission
DBDataPermission

PROPERTIES

o AllowBlankPassword

public bool AllowBlankPassword { get; set; }

Gets a value indicating whether a blank password is allowed.

CONSTRUCTORS

e .ctor

public FbPermission()

Initializes a new instance of the FbPermission class.
e .ctor

public FbPermission()

Initializes a new instance of the FbPermission class with one of the
PermissionState values.

— Parameters

* state -

e .ctor

public FbPermission()

Initializes a new instance of the FbPermission class.

FirebirdSql.Data.Firebird— FbPermission 85

— Usage
x The PermissionState enumeration takes precedence over the
AllowBlankPassword property. Therefore, if you set set
AllowBlankPassword to false, you must also set PermissionState to
None to prevent a user from making a connection using a blank
password.
— Parameters

* state -
*x allowBlankPassword -

METHODS

e Add

public void Add()
Adds access for the specified connection string to the existing state of the

permission.

— Parameters

* connectionString -
* restrictions -
* behavior -

o Assert

public void Assert()

Declares that the calling code can access the resource protected by a
permission demand through the code that calls this method, even if callers
higher in the stack have not been granted permission to access the resource.
Using

can create security vulnerabilities.

o (Clear

protected void Clear()
Removes all permissions that were previous added using the method.
o Copy

public System.Security.IPermission Copy()

Creates and returns an identical copy of the current permission object.

FirebirdSql.Data.Firebird— FbPermission 86

o Createlnstance

protected System.Data.Common.DBDataPermission
Createlnstance()

Creates a new instance of a DataPermission class.

e Demand

public void Demand()
Forces a at run time if all callers higher in the call stack have not been

granted the permission specified by the current instance.

e Deny

public void Deny()
Prevents callers higher in the call stack from using the code that calls this

method to access the resource specified by the current instance.

o Fquals

public bool Equals()
Determines whether the specified is equal to the current .

— Parameters

* obj -
o Finalize

protected void Finalize()

Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

o FromXml

public void FromXml()

Reconstructs a security object with a specified state from an XML encoding.

— Usage
x Custom code that extends security objects needs to implement the
ToXml and FromXml methods to make the objects
security-encodable.

FirebirdSql.Data.Firebird— FbPermission 87

— Parameters
* securityElement -

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

o GetType

public System.Type GetType()

Gets the of the current instance.

o Intersect

public System.Security.IPermission Intersect()

Returns a new permission object representing the intersection of the current
permission object and the specified permission object.

— Usage
x The intersection of two permissions is a permission that describes
the set of operations they both describe in common. Only a demand
that passes both original permissions will pass the intersection.
— Parameters
* target -

o [sSubsetOf

public bool IsSubsetOf()

Returns a value indicating whether the current permission object is a subset
of the specified permission object.

— Usage
x The current permission object is a subset of the specified

permission object if the current permission object specifies a set of
operations that is wholly contained by the specified permission
object. For example, a permission that represents access to C:
example.txt is a subset of a permission that represents access to C:
. If this method returns true, the current permission object
represents no more access to the protected resource than does the
specified permission object.

FirebirdSql.Data.Firebird— FbPermission 88

— Parameters

* target -

o [sUnrestricted

public bool IsUnrestricted()

Returns a value indicating whether the permission can be represented as
unrestricted without any knowledge of the permission semantics.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

o PermitOnly

public void PermitOnly()

Prevents callers higher in the call stack from using the code that calls this
method to access all resources except for the resource specified by the
current instance.

o ToString

public string ToString()

Creates and returns a string representation of the current permission object.

— Usage
* This method is useful in debugging when you need to display the
permission as a string.

o ToXml

public System.Security.SecurityElement ToXml()

Creates an XML encoding of the security object and its current state.

— Usage
x Custom code that extends security objects needs to implement the
ToXml and FromXml methods to make the objects
security-encodable.

FirebirdSql.Data.Firebird— FbPermission 89

e Union

public System.Security.IPermission Union()
Returns a new permission object that is the union of the current and

specified permission objects.

— Usage
* The result of a call to Union is a permission that represents all the
operations represented by both the current permission object and
the specified permission object. Any demand that passes either

permission passes their union.
— Parameters

* target -

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbPermissionAttribute 90

1.2.13 CrLASS FbPermissionAttribute

Associates a security action with a custom security attribute.

DECLARATION

public class FbPermissionAttribute
DBDataPermissionAttribute

PROPERTIES

o Action

public System.Security.Permissions.SecurityAction Action { get;
set; }

Gets or sets a security action.
e AllowBlankPassword

public bool AllowBlankPassword { get; set; }

Gets or sets a value indicating whether a blank password is allowed.
e ConnectionString

public string ConnectionString { get; set; }

Gets or sets a permitted connection string.

o KeyRestrictionBehavior

public System.Data.KeyRestrictionBehavior
KeyRestrictionBehavior { get; set; }

Identifies whether the list of connection string parameters identified by the
property are the only additional connection string parameters allowed.

o KeyRestrictions

public string KeyRestrictions { get; set; }

Gets or sets connection string parameters that are allowed or disallowed.

FirebirdSql.Data.Firebird— FbPermissionAttribute 91

o Typeld

public object Typeld { get; }

When implemented in a derived class, gets a unique identifier for this .

o Unrestricted
public bool Unrestricted { get; set; }

Gets or sets a value indicating whether full (unrestricted) permission to the
resource protected by the attribute is declared.

CONSTRUCTORS

e .ctor

public FbPermissionAttribute()

Initializes a new instance of the FbPermissionAttribute class with one of the

SecurityAction values.

— Parameters

* action -

METHODS

o CreatePermission

public System.Security.IPermission CreatePermission()

Returns an FbPermission object that is configured according to the attribute

properties.

o FEquals

public bool Equals()

— Parameters

* obj -

FirebirdSql.Data.Firebird— FbPermissionAttribute 92

Finalize

protected void Finalize()

Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

GetHashCode

public int GetHashCode()
Returns the hash code for this instance.
GetType

public System.Type GetType()
Gets the of the current instance.
IsDefault Attribute

public bool IsDefaultAttribute()

When overridden in a derived class, returns an indication whether the value
of this instance is the default value for the derived class.

Match

public bool Match()

When overridden in a derived class, returns a value indicating whether this
instance equals a specified object.

— Parameters
* obj -

MemberwiseClone

protected object MemberwiseClone()
Creates a shallow copy of the current .
ToString

public string ToString()

Returns a that represents the current .

FirebirdSql.Data.Firebird— FbPermissionAttribute

EXTENDED INFORMATION

93

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbRowUpdatedEventArgs 94

1.2.14 CrAss FbRowUpdatedEventArgs

Provides data for the RowUpdated event. This class cannot be inherited.

DECLARATION

public class FbRowUpdatedEventArgs
RowUpdatedEventArgs

PROPERTIES

o Command

public FirebirdSql.Data.Firebird.FbCommand Command { get; }
Gets the FbCommand executed when Update is called.
e FErrors

public System.Exception Errors { get; set; }

Gets any errors generated by the .NET Framework data provider when the
was executed.

o RecordsAffected

public int RecordsAffected { get; }

Gets the number of rows changed, inserted, or deleted by execution of the
SQL statement.

e Row

public System.Data.DataRow Row { get; }
Gets the sent through an .

o StatementType

public System.Data.StatementType StatementType { get; }
Gets the type of SQL statement executed.

FirebirdSql.Data.Firebird— FbRowUpdatedEventArgs 95

o Status

public System.Data.UpdateStatus Status { get; set; }
Gets the of the property.

o TableMapping
public System.Data.Common.DataTableMapping TableMapping {

get; }
Gets the sent through an .

CONSTRUCTORS

e .ctor

public FbRowUpdatedEventArgs()

Initializes a new instance of the FbRowUpdatedEventArgs class.

— Parameters

* TOW -

* command -

* statementType -
* tableMapping -

METHODS

o Fquals

public bool Equals()

Determines whether the specified is equal to the current .
— Parameters
* obj -

o Finalize

protected void Finalize()

Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

FirebirdSql.Data.Firebird— FbRowUpdatedEventArgs 96

GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

o GetType

public System.Type GetType()

Gets the of the current instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

e ToString

public string ToString()

Returns a that represents the current .

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbRowUpdatingEvent Args 97

1.2.15 CrAssS FbRowUpdatingEventArgs

Provides data for the RowUpdating event. This class cannot be inherited.

DECLARATION

public class FbRowUpdatingEventArgs
RowUpdatingEventArgs

PROPERTIES

o Command

public FirebirdSql.Data.Firebird.FbCommand Command { get;
set; }

Gets or sets the FbCommand to execute when Update is called.

e FErrors

public System.Exception Errors { get; set; }

Gets any errors generated by the .NET Framework data provider when the
executes.

e Row

public System.Data.DataRow Row { get; }
Gets the to send through an .
o StatementType
public System.Data.StatementType StatementType { get; }
Gets the type of SQL statement to execute.
o Status

public System.Data.UpdateStatus Status { get; set; }
Gets the of the property.

FirebirdSql.Data.Firebird— FbRowUpdatingEvent Args 98

o TableMapping
public System.Data.Common.DataTableMapping TableMapping {

get; }
Gets the to send through the .

CONSTRUCTORS

e .ctor

public FbRowUpdatingEventArgs()

Initializes a new instance of the FbRowUpdatingEventArgs class.

— Parameters

* TOW -

* command -

* statementType -
* tableMapping -

METHODS

o Fquals

public bool Equals()

Determines whether the specified is equal to the current .
— Parameters
* obj -

o Finalize

protected void Finalize()
Allows an to attempt to free resources and perform other cleanup operations
before the is reclaimed by garbage collection.

o GetHashCode

public int GetHashCode()

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

FirebirdSql.Data.Firebird— FbRowUpdatingEvent Args

o GetType

public System.Type GetType()

Gets the of the current instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

o ToString

public string ToString()

Returns a that represents the current .

EXTENDED INFORMATION

99

e Assembly: FirebirdSql.Data.Firebird

FirebirdSql.Data.Firebird— FbTransaction 100

1.2.16 CrAsS FbTransaction

Represents a Firebird transaction to be made in a Firebird database. This class cannot be
inherited.

DECLARATION

public class FbTransaction
MarshalByRefObject

PROPERTIES

o Connection

public FirebirdSql.Data.Firebird.FbConnection Connection {
get; set; }

Gets the FbConnection object associated with the transaction, or a null
reference if the transaction is no longer valid.

— Usage
x A single application may have multiple database connections, each
with zero or more transactions. This property enables you to
determine the connection object associated with a particular
transaction created by BeginTransaction.

e [solationLevel

public System.Data.IsolationLevel IsolationLevel { get; set; }

Specifies the IsolationLevel for this transaction.

e System.Data.IDbTransaction. Connection

private System.Data.IDbConnection
System.Data.IDbTransaction.Connection { get; }

METHODS

FirebirdSql.Data.Firebird— FbTransaction 101

o Commit

public void Commit()

Commits the database transaction.

o CommitRetaining

public void CommitRetaining()

Commits the database transaction and retains the transaction context after
a comimit.

o (CreateObjRef

public System.Runtime.Remoting.ObjRef CreateObjRef()

Creates an object that contains all the relevant information required to
generate a proxy used to communicate with a remote object.

— Parameters

* requestedType -
e Dispose

public void Dispose()

Releases the unmanaged resources used by the FbTransaction and optionally
releases the managed resources.

e Fquals

public bool Equals()

Determines whether the specified is equal to the current .

— Parameters

* obj -
o Finalize

protected void Finalize()

o GetHashCode

public int GetHashCode()

FirebirdSql.Data.Firebird— FbTransaction 102

Serves as a hash function for a particular type, suitable for use in hashing
algorithms and data structures like a hash table.

o GetLifetimeService

public object GetLifetimeService()

Retrieves the current lifetime service object that controls the lifetime policy
for this instance.

o GetType

public System.Type GetType()

Gets the of the current instance.

o InitializeLifetimeService

public object InitializeLifetimeService()
Obtains a lifetime service object to control the lifetime policy for this

instance.

o MemberwiseClone

protected object MemberwiseClone()

Creates a shallow copy of the current .

o Rollback

public void Rollback()

Rolls back a transaction from a pending state.

o Rollback

public void Rollback()

Rolls back a transaction from a pending state, and specifies the transaction
or savepoint name.

— Parameters
* savePointName -

— Example
FbConnection myConnection = new
FbConnection(connectionString); myConnection.Open();

FirebirdSql.Data.Firebird— FbTransaction 103

FbCommand myCommand = new FbCommand(); FbTransaction
myTrans;

// Start a local transaction myTrans =
myConnection.BeginTransaction(); // Assign transaction
object for a pending local transaction myCommand.Connection
= myConnection; myCommand.Transaction = myTrans;

try { myCommand.CommandText = "INSERT INTO PROJECT(proj_id,
proj_name, product) Values(’FBNP’, ’.Net Provider’, ’N/A’)";
myCommand . ExecuteNonQuery () ;

myTrans.Save ("SampleTransaction"); myCommand.CommandText =
"INSERT INTO PROJECT(proj-id, proj_name, product)
Values(’FBN1’, ’.Net Providerl.’, ’N/A’)";
myCommand . ExecuteNonQuery () ; myTrans.Commit () ;
Console.WriteLine("Both records are written to database.");
} catch(Exception e) { try {
myTrans.Rollback("SampleTransaction"); } catch (FbException
ex) { if (myTrans.Connection != null) {
Console.WriteLine("An exception of type " + ex.GetType() + "
was encountered while attempting to roll back the
transaction."); } }

Console.WritelLine("An exception of type " + e.GetType() + "
was encountered while inserting the data.");
Console.WriteLine("Neither record was written to
database."); } finally { myConnection.Close(); }

e RollbackRetaining

public void RollbackRetaining()

Rolls back a transaction from a pending state and retains the transaction
context after a commit.

e Save

public void Save()

Rolls back a transaction from a pending state, and specifies the transaction
or savepoint name.

— Usage
* Savepoints offer a mechanism to roll back portions of transactions.
You create a savepoint using the Save method, and then later call
the Rollback method to roll back to the savepoint instead of rolling
back to the start of the transaction.

FirebirdSql.Data.Firebird— FbTransaction 104

Savepoints are useful in situations where errors are unlikely to
occur. The use of a savepoint to roll back part of a transaction in
the case of an infrequent error can be more efficient than having
each transaction test to see if an update is valid before making the
update. Updates and rollbacks are expensive operations, so
savepoints are effective only if the probability of encountering the
error is low and the cost of checking the validity of an update
beforehand is relatively high.

— Parameters
* savePointName -

— Example
FbConnection myConnection = new
FbConnection(connectionString); myConnection.Open();
FbCommand myCommand = new FbCommand(); FbTransaction
myTrans;
// Start a local transaction myTrans =
myConnection.BeginTransaction(); // Assign transaction
object for a pending local transaction myCommand.Connection
= myConnection; myCommand.Transaction = myTrans;
try { myCommand.CommandText = "INSERT INTO PROJECT(proj_id,
proj_name, product) Values(’FBNP’, ’.Net Provider’, ’N/A’)";
myCommand . ExecuteNonQuery () ;
myTrans.Save ("SampleTransaction"); myCommand.CommandText =
"INSERT INTO PROJECT(proj-id, proj_name, product)
Values(’FBN1’, ’.Net Provideri.’, ’N/A’)";
myCommand . ExecuteNonQuery () ; myTrans.Commit () ;
Console.WritelLine("Both records are written to database.");
} catch(Exception e) { try {
myTrans.Rollback("SampleTransaction"); } catch (FbException
ex) { if (myTrans.Connection != null) {
Console.WriteLine("An exception of type " + ex.GetType() + "
was encountered while attempting to roll back the
transaction."); } }
Console.WritelLine("An exception of type " + e.GetType() + "
was encountered while inserting the data.");
Console.WriteLine("Neither record was written to
database."); } finally { myConnection.Close(); }

o ToString

public string ToString()

Returns a that represents the current .

FirebirdSql.Data.Firebird— FbTransaction 105

EXTENDED INFORMATION

e Assembly: FirebirdSql.Data.Firebird

